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A Disintegrin and Metalloprotease (ADAM) are transmembrane proteases displaying multiple functions. ADAM with
ThromboSpondin-like motifs (ADAMTS) are secreted proteases characterised by thrombospondin (TS) motifs in their C-terminal
domain. The aim of this work was to evaluate the expression pattern of ADAMs and ADAMTS in non small cell lung carcinomas
(NSCLC) and to investigate the possible correlation between their expression and cancer progression. Reverse transcriptase–
polymerase chain reaction (RT–PCR), Western blot and immunohistochemical analyses were performed on NSCLC samples and
corresponding nondiseased tissue fragments. Among the ADAMs evaluated (ADAM-8, -9, -10, -12, -15, -17, ADAMTS-1, TS-2 and
TS-12), a modulation of ADAM-12 and ADAMTS-1 mRNA expression was observed. Amounts of ADAM-12 mRNA transcripts
were increased in tumour tissues as compared to the corresponding controls. In sharp contrast, ADAMTS-1 mRNA levels were
significantly lower in tumour tissues when compared to corresponding nondiseased lung. These results were corroborated at the
protein level by Western blot and immunohistochemistry. A positive correlation was observed between the mRNA levels of ADAM-
12 and those of two vascular endothelial growth factor (VEGF)-A isoforms (VEGF-A165 and VEGF-A121). Taken together, these
results providing evidence for an overexpression of ADAM-12 and a lower expression of ADAMTS-1 in non-small-cell lung cancer
suggest that these proteases play different functions in cancer progression.
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Lung cancer is one of the most common causes of cancer death in
Europe and in the United States and disease frequency rapidly
increased over the last decades. Accumulating evidence demon-
strated the important role of proteolytic enzymes such as matrix
metalloproteinases (MMPs) in cancer progression (Egeblad and
Werb, 2002; Overall and Lopez-Otin, 2002; Handsley and Edwards,
2005). In contrast, to date, no information is available on the
putative relationship existing between lung cancers and MMP-
related enzymes such as A Disintegrin and Metalloprotease
(ADAM) and ADAM with ThromboSpondin-like motifs
(ADAMTS) proteases.

A disintegrin and metalloprotease is a family of transmembrane
proteases displaying multiple functions among which 21 human
ADAM genes likely encode active proteases (Puente et al, 2003). A
disintegrin and metalloprotease with thrombospondin (TS)-like
motifs are secreted molecules bearing TS motifs in their C-terminal
domain (Killar et al, 1999; Kaushal and Shah, 2000; Tang, 2001; Cal
et al, 2002). On the basis of their structure, ADAMs and ADAMTS
are thought to mediate a wide variety of activities including
proteolysis, adhesion, cell fusion and signalling (Porter et al, 2005).

Although their functions are not yet fully elucidated, an
upregulation of ADAMs and ADAMTS has been observed in some
pathological conditions. A recent report suggests that ADAM-8 is
overexpressed by lung cancer cells and is detectable in patient’s
serum (Ishikawa et al, 2004). A disintegrin and metalloprotease-10
is upregulated in some tumour cells (Wu et al, 1997) and in
arthritic chondrocytes (McKie et al, 1997). A disintegrin and
metalloprotease-12 and 15 are also abundantly expressed in cells
derived from haematological malignancies (Wu et al, 1997).
Monocytes from lung cancer patients produce elevated levels of
mature TNF-a (Trejo et al, 2001) which could result from the
shedding of pro-TNF-a by ADAM-17 (TACE) (Black et al, 1997).
ADAM with TS-like motifs-1 (ADAMTS-1) is expressed in colon
cancer cells (Kuno et al, 1997).

Even if the implication of ADAMs and ADAMTS during lung
cancer progression remains unclear, it is conceivable that, as
shown for MMPs, these related proteases contribute to extra-
cellular matrix degradation, cell– cell adhesion, cell proliferation,
cell migration as well as to the processing of cytokines or growth
factors (Egeblad and Werb, 2002; Overall and Lopez-Otin, 2002;
Handsley and Edwards, 2005). The putative interest of studying
ADAMs and ADAMTS in lung carcinomas is reinforced by a recent
report of Lemjabbar et al (2003), demonstrating that tobacco
smoke-induced bronchial epithelial cell proliferation is mediated
by the cleavage of amphiregulin, a ligand of EGF receptor, by
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ADAM-17. A disintegrin and metalloprotease-15 (ADAM-15)
deficiency in mice is associated with impaired pathological
angiogenesis and reduced tumour growth (Horiuchi et al, 2003).
In addition, recently, an interplay between vascular endothelial
growth factor (VEGF) and metalloproteases has been reported.
This new concept is supported by (1) the ability of ADAMTS-1 to
bind VEGF and functionally inactivate VEGFR2 (Iruela-Arispe
et al, 2003), (2) the existence of a correlation between VEGF and
some MMP expression in tumours, (3) the upregulation of VEGF-
A expression by the active form of membrane type-1 MMP (MT1-
MMP, MMP14) (Munaut et al, 2003), (4) the reduction of VEGF
expression in tumour cells by physiological inhibitor (TIMP-2)
(Hajitou et al, 2001) or synthetic inhibitor (Sounni et al, 2004) of
MMPs. These observations suggest the involvement of ADAM,
ADAMTS and MMP members in the control of angiogenesis, a key
step of metastatic dissemination.

The aim of the present work was to determine the expression
profile of selected ADAMs and ADAMTS in NSCLC as well as to
study the putative correlation existing between these proteases and
VEGF isoform expression levels and the disease stage.

MATERIALS AND METHODS

Tumour tissue samples

Surgical samples from non-small-cell lung tumours and corre-
sponding lung control tissues were obtained from 39 patients with
squamous cell lung cancers or adenocarcinomas. Characteristics of
patients and histological subtypes are described in Table 1. The
protocol of the study was approved by the Ethical Committee of
the Hôpital Maison Blanche, Reims and informed consent was
obtained from all patients before surgery.

Cell culture and RNA isolation

Lung cancer cell lines: BEAS-2B were purchased from ATCC, while
BZR, BZR-T33, and 16-HBE were kindly provided by Dr CC Harris
(National Institute of Health, Bethesda, MD, USA). All cell lines
were cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen, Merelbeke, Belgium) supplemented with 10% foetal
bovine serum, 5% penicillin–streptomycin (Invitrogen, Merelbeke,
Belgium) and 5% glutamine in 5% CO2 at 371C. BEAS-2B cells were

cultured in collagen-coated Petri dishes in Airway Epithelial Cell
Basal Medium (Promocell, Heidelberg, Germany).

Total RNAs were extracted from normal and tumoral lung
tissues as well as from 16-HBE, BZR, BZR-T33 and BEAS-2B cells
by the use of the RNA Easy Qiagen Kit (Qiagen, MD, USA). Total
RNA concentrations were measured using the RiboGreen RNA
quantification Kit (Molecular Probes, OR, USA). Samples were
stored at �801C.

Design of oligonucleotide primers

The design of oligonucleotide primers specific for the different
targets was based on sequences available in the Genbank. Primers,
obtained from Eurogentec (Seraing, Belgium), were designed to
anneal to distinct exons and the specificity of the selected
sequences was verified with the NCBI BLASTN program (Table 2).
Polymerase chain reaction products obtained with each pair of
primers were digested with appropriate restriction enzymes to
verify the specificity of amplification.

Semiquantitative RT–PCR

The mRNA expression levels of ADAMs, ADAMTS and VEGF-A
were determined by semiquantitative RT–PCR. Reverse

Table 1 Characteristics of tumours and patients

Adenocarcinoma Squamous cell

Number of samples 26 13
Mean age 60 67
Sex ratio (M/F) 22/4 12/1
T T1: 2 T1: 2

T2: 20 T2: 9
T3: 4 T3: 2

N N0: 15 N0: 6
N1: 5 N1: 7
N2: 5
N3: 1

M M0: 26 M0: 13

The staging reported here is the histological staging obtained after surgical resection

Table 2 Primer sequences designed for RT–PCR studies

ADAM (accession number) Tm Cycles Primer Sequence

ADAM-8 (NM_001109) 56 38 Antisens 50TTCTTGCTGTGGTCCTGGTTCA30

Sens 50GTGAATCACGTGGACAAGCTAT30

ADAM-9 (U41766) 60 28 Antisens 50TTTTCCCGCCACTGCACGAAGT30

Sens 50AGAAGAGCTGTCTTGCCACAGA30

ADAM-10 (AF009615) 60 28 Antisens 50GGTTGGCCAGATTCAACAAAAC30

Sens 50TTTGGATCCCCACATGATTCTG 30

ADAM-12 (AF023476) 56 35 Antisens 50TTCCTGCTGCAACTGCTGAACA30

Sens 50GGAATTGTCATGGACCATTCAG30

12 spliced long (NM_003474) 58 36 Antisens 50TTGAGGGGTCTGCTGATGTCAA30

Sens 50TTGGCTTTGGAGGAAGCACAGA30

12 spliced short (NM_021641) 58 40 Antisens 50GCAAAGCCACAGAGTCAATGCT30

Sens 50 TTGGCTTTGGAGGAAGCACAGA30

ADAM-15 (BC014566) 60 28 Antisens 50TTCGAAGAGGCAGCTGCCCATT30

Sens 50AACATGGACCACTCCACCAGCA30

ADAM-17 (U69611) 60 28 Antisens 50TTCATCCACCCTCGAGTTCCCA30

Sens 50TACAAAGGAAGCTGACCTGGTT30

ADAMTS-1 (AF207664) 60 28 Antisens 50TTCACTTCGATGTTGGTGGCTC30

Sens 50CAGCCCAAGGTTGTAGATGGTA30

ADAMTS-2 (NM_014244) 66 32 Antisens 50GGCTGCAGCGGGACCAGTGGAA30

Sens 50GAACCATGAGGACGGCTTCTCCT30

ADAMTS-12 (AJ250725) 62 35 Antisens 50AAGTTGTGCCTCTCCCACTTCT30

Sens 50CTGCCATGGACTGACTGGATTT30
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transcriptase –polymerase chain reaction was performed on 10 ng
of total RNA at 701C during 15 min using the GenAmp
thermostable RNA RT–PCR Kit (Applied Biosystems, Foster City,
CA, USA). Reverse transcriptase –polymerase chain reaction
conditions and primers used to measure VEGF-A expression were
those previously described (Hajitou et al, 2001). The intensity of
each band was measured with the Quantity One software (Biorad,
Hercules, USA). To normalise mRNA levels in different samples,
the value of the band corresponding to each mRNA level was
divided by the intensity of the corresponding 28S rRNA band used
as an internal standard.

Real-time PCR

Total RNA (500 ng) was reverse transcribed in a 15 ml reaction
using 50 ng of random hexamers and ThermoScript reverse
transcriptase (Life Technologies, Paisley, UK) according to the
manufacturer’s instructions. Primers for ADAM-12 and ADAMTS-
1 as well as the corresponding TaqMan probe were designed
using PRIMER EXPRESS 1.0 software (Applied Biosystems, Foster
City, CA, USA). In order to avoid genomic DNA amplification,
primers were chosen within different exons, close to intron –exon
boundaries. The 18S ribosomal RNA gene was used as an
endogenous control to normalise RNA amounts in each sample.
TaqMan 18S ribosomal primers as well as the VIC-labelled probe
were used according to the manufacturer’s instructions (Applied
Biosystems, Foster City, CA, USA). Polymerase chain reaction
(PCR) reactions were performed on a 96-well optical plate with the
Platinum Super Mix (Invitrogen, Paisley, UK) using 5 ml of diluted
cDNA (equivalent to 10 ng total RNA), 200 nM of the probe and
400 nM primers in a 25 ml final reaction mixture. Each of the
40 PCR cycles consisted of 15 s of denaturation at 951C and
hybridisation of probes and primers for 1 min at 601C. Real-time
quantitative PCR analyses for ADAM-12 and ADAMTS-1 were
performed using the ABI PRISM 7700 Sequence Detection System
instrument and software (Applied Biosystems, Foster City, CA,
USA). The amount of target gene was divided by the 18S rRNA
amount to obtain a normalised target value. Each experiment was
performed in duplicate and the Standard Error of mean (s.e.m) has
been calculated on the basis of the two experiments.

Western blot analysis

Proteins were isolated from tumour and control tissues by urea
extraction (Cataldo et al, 2002). Samples were migrated on a 12%
polyacrylamide gel and transferred to a PVDF membrane (Perkin
Elmer Life Sciences Inc., Boston, MA, USA). In order to normalise
Western blots data, tissue extracts corresponding to 20 mg of total
proteins were loaded for each patient. Anti-ADAM-12 (1/100) or
anti-ADAMTS-1 (1/500) antibody (Santa Cruz Biotechnologies
Inc., Sigma-Aldrich, Belgium) was applied overnight. Proteins were
finally detected by chemiluminescence with rabbit anti-goat-IgG
(DAKO, Glostrup, Denmark) diluted 1/1000 coupled with HRP
immunoreactives.

Immunohistochemistry

Tissue sections were incubated for 1 h with polyclonal antibodies
recognising either ADAM-12 (Sigma, St Louis, MI, USA) or
ADAMTS-1 (Santa Cruz Biotechnologies Inc., Santa Cruz, CA,
USA) protein and after rinsing were incubated for 30 min with
anti-rabbit antibodies coupled to horseradish peroxidase-labelled
dextran polymers (Envision, DAKO, Glostrup, Denmark) for
ADAM-12 or with rabbit anti-goat IgG antibodies (DAKO,
Glostrup, Denmark) for ADAMTS-1. Slides were finally incubated
with 3-amino-9-ethylcarbazol (AEC) (DAKO, Glostrup, Denmark)
and the sections were counterstained with haematoxylin.

Statistical analysis

Data are reported as mean7s.e.m. and statistical analysis was
performed by the Mann–Whitney test. Correlations were mea-
sured by the Spearman’s test. The threshold for significance was
set at Po0.05.

RESULTS

Semiquantitative RT–PCR and real-time PCR

Polymerase chain reaction analyses were performed on NSCLC
obtained by surgery from 34 men and five women. Table 1
summarises the characteristics of patients, their TNM states based
on pathological examination (pTNM) and histological subtype of
tumours. The mRNA expression levels were determined on each
human tumour sample and their corresponding control lung tissue
by semiquantitative RT–PCR (Table 3). Among ADAMs and
ADAMTS evaluated, a difference in ADAM-12 and ADAMTS-1
mRNA levels was evidenced between cancer and control samples.
In contrast, no modulation of ADAM-8, -9, -10, -15, -17 and
ADAMTS-2 and -12 was observed in the two sample groups
(Table 3). Interestingly, the amounts of ADAM-12 transcripts
normalised to 28S rRNA were significantly higher in lung tumours
when compared to the matched normal tissues (P¼ 0.0005)
(Figure 1A). Inversely, ADAMTS-1 mRNA was expressed at lower
levels in tumour samples than in normal lung tissues (Po0.0001)
(Figure 1B). To confirm these results, quantitative real-time
PCR was then performed. Amounts of ADAM-12 transcripts were
confirmed to be significantly increased in tumours (0.270.03 in
tumours vs 0.0470.006 in normal tissues; Po0.0001) (Figure 1E).
Again, amounts of ADAMTS-1 mRNA copies were found to be
lower in tumours than in control samples (4.970.57 in tumours vs
17.872.7 in controls; Po0.0001) (Figure 1F).

Since two forms of ADAM-12 resulting from an alternative
splicing have been described, two additional pairs of primers have
been designed near to the splicing region to determine the relative
amounts of these isoforms. ADAM-12L (membrane-bound long
variant) transcripts were overexpressed in tumours when com-
pared to controls, while no expression of short form of ADAM-12
(ADAM-12S) (secreted short variant) was detected in the lung
tissues examined (Figure 2). This result demonstrates that almost
the vast majority of ADAM-12 expressed in tumour tissue
corresponds to the membrane-bound form of ADAM-12.

No significant differences were found regarding expression
levels of ADAM-12 and ADAMTS-1 when considering the different
TNM states or survival (data not shown). However, in the
adenocarcinoma subgroup, we showed an increase of ADAM-12
mRNA in the N0 stages when compared to N1 or N2 stages. There
were no significant differences for the expression of any ADAM or

Table 3 Expression pattern of several ADAMs and ADAMTS in non-
small-cell lung carcinomas measured by semiquantitative RT–PCR

Tumours Controls

ADAM-8 0.0670.006 0.0570.01
ADAM-9 0.670.1 0.370.07
ADAM-10 0.770.14 0.3470.07
ADAM-12 0.370.09* 0.0570.004
ADAM-15 0.870.11 0.4670.07
ADAM-17 0.270.07 0.1670.03
ADAMTS-1 0.1970.05* 0.370.06
ADAMTS-2 0.3170.07 0.3770.11
ADAMTS-12 0.370.08 0.2370.05

Results are expressed as arbitrary units (AU) (mean7s.e.m.) and are normalised for
28S rRNA expression. *¼ Po0.05 vs controls.
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ADAMTS protease between the squamous cell and adenocarcinoma
groups.

We next analysed ADAM expression in human epithelial lung
cell lines (16-HBE, BZR, BZR-T33 and BEAS-2B cells). Almost all
cell lines tested expressed ADAM-9, -10, -12, -15 and ADAM-17
(data not shown). A disintegrin and metalloprotease-12 mRNA
were not detected in immortalised BEAS-2B and 16-HBE cells
derived from normal epithelial cells (Figure 1C). In sharp contrast,
ADAM-12 was strongly expressed in two cell lines, BZR and BZR-
T33, derived from BEAS-2B cells by infection with recombinant
retrovirus Zip-neo-v-Ha-ras or derived from a tumour formed by
BZR cells injected subcutaneously into nude mouse, respectively.
These two cell lines expressing ADAM-12 (BZR and BZR-T33) have
been reported to display a more invasive behaviour when
implanted in mice (Bonfil et al, 1989) than cells not expressing
ADAM-12 (BEAS-2B; 16-HBE). ADAM with TS-like motifs-1
(ADAMTS-1) mRNA expression was also investigated in these cell
lines (Figure 1D).

Western blot analysis

The activation status of ADAM-12 and ADAMTS-1 in tumours and
corresponding control tissues was investigated by Western blotting.
The 97 kDa proform and the 77 kDa activated form of ADAM-12L
were detectable in samples (Figure 3A). The results confirm at the
protein level the significant increase in tumour samples vs control
samples observed at the mRNA level. Moreover, the ratio between
activated and proforms was higher in tumours than in correspond-
ing controls (65.873.85 vs 5473.91) (Figure 3C).

No difference in ADAMTS-1 production was observed between
tumour and control samples (Figure 3B and D).

VEGF-A semiquantitative RT– PCR

The analysis of VEGF-A mRNA expression revealed an over-
expression of VEGF-A121 and VEGF-A165 (Figure 4A and B) and
lower levels of VEGF-A189 mRNA (Figure 4C) in all tumour
samples when compared to corresponding control lungs. A
positive correlation was observed between the mRNA levels of
ADAM-12 and those of VEGF-A121 (Po0.0001) or VEGF-A165

(Po0.0001) in tumour samples (Figure 4D and E). Vascular
endothelial growth factor-A121 expression was also significantly
increased in tumours displaying N2 status as compared to those
without nodal involvement (N0).

Immunohistochemistry

A disintegrin and metalloprotease-12 immunoreactivity was
mainly detected in tumour cells (Figure 5A and B). Some
immunostaining was also observed, as expected, in normal smooth
muscle surrounding the tumour. In normal lung, some inflamma-
tory cells were positively stained while epithelial cells were always
negative.
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ADAMTS-1 immunoreactivity was mostly seen in normal
epithelial bronchial cells in control lung tissues as well as in
normal bronchi surrounding tumour nodules in diseased lung
(Figure 5C and D). The transition of normal epithelial cells into
tumour cells was associated with a loss of ADAMTS-1 immuno-
staining.

DISCUSSION

The present study was designed to investigate the potential
involvement of ADAMs and ADAMTS in the pathogenesis of
lung carcinomas. Indeed, ADAMs and ADAMTS belong to the

adamalysin family, related to snake venom proteases, among
which many members are implicated in different loops of
reciprocal interactions with some mediators of inflammation such
as TNF-a (Rosendahl et al, 1997; Moss et al, 2001) and growth
factors including TGF-a and -b (Hinkle et al, 2003; Le Pabic et al,
2003).

We describe for the first time an increased production of
ADAM-12 both at the mRNA and protein levels in human lung
squamous cell carcinomas and adenocarcinomas. On the opposite,
we report a decreased expression of ADAMTS-1 mRNA in
squamous cell carcinomas and adenocarcinomas when compared
to corresponding control samples. In addition, this study provides
the first evidence for a link between ADAM-12 expression and
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VEGF-A121 or VEGF-A165 expression. An overproduction of
ADAM-12 in lung tumours has been evidenced by RT–PCR,
real-time and Western blot analysis. As an alternative splicing has
been reported for ADAM-12 and as the secreted short form of
ADAM-12 (ADAM-12S) was described to be expressed by tumours
such as rhabdomyosarcoma and HU-1 cells (Gilpin et al, 1998), we
assessed our tumour samples for the expression of ADAM-12L and
ADAM-12S by specific RT–PCR. Only ADAM-12L was detectable
in lung cancer samples, suggesting that ADAM-12 was mainly cell
membrane associated. Accordingly, Western blot analyses con-
firmed the presence of both pro and activated forms of ADAM-12L
but not of ADAM-12S.

A disintegrin and metalloprotease-12 overexpression in tumour
samples could be related either to an increased expression by
carcinoma cells themselves or by some stromal cells such as
myofibroblasts surrounding tumour islets. We demonstrate in the
present paper that cultured BZR lung-derived cancer cell lines
expressed ADAM-12 mRNA, while 16-HBE and BEAS-2B cells
derived from normal epithelial cells did not express significant
levels of ADAM-12 mRNA. Others have reported an overexpres-
sion of ADAM-12 in liver carcinomas (Le Pabic et al, 2003), and its
levels in urine from patients have been correlated with survival in
breast cancer (Roy et al, 2004). These data, taken together with the
faint expression of ADAM-12 mRNA levels in healthy lung
extracts, indicate that tumour cells are probably the main producer
of ADAM-12 in our experimental conditions. In accordance,
immunohistochemical analysis revealed ADAM-12 production by
tumour cells. The fact that invasive cell lines (BZR and BZRT33)
expressed huge amounts of ADAM-12 when compared to cell lines
derived from normal epithelium (BEAS-2B and 16HBE) suggests
that ADAM-12 may play a role in the cascade of events leading to
the invasive phenotype. As demonstrated recently, ADAM-12
could play an important role in cell adhesion (Zolkiewska, 1999;
Iba et al, 2000) and, therefore, its increased expression in lung
cancer cells could be mandatory for tumour cell migration and

invasion through a control of cell–matrix interactions. In addition,
ADAM-12 could be of particular importance in the processes
leading to cell proliferation since it sheds the soluble heparin-
binding epidermal growth factor (Asakura et al, 2002). Further-
more, the correlation observed between ADAM-12 and VEGF
transcripts is of great interest since angiogenesis is an essential
step of tumour progression. The finding of a positive correlation
between ADAM-12 and VEGF-A121 and VEGF-A165 isoforms,
which are proangiogenic, in all tumour samples reinforce the
hypothesis of a specific role for ADAM-12 in tumour-associated
angiogenic process. The potential effect of ADAM-12 on angiogen-
esis could occur either directly by activating some mediators
implicated in angiogenesis as demonstrated for some MMPs or by
inactivating angiogenesis inhibitors (Munaut et al, 2003; Maquoi
et al, 2004; Noel et al, 2004). Alternatively and as suggested for
other proteases, ADAMs could release proangiogenic factors
trapped in the extracellular matrix by degrading its components
(Werb et al, 1999). Nevertheless, our results are only correlative
regarding the relationship between ADAM-12 and VEGF isoforms
expression and further studies are needed to confirm our results
and to precisely dissect the potential mechanisms linking ADAM
proteases and tumour angiogenesis. The increased levels of VEGF-
A found in tumours associated with N2 states when compared to
those associated with N0 is in line with a recent report (Iwasaki
et al, 2004) showing that VEGF expression in tumour samples is
correlated with markedly poor prognosis.

ADAMTS-1 is a secreted protein, which can bind matrix through
interaction between its TS-1 motifs and heparin sulphate. It plays
significant roles in organogenesis, inhibition of VEGF and
fibroblast growth factor (FGF-2)-induced angiogenesis (Iruela-
Arispe et al, 2003) and is associated with IL-1 and LPS-induced
inflammation (Kuno et al, 1997). ADAMTS-1 has been shown to
bind VEGF-A165 and to inhibit VEGF-A165-stimulated VEGF-R2
phosphorylation (Luque et al, 2003). In this context, our finding of
a significant decrease of ADAMTS-1 in lung cancer is of particular
importance. To the best of our knowledge, the present study is the
first report of a negative association between a member of
ADAMTS-1 and lung cancers. Dunn et al (2004) have previously
reported such a negative association for ADAMTS-8 which was in
that case associated with a promoter hypermethylation in cancers.
A negative association has been demonstrated in pancreatic
cancers (Masui et al, 2001) and breast cancers (Porter et al,
2004). The potential implication of ADAMTS-1 in regulation of
cancer-related angiogenesis should be studied more in depth
especially regarding factors stimulating or inhibiting this protease.
Unveiling such factors could be particularly relevant in the setting
of new therapeutic options acting through angiogenesis modula-
tion.

In conclusion, we demonstrate in the present study that
members of the ADAM and ADAMTS subfamilies are differently
modulated in lung cancers suggesting different functions for
individual ADAM(TS) in the development, and progression of lung
carcinomas.
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Figure 5 Immunohistochemistry. Paraffin sections of adenocarcinoma
(A) and squamous cell lung cancer (B) were subjected to ADAM-12
immunohistochemistry as reported in the Materials and Methods section.
Tumour cells were strongly labelled (arrows) by anti-ADAM-12 antibody.
Paraffin sections of adenocarcinoma (C) and squamous cell lung cancer (D)
were subjected to ADAMTS-1 immunohistochemistry as reported in the
Materials and Methods section. Immunostaining for ADAMTS-1 was
localised at the level of normal bronchi surrounding the tumour (arrow) in
NSCLC lung fragments while tumour cells (circles) did not display any
staining with ADAMTS-1 antibody.
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