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Simple Summary: Competitive endogenous RNAs (ceRNAs) can regulate gene expression at the
posttranscriptional level by competitively binding to microRNAs. In cancer, ceRNA activity is
dysregulated. The imbalanced ceRNA-related regulatory network has been theorized to play an
important role in cancer progression. In this review, we summarize the biological functions and
clinical implications of long noncoding RNAs and circular RNAs as ceRNAs in nasopharyngeal
carcinoma (NPC).

Abstract: Nasopharyngeal carcinoma (NPC) is a kind of head-and-neck malignant tumor, and distant
metastasis treatment resistance is the leading cause of patient death. In-depth understanding of
NPC progression and treatment failure remains to be explored. Long noncoding RNAs (lncRNAs)
and circular RNAs (circRNAs) are noncoding RNAs that play key regulatory role in shaping tumor
cell activities. Recent studies have revealed that lncRNA and circRNA function as competitive
endogenous RNAs (ceRNAs) by regulating the posttranscriptional expression of genes as miRNA
baits. The imbalanced ceRNA networks derived from lncRNA/circRNA-miRNA-mRNA interaction
are widely found to contribute to NPC development. Herein, we summarize typical examples
of lncRNA/circRNA-associated ceRNAs in recent years, which involved the potential molecular
mechanisms in the regulation of proliferation, apoptosis, treatment resistance and metastasis of NPC,
and discuss their potential clinical significance in the prognosis and treatment of NPC. Interpreting
the involvement of ceRNAs networks will provide new insight into the pathogenesis and treatment
strategies of NPC. However, ceRNA regulatory mechanism has some limitations currently. Screening
the most effective ceRNA targets and the clinical application of ceRNA still has many challenges.

Keywords: long noncoding RNA; circular RNA; microRNA; competing endogenous RNA; regulatory
network; nasopharyngeal carcinoma

1. Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy with high incidence in China that
develops on the top and lateral wall of the nasopharynx cavity [1]. The incidence and
mortality rate of NPC are 1.7/104 and 1.0/104 in males and 0.7/104 and 0.4/104 in females,
respectively [2]. Epstein–Barr virus (EBV) is a causative factor of NPC and participates in
the multistage process of NPC [3]. The occurrence of NPC may also be closely related to
diet and environment [4,5]. Owing to the complex anatomy of the nasopharynx, the occult
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nature of the site of NPC, and the atypical early symptoms, approximately 70% of NPC
patients already have locally advanced or metastatic disease at the time of diagnosis [6].
Currently, the most effective treatment of NPC is radiotherapy-based comprehensive
treatment, but distant metastasis and the weak radiation sensitivity of the tumors may
hinder the success of treatment [7,8]. In addition, multidrug resistance (MDR) is the major
cause of chemotherapy failure in locally advanced NPC [9]. Cisplatin, paclitaxel, and 5-FU
are commonly used chemotherapy drugs [10] that can significantly improve treatment
efficiency, but their use in large doses often causes serious cytotoxic reactions and thus
induces tumors to develop MDR [11–14]. Although immune checkpoint inhibitor (ICI)
therapy is regarded as a novel standard of care in multiple malignancies like NPC, only
a minority of patients benefit from it at present [1]. Hence, finding sensitive and specific
biomarkers is a key to improving the cure rate of NPC, achieving an excellent prognosis,
and predicting recurrence and metastasis.

Long noncoding RNAs (lncRNAs) are noncoding RNAs (ncRNAs) longer than 200 bp.
When initially discovered, lncRNAs were considered to have no biological function [15].
However, recent studies have shown that nuclear lncRNA can interact with DNA [16],
RNA [16], protein [17] and other molecules, regulate the chromosome structure [16–18] and
participate in chromatin reconstruction. Completely processed lncRNAs are transported
to the cytoplasm or other organelles, and cytoplasmic lncRNAs act as posttranscriptional
regulators to directly target mRNA transcripts to regulate their stability or inhibit mRNA
through a competitive endogenous RNA (ceRNA) mode [19,20]. Extensive studies have con-
firmed that lncRNAs, as ceRNAs, are widely involved in the occurrence and development
of NPC. This review summarizes this aspect next.

As a newly discovered type of noncoding RNA molecule, circular RNA (circRNA)
forms a closed loop by backsplicing to protect it from ribonuclease R and it is stably
expressed [21]. Based on the origin of its sequence, circRNAs can be divided into three
categories: exonic circRNAs, intronic circRNAs, and exon–intron circRNAs [22]. In the past,
circRNA was thought to be a useless by-product of incorrect splicing [23]. Recent studies
have found that circRNA is an important participant in the development of cancer. Some
circRNAs contain open reading frames (ORFs) and have protein-coding functions [24].
CircRNAs usually contain several microRNA (miRNA) binding sites, and some contain
one or multiple RNA binding sites, which can be used as sponges for miRNA. As lncRNAs,
circRNAs are also able to function as ceRNA via miRNA response elements in them.
Increasing evidence has shown that circRNAs participate in proliferation, metastasis, and
invasion and even affect chemotherapy resistance and radiosensitivity of NPC by acting as
ceRNAs [25–27].

In eukaryotes, some small RNA molecules are often used to guide gene silencing, such
as small interfering RNA (siRNA) and miRNA, a mechanism known as RNA interference
(RNAi) [28]. MiRNA is also a kind of noncoding RNA with a length of about 20 bp, which
is a highly conserved gene family [29]. Studies have shown that the RNA-induced silencing
complex (RISC) is the key to miRNA function, and it is comprised of siRNA, the Dicer
enzyme, Argonaut protein (AGO), and other biological macromolecules [30]. Based on its
complementary pairing form with mRNA, there are two functions of miRNA: complete
complementary pairing, where RISC degrades the mRNA, and incomplete complementary
pairing, which inhibits mRNA translation [31]. Researchers have confirmed that miRNAs
play biological roles in tumors by negatively regulating downstream genes [32–34]. MiR-
NAs are considered to be promising targets for cancer therapy. Given that miRNAs are key
points in the ceRNA networks, lncRNAs and circRNAs serving as ceRNAs may therefore
serve as potential therapeutic targets. The synthesis process of noncoding RNAs (lncRNAs,
circRNAs, miRNAs) is shown in Figure 1.
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Figure 1. The synthetic pathways of noncoding RNAs. Cytoplasmic lncRNAs are transcribed from
its corresponding parent gene. CircRNAs are reverse-spliced from precursor mRNAs and form
three types, namely, exon circRNAs, intron circRNAs, and exon–intron circRNAs. MiRNAs are
transcribed by RNA polymerase II to generate pre-miRNA and then cut into pre-miRNA through
the DGCR8–Drosha enzyme complex. Exprotin 5 transports pre-miRNA out of the nucleus. Dicer
and other enzymes cut pre-miRNA into unstable double-stranded RNA outside of the nucleus. One
single-stranded miRNA is degraded, and the other is integrated into RISC (ribonuclein complex
containing members of AGO histones).

The ceRNA hypothesis was proposed by the Pier Paolo Pandolfi research group of
Harvard Medical College in 2011 [20]. There are one or more mRNA binding sites on
miRNAs that degrade target genes or inhibit translation through RISC [35]. However, some
lncRNAs/circRNAs form complementary pairing with miRNAs as ceRNAs to competi-
tively bind miRNAs, thereby preventing miRNAs from inhibiting their target genes. The
ceRNA hypothesis has attracted wide attention since it was first proposed, and it may
explain the biological role of some lncRNAs and circRNAs. Significantly, many studies
have confirmed that the ceRNA mode exists in a variety of cancers [36–38]. In recent years,
emerging studies have showed that lncRNA- and circRNA-mediated ceRNA networks
play an important role in NPC progression.

2. Methods

We searched several databases to identify relevant studies: Google Scholar, PubMed,
and Medline. Search terms such as “ceRNA,” “NPC,” “non-coding RNA,” “lncRNA,”
and “circRNA” were used in various combinations to obtain relevant information. We
collected research papers on the ceRNA mechanism involved in NPC progression and
integrated information to determine the content of the narrative review. Date restrictions
(published ≥2017) were only used to obtain and summarize evidence of popular literature.

3. Biological Functions of LncRNA/CircRNA-Mediated CeRNA Networks in NPC

Accumulating evidence from studies has shown that lncRNA and circRNA participate
in the occurrence and development of various cancers by adsorbing miRNAs to inhibit
the expression of target genes. As a novel mode of gene regulation, ceRNA reveals the
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potential function of ncRNAs. In this section, we review lncRNA/circRNA-miRNA-target
gene networks regulating biological functions of NPC.

3.1. Regulation of NPC Cell Proliferation

Tumor cells have self-sufficient proliferative capacity, even without external stimula-
tion. The ceRNA mechanism is one of the ways to maintain proliferation signal transduction
in NPC cells. Almost all lncRNAs/circRNAs function as ceRNAs, which can promote the
proliferation of NPC tumor cells. We focus on ceRNA networks that maintain the prolifera-
tion signal transduction ability of NPC tumor cells. Their specific molecular mechanisms
are shown in Tables 1 and 2.

Table 1. CeRNA networks of lncRNA-miRNA-mRNA involved in NPC proliferation and apoptosis.

LncRNA miRNA mRNA Function Reference

ZFAS1 miR-7-5p ENO2 Proliferation, apoptosis, radiation resistance [39]
SNHG5 miR-1179 HMGB3 Proliferation, migration and invasion [40]
SNHG7 miR-514-5p ELAVL1 Proliferation, migration [41]
DRAIC miR-122 SATB1 Proliferation, migration and invasion [42]

SOX2-OT miR-146b-5p HNRNPA2B Proliferation, apoptosis, migration,
invasion and metastasis [43]

XIST miR-148a-3p ADAM17 Proliferation, apoptosis, migration, invasion,
EMT and metastasis [44]

FAM225A miR-590-3p
miR-1275 ITGB3 Proliferation, migration, invasion, metastasis and

FAK/PI3K/AKT pathway [45]

CYTOR miR-613 ANXA2 Proliferation, migration, invasion and metastasis [46]
LINC02570 miR-4649-3p SREBP1 Proliferation, invasion, and migration [47]

HOXC13-AS miR-383-3p HMGA2 Proliferation, invasion, and migration [48]
SMAD5-AS1 miR-106a-5p SMAD5 Proliferation, invasion, migration and EMT [49]

PTPRG-AS1 miR-194-3p PRC1 Proliferation, apoptosis, invasion, migration,
metastasis and radiosensitivity [50]

PTPRC-AS1 miR-124-3p LHX2 Proliferation, apoptosis and radiosensitivity [51]
FOXD3-AS1 miR-185-3p FOXD3 Proliferation, invasion, migration and cell stemness [52]

MEG3 miR-21 PTEN Apoptosis and autophagy [53]
NEAT1 miR-129 Bcl-2 Apoptosis in SAHA tolerance NPC cell lines [54]

Table 2. CeRNA networks of circRNA-miRNA-mRNA involved in NPC proliferation and apoptosis.

CircRNA miRNA mRNA Function Reference

CircCTDP1 miR-320b HOXA10 Proliferation, invasion, migration, apoptosis
and TGFβ2 pathway [55]

CircRNA_000543 miR-9 PDGFRB Proliferation, apoptosis and radiosensitivity [26]
CircHIPK3 miR-4288 ELF3 Proliferation, invasion, and migration [56]

CircTGFBR2 miR-107 TGFBR2 Proliferation, invasion, migration, EMT, TGF-β
and PI3K/Akt pathway [57]

CircITCH miR-214 PTEN Proliferation, migration and invasion [58]

For instance, tumor cells increase de novo fatty acid synthesis to promote proliferation.
Oncogenic LNC02570 is upregulated in advanced stage NPC patients. High expression of
LINC02570 significantly promotes NPC proliferation. As a ceRNA, LINC02570 upregulates
the expression level of the key gene SREBP1 in the lipid biosynthesis pathway by adsorbing
miR-4649-3p [47]. SREBP1 simultaneously activates FASN (downstream gene) expression.
In previous studies, EBV-LMP1 mediated the activation of the SREBP1-FASN pathway,
an important mechanism for promoting NPC proliferation [59]. LINC02570, as a ceRNA,
plays the same function as LMP1. Although the correlation between LMP1 and LINC02570
has not been reported, LINC02570 shows a new function of ceRNA in the activation of
lipogenesis, an effect that accelerates NPC proliferation and tumor development. In tumor
cells, lipogenesis is highly active and promotes the rapid proliferation of tumors. Hence,
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targeting lncRNA or key genes for lipogenesis in ceRNA networks may effectively inhibit
the proliferation of NPC cells.

The atypical cell cycle process caused by abnormal activation of the PI3K/Akt sig-
naling pathway is considered a basic feature of many malignant tumors, including NPC.
Excessive activation of this signaling pathway leads to abnormal cell proliferation. CeRNA
networks at least partially promote NPC proliferation by inhibiting PTEN expression.
PTEN is a tumor suppressor of NPC and a key negative regulatory gene of PI3K/Akt
signaling pathway [60,61].

Low expression of PTEN predicts poor prognosis and shorter progression-free sur-
vival in NPC patients [61]. Overexpression of circITCH significantly inhibits NPC cell
proliferation [58]. In vitro, circITCH blocks miR-214-mediated inhibition of PTEN, sug-
gesting that circITCH, as a ceRNA, may inhibit the PI3K/Akt signaling pathway [58] and
NPC proliferation. PTEN can also be upregulated by lncRNA MEG3/miR-21 and promote
autophagy and apoptosis in NPC cells [53]. Notably, circITCH and lncRNA MEG3, as
ceRNAs, jointly regulate PTEN cells and promote proliferation in HK-1 cells.

Therefore, lncRNA/circRNA-associated ceRNA cross talk may be a potential therapeu-
tic target for NPC. Understanding the specific mechanism of the ceRNA network involved
in the regulation of proliferation-related genes and signaling pathways in NPC is of great
significance for the development and treatment of NPC.

3.2. Regulation of NPC Cell Apoptosis

Apoptosis is a programmed death, which plays a vital role in the development of
organisms and defense against intracellular infection factors. Contrary to the effect of
cell proliferation, most ceRNA-mediated abnormal expression of apoptosis-related genes
inhibits apoptosis of NPC tumor cells and promotes their survival. B cell lymphoma 2
(Bcl-2) is an antiapoptotic protein. It inhibits apoptosis by regulating mitochondrial outer
membrane and preventing the release of proapoptotic molecules into the cytoplasm. Bcl-
2 is the main target of apoptosis molecular mechanism research, and is also the target
gene of lymphoma and other cancer treatment. Some researchers have confirmed that
Bcl-2 plays an important role in the antiapoptotic activity of EBV latent proteins (such
as BHRF1, BARF1, and EBNA-3C) in the development of NPC. Xue et al. confirmed
that the abnormal expression of Bcl-2 induced by lncRNA NEAT1/miR-129 was the main
reason for suberoylanilide hydroxamic acid (SAHA)-induced apoptosis [54]. Inhibition
of lncRNA NEAT1 and restoration of miR-129 levels are potential therapeutic targets for
NPC and strategies for overcoming SAHA resistance. In lncRNA/circRNA mediated
ceRNA networks, other apoptosis-related genes such as caspase, Fas and p53 have not
been reported.

3.3. Modulating NPC Chemosensitivity

Improving the radiosensitivity of NPC is a challenge clinically. CircRNA_000543 in-
creased in radiation-resistant NPC tissue, and the overall survival of patients was poor [26].
CircRNA_000543/miR-9/PDGFRB is a ceRNA involved in NPC radiation resistance, and
any element imbalance will affect radiation resistance [26]. Notably, imatinib, a PDF-
GRB inhibitor used to treat chronic myeloid leukemia (CML), can effectively increase the
radiosensitivity of NPC [26]. Elements in circRNA_000543-mediated ceRNA model are
potential targets for NPC therapy.

The Gene Expression Omnibus (GEO) database was used to identify lncRNAs with
abnormally high PTPRG-AS1 expression. LncRNA PTPRG-AS1 promotes radiosensitivity
of NPC cells as a ceRNA [51]. LncRNA PTPRG-AS1 adsorbs miR-194-3p and miR-124-
3p negatively regulate PRC1 and LHX2, respectively [50,51]. LHX2 activates the Notch
pathway and reduces radiosensitivity of NPC cells. Although the specific mechanism
of LncRNA PTPRG-AS1 as a ceRNA involved in radiation resistance of NPC remains
unclear, these two studies provided potential biomarkers for evaluating the results of
radiation resistance in NPC treatment. Moreover, lncRNA ZFAS1/miR-7-5p regulates
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ENO2 and participates in NPC radioresistance [39]. Studies have confirmed that ENO2
shapes the hypoxic environment of tumors by regulating HIF-1 signaling, which may be
the reason for ZFAS1 as a ceRNA to promote NPC radiation resistance [39]. Furthermore,
the lncRNA XIST/miR-381-3p/NEK5 network promotes glycolysis and NPC progression
under hypoxic conditions. Oxygen-enriched tumor cells are more sensitive to radiotherapy
than hypoxic tumor cells. The above studies show that inhibiting lncRNA-mediated ceRNA
networks can effectively regulate the glycolysis and HIF-1 signal of NPC tumor cells to
resist low radiosensitivity under hypoxia.

Recent studies have confirmed that lncRNA/circRNA-mediated ceRNA networks
play an important role in regulating drug resistance of NPC cells (Table 3). The treatment
of recurrent NPC is mainly multidrug chemotherapy containing cisplatin. Cisplatin drugs
promote tumor cell death by blocking DNA polymerase and inhibiting gene replication.
Compared with parental NPC cells, lncRNA HOXA11-AS is upregulated and miR-454-3p
downregulated in cisplatin-resistant NPC cells [62]. Liu et al. confirmed that HOXA11-AS
as a ceRNA enhanced cisplatin resistance of NPC cells by adsorbing miR-454-3p [62]. At
the same time, the downstream c-Met/Akt/mTOR pathway was activated by HOXA11-
AS/miR-454-3p, thereby promoting the cisplatin resistance of NPC cells [62]. Combined
use of Si-HOXA11-AS and cisplatin may improve the treatment of drug-resistant NPC.
As a ceRNA, lncRNA MAGI2-AS3 confers cisplatin resistance to NPC cells by regulating
miR-218-5p/GDPD5 [63]. Furthermore, circNRIP1 was identified as the oncogene of
multiple tumors [64,65]. It was highly expressed in sera of chemotherapy-resistant NPC
patients [27,64]. The knockdown of CircNRIP1 significantly enhanced the sensitivity of
NPC cells to 5-Fu and cisplatin by competitive binding with miR-515-5p [27,64]. Targeted
inhibition of circNRIP1-mediated ceRNA model is a potential therapeutic strategy for
drug-resistant NPC patients [27,64].

Table 3. CeRNA networks of lncRNA/circRNA-miRNA-mRNA involved in NPC chemosensitivity.

LncRNA/CircRNA miRNA mRNA Function Reference

CCAT1 miR-181a CPEB2 Paclitaxel resistance [66]

MAGI2-AS3 miR-218-5p GDPD5
SEC61A1

Cisplatin resistance and EMT
Proliferation and migration [63]

CircNRIP1 miR-515-5p IL-25 5-Fu and cisplatin resistance [27]

CircCRIM1 miR-422a FOXQ1 Docetaxel chemosensitivity, invasion, migration,
metastasis and EMT [38]

XIST miR-381-3p NEK5 Glycolysis, migration, invasion and metastasis
under hypoxic conditions [67]

HOXA11-AS miR-454-3p c-Met Cisplatin resistance, C-Met/AKT/mTOR pathway [62]

Paclitaxel is also one of the commonly used chemotherapy drugs for recurrent NPC.
It inhibits tumor cell division by promoting tubulin polymerization and inhibiting its
depolymerization. CPEB2 is an RNA-binding protein, and its role in tumors is contradictory.
The identical CPEB2A of CPEB2 is a tumor suppressor and inhibits the translation of
target mRNA, while the identical CPEB2 can competitively bind to the target RNA of
CPEB2A, thus allowing subsequent translation. CPEB2B is a tumor promoter [68,69].
LncRNA CCAT1, as a ceRNA, regulates CPEB2 at posttranscriptional level. In NPC, it
seems to be a tumor-promoting factor. The specific mechanism of CPEB2 involved in
promoting paclitaxel resistance in NPC cells is worthy of further study, which provides
guidance for the potential regulatory function of ceRNA. Paclitaxel is sensitive to G2/M
cells and significantly promotes the radiosensitivity of tumor cells. Targeted inhibition of a
CCAT1-mediated ceRNA model may promote the therapeutic effect of radiotherapy and
chemotherapy in paclitaxel resistant NPC patients.
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3.4. Modulating NPC Metastasis

After chemoradiotherapy, 20–30% of NPC patients still face metastasis [70]. Their
median overall survival (OS) time was shortened to 10–20 months [71]. Therefore, effective
molecular targets are urgently needed for the treatment of metastatic NPC. Some lncR-
NAs/circRNAs act as ceRNAs and are involved in the regulation of NPC cell invasion,
migration and metastasis, which were also verified in vivo experiments (Table 4). These
lncRNAs/circRNAs may provide promising cancer biomarkers for early diagnosis and
prognosis in patients with metastatic NPC.

Table 4. CeRNA networks of lncRNA/circRNA-miRNA-mRNA involved in NPC metastasis.

LncRNA/CircRNA miRNA mRNA Function Reference

AATBC miR-1237-3p PNN Migration, invasion, EMT and metastasis [72]

AFAP1-AS1 miR-423-5p
FOSL2

RAB11B
LASP1

Invasion, migration, metastasis and
Rho/Rac pathway, invasion [73]

CircSETD3 miR-615-5p
miR-1538 MAPRE1 Invasion, migration and metastasis [25]

Circ_0046263 miR-133a-5p IGFBP3 Proliferation, invasion, EMT and metastasis [74]

EBV-encoded CircRPMS1
miR-203
miR-31

miR-451
Proliferation, invasion, EMT and metastasis [75]

Epithelial–mesenchymal transition (EMT) is a process in which epithelial cells lose
their characteristics and acquire mesenchymal characteristics. In cancer, EMT is considered
to be the key mechanism in metastasis. EMT is often regarded as a binary process of
epithelial cells and mesenchymal cells [76].

TGF-β is considered to be the most important signaling pathway of EMT induced by
tumor cells. TGF-β-mediated EMT can occur in two ways. One is TGF-β signaling activates
Smad2 and Smad3, and then forms a complex with Smad4 to transfer into the nucleus
and mediates the inhibition and activation of target genes with EMT-related transcription
factors (TF). Snail, Slug, and ZEB1 were identified as the main transcription activators of
EMT. The loss of epithelial gene E-cadherin is the marker of EMT, and the upregulation
of mesenchymal gene N-cadherin is also the key phenomenon of EMT [77]. In addition,
TGF-β can induce EMT together with Notch, Wnt, and other signaling pathways [78,79].

Recent studies have shown that lncRNA/circRNA-mediated ceRNA networks induce
tumor EMT formation by activating TGF-β signals, e.g., lncRNA AATBC regulates PNN
by adsorbing miR-1237-3p. The interaction between PNN and ZEB1 can also promote
EMT of NPC [72]. Circ_0046263 promotes lymph-node metastasis of NPC cells in vivo [74].
The potential regulatory mechanism is to relieve the inhibition of miR-133a-5p on IGFBP3
expression and promote IGFBP3-mediated TGF-β activation [74].

In addition, the reconstruction of the cytoskeleton can also trigger EMT formation.
CircRNA participates in the assembly of the dynamic cytoskeleton through a ceRNA
mechanism, thereby promoting metastasis in NPC. CircSETD3 competitively adsorbs
miR-615-5p and miR-1538, and ultimately upregulates MAPRE1 [25].The upregulation of
MAPRE1 prevents α-tubulin acetylation, thereby affecting NPC cell motility, migration
and EMT [25]. CircSETD3 was once considered a tumor suppressor; however, ceRNA
mechanism conferred it an oncogene function [80]. It provides a new potential biomarker
for metastatic NPC.

Virus ncRNA can also be used as miRNA decoys to participate in ceRNA network
regulation. This regulation pattern has been defined as “competitive viruses and host RNA”
(cvhRNAs) [81]. This novel interaction was first described in the hepatitis B virus (HBV)
ncRNA and later in human papilloma (HPV) [82,83]. EBV-encoded circRNAs can also
serve as ceRNAs by adsorbing host miRNAs, thereby hindering the targeted inhibition
of miRNAs on target genes and accelerating the progression of NPC. The EBV-encoded
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gene RPMS1 exons 2–4 form circRPMS1 through backsplicing from exon 4 to exon 2
(circRPMS1_E4_E2). In EBV-positive NPC, circRPMS1 is activated and sponges multiple
miRNAs (miR-203, miR-31, miR-451) to promote the EMT process of NPC and play a
role in promoting cancer [57]. Notably, there are very few studies on the involvement
of EBV-encoded lncRNAs and circRNAs in the cvhRNA hypothesis. In-depth study of
the specific molecular mechanisms of EBV-encoded lncRNAs/circRNAs-mediated ceRNA
networks contributes to virus-targeted therapy of NPC.

Understanding the ceRNA networks mediated by lncRNAs and circRNAs can provide
valuable insights into the molecular mechanisms underlying the pathogenesis of a variety
of human malignancies, including NPC (Figure 2).

Figure 2. The specific regulatory mechanism of some representative lncRNA/circRNA-mediated
ceRNA networks in NPC progression.

4. Implications of LncRNA/CircRNA-Associated ceRNAs as Diagnostic Markers or
Therapeutic Targets in NPC

The TNM (tumor–lymph node–metastasis) staging system is a general guideline for
cancer treatment. In clinical practice, it cannot accurately identify the risk of recurrence or
distant metastasis in NPC patients. Stage II patients are generally considered at low risk.
Final recurrence occurs in 15–20% of patients without adjuvant chemotherapy. Conversely,
more than half of patients in stage III and IV were cured only by chemoradiation without
adjuvant chemotherapy [84]. Thus, novel prognostic biomarkers are needed. The ceRNA
spectrum in cancer cells is different from that in normal cells. Some functional ceRNAs
are deactivated in tumor cells and may serve as diagnostic or therapeutic markers in the
future. For example, lncRNA FOXD3-AS1 as a ceRNA promotes FOXD3 gene expression.
The upregulation of these two genes was associated with TNM stage and histological type
of NPC [52]. LncRNA FAM225A was identified as an oncogenic gene in NPC. FAM225A,
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as a ceRNA, effectively activates the FAK/PI3K/Akt signaling pathway by upregulating
ITGB3, thereby promoting NPC proliferation and metastasis [45]. The combination of TNM
staging and FAM225A expression is expected to become an effective prognostic indicator.

CircCRIM1, as a ceRNA, plays an important prognostic role in NPC metastasis and
chemotherapy resistance [38]. Hong et al. combined circCRIM1 expression with N staging
to construct a prognostic prediction model [38]. Patients with low CircCRIM1 expression
or early-stage N were sensitive to systemic induction chemotherapy of docetaxel, while
patients with high CircCRIM1 expression or late-stage N did not benefit from systemic
induction chemotherapy of docetaxel [38]. These findings are used clinically to avoid
unnecessary drug toxicity.

Knockdown of oncogenic lncRNAs/circRNAs may be an effective strategy to interfere
with the progression of NPC, but how to deliver therapeutic nucleic acids accurately into
cells based on the ceRNA model is a challenge. Based on the CRISPR/Cas system, the
precision of lipid nanoparticles and polymer hydrogel nanoparticles to treat NPC may be a
potential solution [85,86].

In a word, miRNAs are considered promising targets for cancer therapy. Given that
miRNAs are key points in ceRNA networks, lncRNAs and circRNAs serving as ceRNAs
may therefore serve as potential therapeutic targets.

5. Conclusions

Since lncRNAs and circRNAs combine noncoding RNAs with protein-coding RNAs
through complex ceRNA networks, they play indispensable regulatory roles in cancers like
NPC. Exploring the specific molecular mechanism of lncRNAs/circRNAs as ceRNAs could
provide targeted molecular therapy and clinical prevention strategies in NPC. Emerging
studies have indicated that a variety of dysregulated lncRNA/circRNA-mediated ceRNAs
may form networks to regulate multitudinous biological functions in NPC, including tumor
cell proliferation, apoptosis, invasion, migration, metastasis, and treatment resistance.

In fact, any transcript containing miRNA seed matches can function as a ceRNA.
However, in the complex ceRNA networks, how to select an effective ceRNA as a target
and how to specifically manipulate the target ceRNA without affecting other ceRNAs for the
treatment of NPC? This is a challenging task for clinical applications of ceRNA. Moreover,
the occurrence of NPC is closely related to EBV infection. Although some individual EBV-
encoded circRNAs have been confirmed as ceRNAs to accelerate NPC progression, research
on EBV-encoded lncRNAs/circRNAs as ceRNAs is still rare in NPC. Targeting EBV-encoded
genes is also a specific therapeutic strategy for NPC. All in all, further understanding of the
regulatory networks of lncRNA/circRNA-mediated ceRNAs originating from both tumor
cells and EBV will provide more novel insight into the pathogenesis and therapy of NPC.
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