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Glaucoma is a multifactorial disease and especially mechanisms occurring indepen-
dently from an elevated intraocular pressure (IOP) are still unknown. Likely, the
immune system contributes to the glaucoma pathogenesis. Previously, IgG antibody
depositions and retinal ganglion cell (RGC) loss were found in an IOP-independent
autoimmune glaucoma model. Therefore, we investigated the possible participation of
the complement system in this model. Here, rats were immunized with bovine optic
nerve homogenate antigen (ONA), while controls (Co) received sodium chloride (n = 5–
6/group). After 14 days, RGC density was quantified on flatmounts. No changes in
the number of RGCs could be observed at this point in time. Longitudinal optic nerve
sections were stained against the myelin basic protein (MBP). We could note few signs
of degeneration processes. In order to detect distinct complement components, retinas
and optic nerves were labeled with complement markers at 3, 7, 14, and 28 days
and analyzed. Significantly more C3 and MAC depositions were found in retinas and
optic nerves of the ONA group. These were already present at day 7, before RGC loss
and demyelination occurred. Additionally, an upregulation of C3 protein was noted via
Western Blot at this time. After 14 days, quantitative real-time PCR revealed significantly
more C3 mRNA in the ONA retinas. An upregulation of the lectin pathway-associated
mannose-serine-protease-2 (MASP2) was observed in the retinas as well as in the optic
nerves of the ONA group after 7 days. Significantly more MASP2 in retinas could also
be observed via Western Blot analyses at this point in time. No effect was noted in
regard to C1q. Therefore, we assume that the immunization led to an activation of the
complement system via the lectin pathway in retinas and optic nerves at an early stage in
this glaucoma model. This activation seems to be an early response, which then triggers
degeneration. These findings can help to develop novel therapy strategies for glaucoma
patients.
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INTRODUCTION

Glaucoma is one of the most common causes of blindness
worldwide and in 2020 about 79.6 million people will be affected
(Quigley and Broman, 2006; EGS, 2014). This neurodegenerative
disease leads to a loss of retinal ganglion cells (RGCs) and their
axons, which induces characteristic clinical symptoms, such as
gradual visual field loss. Until now, the mechanisms behind this
disease have not been fully understood.

Although an elevated intraocular pressure (IOP) remains
the main risk factor for glaucoma, other mechanisms are also
involved. In the last few years, abnormal antibody patterns were
found in sera of patients with glaucoma (Wax et al., 1994,
2001; Grus et al., 2004). These were characterized as antibodies
against ocular tissue (Joachim et al., 2008) and were detected in
patients with elevated IOP as well as in patients with normal
tension glaucoma. Moreover, IgG autoantibody depositions were
observed in the human glaucomatous retina (Gramlich et al.,
2013a). All these findings lead to the question to which extent the
immune system is involved in this disease.

To investigate the pathomechanisms more specifically, an
IOP-independent autoimmune glaucoma model was developed
(Wax et al., 2008). In this model, immunization with ocular
antigens, such as heat shock protein 27 or S100B protein lead to a
loss of RGCs without IOP-elevation (Joachim et al., 2009; Casola
et al., 2015). Recent studies from our group revealed antibody
alterations in the sera and the occurrence of IgG deposits in
the retinas of immunized animals (Joachim et al., 2012). This
raises the question, how these antibodies are involved in the
development of glaucoma. Possibly, antibodies activate specific
pathways, which lead to apoptosis, like the complement pathway,
since it is known that IgGs are able to activate the complement
system (Sontheimer et al., 2005; Ehrnthaller et al., 2011). This
activation takes place in several diseases, including neuromyelitis
optica. Here, IgG antibodies selectively bind to aquaporin-4,
which subsequently triggers complement (Hinson et al., 2007;
Bradl et al., 2009).

The complement system is part of the innate immune defense.
It is activated via three distinct pathways. Besides the classical
pathway, the lectin and the alternative pathway are able to
initiate this cascade. The membrane attack complex (MAC) is
formed at the end of all pathways. It generates a pore in the
target cell, which leads to osmotic imbalance, resulting in cell
lysis. Inappropriate complement activation plays a crucial role
in many neuropathological diseases, such as multiple sclerosis
(Lucchinetti et al., 2000) or Alzheimer’s disease (Rogers et al.,
1992b; Fonseca et al., 2011). Complement depositions were
observed in patients with glaucoma (Tezel et al., 2010) as well as
in ocular hypertension (OHT) animal models (Kuehn et al., 2006,
2008; Becker et al., 2015). But, the precise role of the complement
system in glaucoma remains still unclear.

The aim of this study was to determine, if complement
components are altered in the retinas and optic nerves after
immunization with the bovine optic nerve homogenate antigen
(ONA). We investigated via which pathway the activation
occurred and at which point in time it was initiated. Alterations
of the pathways and their common final path were examined over

time, particularly 3–28 days after immunization. Interestingly,
the first significant complement activation in the retinas and
the optic nerves was already noted at day 7. This indicates
that the complement system represents an early and very
sensitive system of neurodegeneration before neuronal cell
loss.

MATERIALS AND METHODS

Animals
All procedures concerning animals adhered to the ARVO
statement for the use of animals in ophthalmic and vision
research. All experiments involving animals were approved by the
animal care committee of North Rhine–Westphalia, Germany.

Male Lewis rats (Charles River, Sulzfeld, Germany), 6 weeks
of age, were used for the experiments and kept under
environmentally controlled conditions with free access to chow
and water. Detailed observations and health checks, including eye
exams, were performed regularly.

Immunizations
The preparation and immunization of ONA was carried out
as previously described (Laspas et al., 2011; Joachim et al.,
2013). Rats received an intraperitoneal injection with 8 mg/ml
ONA. The antigen was mixed with incomplete Freund’s adjuvant
(500 µl) plus 3 µg pertussis toxin (both Sigma Aldrich, St. Louis,
MO, USA). The animals of the control group (Co) were injected
with NaCl in Freund’s adjuvant and pertussis toxin.

Animals were sacrificed at 3, 7, 14, and 28 days after
immunization.

Retinal Ganglion Cell Counts via
Flatmounts
14 days after immunization, eyes were fixed in 4%
paraformaldehyde (PFA) for 1 h and then prepared as flatmounts
(n = 6/group). The following steps were performed at 20◦C
on a thermo shaker (70 rpm). First, the flatmounts were
blocked with 10% donkey serum and 0.5% Triton-X in PBS
for 90 min. Then, they were incubated with the RGC marker
Brn-3a (Nadal-Nicolas et al., 2009) (1:300; Santa Cruz, CA,
USA) overnight, followed by a 2 h incubation of donkey anti-
goat Alexa Fluor 488 (1:1000; Dianova, Hamburg, Germany).
From each of the four flatmount arms, three photos were
captured (central, middle, and peripheral) with an Axiocam HRc
CCD camera on an Axio Imager M1 fluorescence microscope
(Zeiss, Jena, Germany). Cells were counted using ImageJ
software (NIH, USA). Group comparison was performed after
transferring the data to Statistica software (V10.0; Statsoft, Tulsa,
OK, USA).

Histology of the Optic Nerve
To evaluate the myelin status of the optic nerves 3, 7, and 14 days
after immunization, longitudinal sections of the optic nerves
were stained against the myelin basic protein (MBP). Briefly, the
sections were blocked with 10% goat serum and 0.1% Triton-X
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in PBS for 60 min. The primary antibody MBP (1:100; Millipore,
Darmstadt, Germany) was incubated overnight. The next
day, the secondary antibody goat anti-mouse Alexa Fluor 488
(1:500; Invitrogen, Darmstadt, Germany) was added for 60 min.
Nuclear staining with 4′,6 diamidino-2-phenylindole (DAPI;
Serva Electrophoresis, Heidelberg, Germany) was included.
Negative controls were performed by using only the secondary
antibody.

Histology of Complement Components
in Retinas and Optic Nerves
In order to identify the different complement components in
the retina (n = 5–6/group) and the optic nerve (n = 6–
8/group), specific antibodies were used for immunofluorescence
staining (Table 1). Briefly, sections of the retina or the optic
nerve were blocked with a solution containing donkey and/or
goat serum and 0.1% Triton-X in PBS. The primary antibodies
were incubated at room temperature overnight. Incubation
with corresponding secondary antibodies was performed for
60 min. Nuclear staining with DAPI was included to facilitate the
orientation on the slides. Negative controls were performed by
using secondary antibodies only.

Histological Examination of Retinas and
Optic Nerves
The photographs were taken using a fluorescence microscope
(Axio Imager M1). In the retina, two photos of the peripheral
and two of the central part of each section were captured
for each point in time. In the optic nerve, three photos
were captured (proximal, middle, and distal). The images were
transferred to Corel Paint Shop Pro (V13; Corel Corporation,
CA, USA) and excerpts were cut out. Complement positive
cells (C1q, C3, and MAC) were counted using ImageJ
software.

For MBP and the mannose-associated-serine-protease
2 (MASP2) analyses we used an ImageJ macro (Joachim
et al., 2014). Briefly, we first transformed the images into
greyscale. After background subtraction (MBP: 50 pixel;
MASP2 retina: 100 pixel; MASP2 optic nerve: 7.2 pixel)
the lower and upper thresholds were set (MBP: lower:
13.86, upper: 113.18; MASP2 retina: lower: 10.29, upper:
70; MASP2 optic nerve: lower: 12.8; upper: 86). The
percentage of the labeled areas was measured for each
picture using the macro, exported to Excel and transferred
to Statistica.

TABLE 1 | Primary and secondary antibodies applied for immunohistochemistry of retinal and optic nerve tissue.

Primary antibodies Secondary antibodies

Antibody Company Tissue Dilution Antibody Company Tissue Dilution

Brn-3a Santa Cruz Retina 1:100 Donkey anti-goat Alexa Fluor 488 Dianova Retina 1:1000

C1q Quidel Retina 1:2500 Donkey anti-goat IgG Cy3 Abcam Retina 1:750

C3 Cedarlane Retina 1:500 Goat anti-rabbit IgG Cy 3 Linaris Retina 1:500

Optic nerve 1:500 Optic nerve 1:500

C5b-9 (MAC) Biozol Retina 1:100 Donkey anti-mouse Dy Light 488 Dianova Retina 1:250

Optic nerve 1:100 Goat anti-mouse Alexa Flour 488 Invitrogen Optic nerve 1:500

MASP2 Biozol Retina 1:400 Donkey anti-rabbit Alexa Fluor 555 Invitrogen Retina 1:400

Optic nerve 1:100 Optic nerve 1:700

MBP Millipore Optic nerve 1:100 Goat anti-mouse Alexa Flour 488 Invitrogen Optic nerve 1:500

TABLE 2 | Sequences of oligonucleotide pairs.

Gene Forward (F) and reverse (R)
oligonucleotides

GenBank accession
number

Amplicon size

β-actin-F
β-actin-R

cccgcgagtacaaccttct
tcaagcggtacctactgc

NM_031144.3 72 bp

C1qa-F
C1qa-R

cgggtctcaaaggagagagag
ctctgtacccccttagacc

NM_001008515.1 88 bp

C1qb-F
C1qb-R

gcactccagggataaaagga
accactcaatcctctctttccc

NM_019262.1 75 bp

C3-F
C3-R

tcgaaatccctcccaagtc
gtaacaggggaacttctagc

NM_016994.2 60 bp

C5-F
C5-R

tctcaggccaaagagagacc
ttcgacgatttatgtttgtggca

XM001079130.4 73 bp

Cyclophilin-F
Cyclophilin-R

tgctggaccaaacacaaatg
tcgtacaccagaaacccttc

M19553.1 88 bp

MASP2-F
MASP2-R

gctggaagatacactacacaagca
gtggattaccagtgtaaagtgg

NM_172043.1 76 bp

The listed primer pairs were used in quantitative real-time PCR experiments, while β-actin and cyclophilin served as housekeeping genes. The predicted amplicon sizes
are given. Abbreviations: F, forward; R, reverse; bp, base pair.
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FIGURE 1 | (A) Representative photos of Brn-3a stained flatmounts of the ONA and control group (Co). Both groups showed a similar number of Brn-3a+ cells.
(B) The RGC counts revealed no difference between the two groups (p = 0.9). (C) Optic nerve sections labeled with MBP (green) at 3, 7, and 14 days. Cell nuclei
were visualized with DAPI (blue). (D) At 3 days, a significant larger MBP+ area was measured in the ONA group compared to Co (p = 0.02). After 7 days, the
expression of MBP went back to control level (p > 0.05). A significant decrease in the MBP+ area was observed in the ONA group at 14 days (p = 0.03). Values are
mean ± SEM. Scale bars: 20 µm.

RNA Preparation and cDNA Synthesis
For RNA preparation, retinas (n = 3–6/group) from every
point in time were isolated, transferred into lysis buffer
containing 2-mercaptoethanol (Sigma–Aldrich) and snap frozen
in liquid nitrogen. Total RNA was extracted with the Gene
Elute Mammalian Total RNA Miniprep Kit according to the
manufacturer’s instructions and digested with RNase-free DNase
I (Sigma–Aldrich). The quality and quantity of RNA were
assessed by measurement of the ratio of absorbance values
at 260 and 280 nm (BioSpectrometer R©, Eppendorf, Hamburg,
Germany). Total RNA (1 µg) was used for reverse transcription
using a cDNA synthesis kit (Thermo Fisher Scientific, Waltham,
MA, USA).

Quantitative Real-time PCR
The designed oligonucleotides are shown in Table 2. Quantitative
real-time-PCR (qRT-PCR; Roche Applied Science, Mannheim,
Germany) technology was performed using SYBR Green I on the

Light Cycler R© 96 (Roche Applied Science). Primer concentration
was optimized to a final concentration of 200 nM and combined
with 200 ng of retinal RNAs per well. We set up two reactions
per RNA sample (duplicates) with a final volume of 20 µl per
single reaction (Ray et al., 2005; Horvat-Brocker et al., 2008; Luft
et al., 2014). Each qRT-PCR was performed in triplicate from each
retina and for each point in time and repeated twice. The average
threshold cycle (Ct) values of the two independent experiments
were used to calculate the ratios for the primers (Pfaffl et al.,
2002). In order to obtain amplification efficiencies of different
primer sets, we generated standard curves by a twofold dilution
series with template amounts ranging from 5 to 125 ng cDNA per
well. The Ct values of the reference genes (β-actin and cyclophilin)
were taken into account. For statistical evaluation of Ct variations
and calculated relative expression variations, data were analyzed
for significant differences by a pairwise fixed reallocation and
randomization test using the REST© software (Qiagen, Hilden,
Germany) (Pfaffl et al., 2002).
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FIGURE 2 | (A) Exemplary photos of C3 (red) and DAPI (blue) labeled retinas 3, 7, 14, and 28 days after immunization. (B) At 3 days, no difference in the number of
C3+ cells could be detected (p > 0.05). Significantly more C3 depositions were noted in the ONA group after 7 days (p = 0.002). At 14 days, no difference was
observed (p > 0.05). Significantly more C3 depositions were noted in the ONA group 28 days after immunization (p = 0.003). (C) Protein levels of iC3bα+β and C3α

at 7 days analyzed via Western Blot. In the ONA group, significantly more iC3bα+β was observed (p = 0.049). The C3α chains were not altered (p > 0.05).
(D) Expression levels of C3 at 3, 7, and 14 days measured with qRT-PCR. After 3 and 7 days, no changes in C3 expression could be noted (p > 0.05). The
quantification of C3 revealed a significant upregulation in the ONA group at 14 days (p = 0.011). (E) To evaluate C3 in the optic nerve, sections were stained with C3
(red) and DAPI (blue) 3, 7, and 14 days after immunization. (F) No alterations in C3+ cells were noted after 3 days (p > 0.05). At 7 days, significantly more C3+ cells
could be observed in ONA optic nerves (p = 0.02). After 14 days, the number of C3+ cells was not altered anymore (p > 0.05). Abbreviations: GCL, ganglion cell
layer. Values for immunostaining and Western Blot are mean ± SEM. Values for qRT-PCR are median ± quartile ± maximum/minimum. Scale bars: 20 µm.

Quantitative Western Blot Analysis
Seven days after immunization, retinas (n = 4–6/group) were
used for Western Blot analyses. The proteins were isolated by
mechanical and chemical methods. First, the frozen retinas were
homogenized with a metal homogenizer (Neolab, Heidelberg,
Germany). Then, 150 µl of a lysis buffer (RIPA buffer; Cell
signaling technology, Cambridge, UK) combined with protease
inhibitory solution (Sigma–Aldrich) was added. The retina
solution was treated with ultrasound. Thereafter, the RIPA buffer
was allowed to react on ice for 50 min. The last existing
cell components were separated by centrifugation for 30 min
(13200 rpm, 4◦C). The protein concentration was determined
by a commercial bicinchoninic acid assay (BCA; Thermo Fisher
Scientific). 20 µg per sample was loaded per lane of a 4–12%
Bis-Tris gel (NuPAGE, Invitrogen). After the blotting step using
the NuPAGE Transfer buffer (60 min, 200 V), the nitrocellulose

membranes were blocked with a mixture of 5% milk powder
in a PBS/0.05% Tween-20 solution. The primary antibodies C3
(1:500; Cedarlane, Burlington, ON, Canada), MASP2 (1:1000;
Biozol, Eching, Germany), and α-tubulin (1:20000; Sigma–
Aldrich) were used for the protein detection. The secondary
antibodies were labeled with fluorochromes like Alexa Fluor
680 (donkey anti-rabbit, 1:5000; Invitrogen) and DyLight 800
(donkey anti-mouse, 1:2000; Thermo Scientific). The protein
bands were recorded and analyzed with the Odyssey infrared
imager system 2.1 (LI-COR Bioscience, Lincoln, NE, USA).
The cleavage products of C3, namely iC3bα and iC3bβ, were
recorded together (63 and 75 kDa), while the uncleaved
C3α chains were recorded separately (110 kDa). MASP2 was
recorded at 72 kDa. The protein signal intensity was normalized
to the reference protein α-tubulin, which was recorded at
50 kDa.
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FIGURE 3 | (A) Retinas were labeled with MAC (green) and DAPI (blue) and MAC+ cells were counted in the retina at all points in time. (B) After 3 days, no difference
in the number of MAC+ cells could be noted (p > 0.05). At 7 days, the number of MAC+ cells in the ONA group was significantly increased (p = 0.03). At 14 days,
no changes were noted (p > 0.05), while at 28 days again significantly more MAC depositions were observed in the ONA group (p = 0.003). (C) Quantitative RT-PCR
analysis revealed no differences in C5 expression, which is part of the MAC complex (p > 0.05). (D) Sections of the optic nerves were stained with MAC (green) and
DAPI (blue) at all points in time. (E) Three days after immunization, no alterations in MAC depositions could be noted (p > 0.05). A significant increase of MAC+ cells
was observed in ONA optic nerves at 7 days (p = 0.001). After 14 days, no changes in the number of MAC+ cells were noted anymore (p > 0.05). Values for
immunostaining are mean ± SEM. Values for qRT-PCR are median ± quartile ± maximum/minimum. Abbreviations: GCL, ganglion cell layer. Scale bars: 20 µm.

Statistics
Regarding immunohistology and Western Blot, data are
presented as mean ± standard error (SEM), unless
otherwise noted. The ONA group was compared to the
Co group via two-tailed Student’s t-test using Statistica
Software. Regarding qRT-PCR, data are presented as
median ± quartile + minimum + maximum and were assessed
using REST software. P-values below 0.05 were considered
statistically significant.

RESULTS

No Early Effects on Retinal Ganglion
Cells
No changes in the ganglion cell density could be observed in the
ONA group compared to control group at 14 days (p = 0.96;
Figures 1A,B). Later, at 28 days, a significant RGC loss has been
described in the ONA animals (Laspas et al., 2011).

Demyelination Processes in the Optic
Nerves
A possible optic nerve demyelination was analyzed via
immunohistological staining against MBP at 3, 7, and 14 days
(Figures 1C,D). At 3 days, a significantly larger MBP+ area was
measured in ONA optic nerves compared to Co (p= 0.02). After
7 days, the MBP area went back to the control values (p > 0.05).
Later on, at 14 days, a decrease of MBP+ area could be observed
(p= 0.03).

Complement Activation in the Retina and
Optic Nerve after Immunization
To evaluate if the complement system is activated over time, the
factors C3 and MAC were immunohistochemically analyzed in
retinas 3, 7, 14, and 28 days after immunization. Additionally,
expression patterns of retinal C3 and C5, as part of the MAC
complex, were quantified via qRT-PCR at 3, 7, and 14 days.
Western Blot analyzes were performed for C3 at 7 days. Optic
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TABLE 3 | (A,B) Histological detection of complement factors in the retina.

(A)

Retina 3 days P-value 7 days P-value 14 days P-value

C3+ cells/mm

Co 12.44 ± 1.39 18.38 ± 2.67 15.64 ± 1.81

ONA 13.02 ± 1.92 0.81 27.25 ± 2.64 0.04 14.80 ± 1.75 0.75

MAC+ cells/mm

Co 6.66 ± 0.85 7.31 ± 1.81 13.49 ± 3.09

ONA 6.11 ± 1.76 0.78 15.94 ± 2.98 0.03 15.15 ± 0.92 0.62

C1q+ cells/mm

Co 0.29 ± 0.19 12.28 ± 2.65 9.20 ± 0.93

ONA 0.80 ± 0.46 0.33 12.61 ± 3.59 0.94 7.02 ± 1.65 0.28

MASP2+ area [%]/image

Co 1.29 ± 0.45 6.03 ± 1.75 7.91 ± 2.08

ONA 1.49 ± 0.66 0.81 13.49 ± 2.64 0.04 4.63 ± 1.17 0.21

(B)

Retina 28 days P-value

C3+ cells/mm

Co 23.25 ± 2.33

ONA 31.06 ± 1.40 0.03

MAC+ cells/mm

Co 7.89 ± 0.56

ONA 18.72 ± 1.34 0.003

Values are mean ± SEM. Significant values are marked in bold.

TABLE 4 | Histological detection of complement components in the optic nerve.

Optic nerve 3 days P-value 7 days P-value 14 days P-value

C3+ cells/image

Co 4.26 ± 0.18 4.18 ± 0.29 3.13 ± 0.16

ONA 4.30 ± 0.11 0.98 5.49 ± 0.25 0.02 3.27 ± 0.15 0.79

MAC+ cells/image

Co 0.08 ± 0.04 0.29 ± 0.08 0.35 ± 0.13

ONA 0.13 ± 0.05 0.78 1.78 ± 0.31 0.0004 0.36 ± 0.15 0.99

MASP2+ area [%]/image

Co 6.11 ± 1.56 4.32 ± 0.43 2.63 ± 0.70

ONA 8.30 ± 1.11 0.38 7.26 ± 0.46 0.04 2.28 ± 0.49 0.91

Values are mean ± SEM. Significant values are marked in bold.

nerves were stained against the protein C3 and MAC 3, 7, and
14 days after immunization.

Concerning the C3 expression in the retina (Figures 2A–D),
at 3 days, no differences were detected in the ONA group
(p > 0.05). Also, no changes in C3-mRNA expression were
observed at this point in time (p > 0.05). Significantly
more C3 depositions were found in ONA retinas at 7 days
(p = 0.002). Additionally, Western Blot analysis revealed an
upregulation of iC3bα and iC3bβ (p = 0.049), while no
alteration was measured for the C3α chains (p > 0.05).
The mRNA expression levels of retinal C3 were not altered
at 7 days (p > 0.05). 14 days after immunization, no
difference in immunostaining of C3 could be observed in
the ONA group (p > 0.05), while mRNA quantification
demonstrated a significant upregulation of C3 in ONA retinas

(p = 0.011). 28 days after immunization the number of
C3+ cells in the retina was increased in the ONA group
(p= 0.03).

In the optic nerves, no changes for C3 were noted after 3 days
(p > 0.05). At 7 days, significantly more C3 depositions were
found in ONA optic nerves (p = 0.02). Later on, at 14 days, no
more differences in regard to C3 staining could be seen (p > 0.05;
Figures 2E,F).

Regarding MAC staining in the retina (Figures 3A,B), at
3 days, no alterations were detected in the ONA animals
(p > 0.05). 7 days after immunization more MAC+ cells
were observed in the ONA group (p = 0.03). At 14 days,
ONA animals presented control levels (p > 0.05). At 28 days,
again significantly more MAC+ cells were noted in ONA
retinas (p = 0.003). No alterations in expression levels of
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C5 mRNA could be noted in ONA retinas at any point in
time (3 days: p = 0.3; 7 days: p = 0.08; 14 days: p = 0.18;
Figure 3C).

The staining of MAC in the optic nerves showed no changes
after 3 days (p > 0.05), while significantly more MAC depositions
were detected in the optic nerves of the ONA animals at day
7 (p = 0.001). After 14 days, no alterations regarding MAC
expression could be noted anymore (p > 0.05; Figures 3D,E).

In conclusion, complement activation is present in retinas and
optic nerves of ONA animals at 7 days (Tables 3–5).

Activation through the Lectin Pathway
To identify the pathway of complement activation in the retinas,
analyses of the classical pathway, namely C1q, and the lectin
pathway, namely MASP2, were performed at 3, 7, and 14 days.
Expression patterns of retinal C1qa, C1qb, and MASP2 were
analyzed via qRT-PCR 3–14 days after immunization. At 7 days,
MASP2 was also investigated through Western Blot. Evaluation
of the lectin pathway in the optic nerves was also undertaken
via immunohistology. Sections were therefore labeled with an
antibody against MASP2.

Regarding C1q in the retina, no difference could be observed
via histology at all points in time (p > 0.05; Figures 4A,C). The
quantification for C1qa revealed no changes in mRNA expression
levels at 3, 7, and 14 days (p > 0.05; Figure 4B). Also, no
alterations in the expression of C1qb could be observed via
qRT-PCR (p > 0.05; Figure 4D).

In the retinas, no differences in MASP2 staining
(Figures 5A,B) were observed in the ONA group at 3 days
(p > 0.05). Then, at 7 days, a larger MASP2+ area was seen in
the ONA group (p = 0.04). Protein analyses via Western Blot
also confirmed a significant increase of MASP2 in ONA retinas
at 7 days (p < 0.001; Figure 5C). After 14 days, no alterations in
the MASP2+ area could be observed (p > 0.05). No changes of
the MASP2 mRNA level could be measured at 3, 7, and 14 days
(p > 0.05; Figure 5D).

Concerning MASP2 expression in the optic nerves, at 3 days,
the MASP2 area analysis revealed no changes in the ONA animals
(p > 0.05; Figures 5E,F). Significantly more MASP2 was noted
in the ONA group after 7 days (p = 0.0009). At 14 days, the
expression of MASP2 went back to control levels (p > 0.05).

These data suggest that the complement system is
simultaneously activated in the retinas and the optic nerves
via the lectin pathway in this autoimmune glaucoma model
(Tables 3–5).

DISCUSSION

It is known that antibodies against RGCs can lead to a reduction
of cells, when injected intravitreally, and that these antibodies
interact directly with the RGCs (Kornguth et al., 1982; McCall
et al., 1987).

Based on the findings of autoantibodies in glaucoma, a
contribution of the complement system seems to be likely.
Therefore, we performed immunohistochemistry, qRT-PCR,
and Western Blot analyses of several components of the

TABLE 5 | Analyses of complement components via quantitative real-time
PCR.

3 days 7 days 14 days

β-actin 1.09 1.09 1.31

Cyclophillin 0.92 0.92 0.76

C1qa 1.19 (0.48–3.35) 0.91 (0.58–1.22) 0.71 (0.58–0.90)

P-value 0.61 0.73 0.07

C1qb 1.03 (0.33–2.71) 0.70 (0.49–1.06) 0.8 (0.50–1.51)

P-value 0.84 0.22 0.59

C3 0.55 (0.24–1.09) 0.61 (0.46–0.99) 1.94 (1.58–2.34)

P-value 0.16 0.25 0.011

C5 0.73 (0.39–1.42) 1.66 (1.37–2.12) 0.81 (0.67–0.98)

P-value 0.29 0.08 0.18

MASP2 1.03 (0.65–1.63) 0.57 (0.28–0.89) 1.61 (1.04–1.31)

P-value 0.92 0.17 0.09

Values are median + SE range. Significant values are marked in bold.

complement pathway. Our results demonstrate, for the first time,
a complement activation in this autoimmune glaucoma model.
Increased levels of complement proteins were already shown
in sera of patients with primary open-angle glaucoma (POAG).
Furthermore, alterations in complement proteins could be found
in retinal samples of the same patients (Boehm et al., 2010). In
animal models of OHT, an increase of complement components
was also observed. For instance, a significant upregulation of
C1q, C3, and MAC was described 14 and 28 days after OHT-
induction in animals with considerably increased IOP (Kuehn
et al., 2006). Our group could show that even a moderate increase
of IOP leads to an activation of the complement components
C3 and MAC (Becker et al., 2015). Another OHT-study could
demonstrate that a depletion of the complement system reduces
the loss of RGCs due to inhibition of intrinsic and extrinsic
apoptotic pathways (Jha et al., 2011). Importantly, our results
indicate that the complement activation occurs independently
from IOP. A significant increase of C3 and MAC was observed
in the retinas and the optic nerves 7 days after immunization
in the autoimmune glaucoma model. This leads to the question,
how the activation is actually initialized. It is possible that
IgG antibodies, which were previously observed in patients
with POAG, trigger the complement system (Gramlich et al.,
2013a). Although the authors stated that they could not find a
correlation of complement proteins and IgG accumulations, an
involvement of the complement system in the pathogenesis of
glaucoma cannot be excluded (Gramlich et al., 2013a,b). In a
previous study, IgG autoantibodies were detected in the retinas
and the optic nerves of an autoimmune glaucoma model 2
and 4 weeks after immunization (Laspas et al., 2011). Based
on these findings we assumed that the complement system
is activated via the classical pathway through C1q in our
model. Interestingly, an increase of C1q was neither detected in
histology nor in qRT-PCR analysis over time. This is contrary
to results in human glaucoma eyes and models of OHT, where
a C1q upregulation was noted (Kuehn et al., 2006; Stasi et al.,
2006; Tezel et al., 2010). In our IOP-independent model, the
activation via C1q seems to play a subordinate role. It is
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FIGURE 4 | (A) Exemplary photos of retinas stained with C1q (red) and DAPI (blue). (C) 3 days after immunization no difference between the ONA group and
controls was detectable (p > 0.05). Also, no changes could be noted at 7 and 14 days (p > 0.05). (B) The quantification via qRT-PCR revealed no expression
changes after 3, 7, and 14 days in regard to C1qa (p > 0.05). (D) Also, comparable C1qb expression levels were noted in the ONA group at 3, 7, and 14 days
(p > 0.05). Abbreviations: GCL, ganglion cell layer. Values for immunostaining are mean ± SEM. Values for qRT-PCR are median ± quartile ± maximum/minimum.
Scale bar: 20 µm.

possible that 2 weeks after immunization only a small number
of autoantibodies were present and that hence, we could not
detect any classical pathway activation. We do not exclude that
at subsequent points in time C1q could trigger the complement
system in this model. Further studies should be performed
to investigate the role of C1q in degeneration processes more
precisely. However, it is also possible that other components
lead to an activation of the complement system. In Alzheimer’s
disease, the aggregated amyloid protein is a strong complement
activator (Rogers et al., 1992a; Veerhuis et al., 2003). These
β-amyloid (Aβ) plaques can also be found in glaucoma models
(McKinnon et al., 2002) and drugs targeting Aβ would be
promising for glaucoma therapy (Guo et al., 2007; Salt et al.,
2014).

Interestingly, we detected an activation of the lectin pathway
already 7 days after immunization. MASP2 forms a complex
with the mannose binding lectin (MBL). MBL itself is able to
bind to a wide range of microorganisms, including bacteria,
viruses, parasites, and fungi (Neth et al., 2000). But not solely
cells displaying carbohydrate structures on their surfaces can
activate the lectin pathway. It is known that hypoxia induces

alterations in the cell surface of endothelial cells which could
activate the complement system via the lectin pathway (Collard
et al., 1999). It is also reported that MBL is able to bind to
apoptotic and necrotic cells (Ogden et al., 2001; Turner, 2003;
Stuart et al., 2005). Another study showed a proinflammatory
role for the lectin pathway-mediated complement activation
after myocardial ischemia-reperfusion in rats (Jordan et al.,
2001). This could be an evidence that this pathway plays a
role in other inflammatory pathobiologies. In eye diseases,
like age-related macular degeneration, the dysregulation of the
complement system plays a crucial role in the pathogenesis.
Here, the activation is antigen-independent and triggered
via the lectin and the alternative pathway (Gehrs et al.,
2006; Frederick and Kleinman, 2014). Further evidence that
complement activation in glaucoma could be initiated via the
lectin pathway is provided by a study by Tezel et al. (2010).
Here, proteomic analyses of human donor glaucoma eyes
revealed an upregulation of proteins that are linked to the
lectin pathway. All these results support our assumption that the
complement system is mainly activated via the lectin pathway in
glaucoma.
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FIGURE 5 | (A) Photos from retinas stained with MASP2 (red) and DAPI (blue) at 3, 7, and 14 days followed by area analysis. (B) Three days after immunization, no
alterations in MASP2+ area could be noted in the ONA group (p > 0.05). An increased MASP+ area was noted in ONA retinas at 7 days (p = 0.04). At 14 days, the
MASP2+ area went back to control levels in the ONA group (p > 0.05). (C) At 7 days, protein analyses of MASP2 through Western Blot revealed an upregulation in
the ONA group (p < 0.001). (D) No altered MASP2 expression could be noted at all points in time via qRT-PCR (p > 0.05). (E) Optic nerve sections were labeled
with MASP2 (red) and cell nuclei with DAPI (blue) 3, 7, and 14 days after immunization. (F) The MASP2+ area analysis revealed no changes in the ONA group 3 days
after immunization. After 7 days, a significantly larger MASP2+ area was noted in ONA optic nerves (p = 0.009). At 14 days, the expression went back to control
values (p > 0.05). Abbreviations: GCL, ganglion cell layer. Values for immunostaining and Western Blot are mean ± SEM. Values for qRT-PCR are
median ± quartile ± maximum/minimum. Scale bars: 20 µm.

The activation of the complement system in the retina and
optic nerve raises the question how these components could enter
the eye, which is known to be immune privileged (Medawar,
1948; Taylor, 2009). Here, it is reasonable to assume that
invading microglia cells could be a producer of complement
proteins. They represent the macrophage population of the
central nervous system (Kettenmann et al., 2011). In the retina,
microglia are mainly located in the ganglion cell layer or
in the inner plexiform layer. In the optic nerve activated
microglia are first localized in the optic nerve head (Bosco
et al., 2011). Microglia are known to be involved in many
neuroinflammatory processes, for example in multiple sclerosis

(Jiang et al., 2014), where the microglia activation is also
associated with RGC death in an experimental autoimmune
encephalomyelitis model (Horstmann et al., 2013). They were
also observed in human glaucomatous retina (Gramlich et al.,
2013a) as well as in the retina and optic nerve head of
glaucoma models (Bosco et al., 2008; Laspas et al., 2011; Joachim
et al., 2012, 2014). Recent studies reported that microglia are
a source of retinal complement. After light-induced damage,
Rutar et al. identified C3 expression by microglia, which lead
to the suggestion that these cells were responsible for the local
spreading of complement in the retina (Rutar et al., 2011).
In vitro experiments indicated that microglia cells synthesized
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complement components, like C1q, C3, C5, and MASP1 (Luo
et al., 2011).

In summary, we demonstrated a contribution of the
complement system in an IOP-independent autoimmune
glaucoma model. This activation occurred prior to RGC
death and optic nerve degeneration and is mainly triggered
through the lectin pathway. Most interestingly, the complement
cascade is simultaneously activated in the retina and in
the optic nerve. These results lead to the assumption that
complement activation triggers cell death in glaucoma and
could therefore help to develop new therapies to delay
glaucoma progression as well as to recognize glaucoma
disease at early points in time, before neurodegeneration is
evident.
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