
Joint modeling of longitudinal outcomes and survival
using latent growth modeling approach
in a mesothelioma trial

Ping Wang • Wei Shen • Mark Ernest Boye

Received: 25 November 2011 / Revised: 9 May 2012 / Accepted: 14 May 2012 /
Published online: 5 June 2012
� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Joint modeling of longitudinal and survival data can provide more efficient and

less biased estimates of treatment effects through accounting for the associations between

these two data types. Sponsors of oncology clinical trials routinely and increasingly include

patient-reported outcome (PRO) instruments to evaluate the effect of treatment on

symptoms, functioning, and quality of life. Known publications of these trials typically do

not include jointly modeled analyses and results. We formulated several joint models based

on a latent growth model for longitudinal PRO data and a Cox proportional hazards model

for survival data. The longitudinal and survival components were linked through either a

latent growth trajectory or shared random effects. We applied these models to data from a

randomized phase III oncology clinical trial in mesothelioma. We compared the results

derived under different model specifications and showed that the use of joint modeling may

result in improved estimates of the overall treatment effect.

Keywords Joint modeling � Cox proportional hazards model � Latent trajectory �
Random effects � Oncology clinical trial � Patient-reported outcomes

1 Introduction

Clinical research often generates both longitudinal and survival (time-to-event) data. Well-

established methods exist for separately analyzing each type of data. For longitudinal data,

mixed-effects models for repeated measures (MMRM) are often used, which can handle

data that is missing at random. For survival data, semiparametric methods such as Cox

proportional hazards models and parametric methods such as Weibull models are com-

monly used. Although useful, separate analyses of each type of outcome may not be able to

provide adequate answers to some important research questions. One such example is

whether CD4 lymphocyte count could serve as a good surrogate marker for clinical pro-

gression in AIDS clinical trials (Tsiatis et al. 1995). Another example is whether changes
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in the Positive and Negative Symptoms Scale, an instrument commonly used to assess

disease status in patients with schizophrenia, are associated with the time to discontinu-

ation of therapy (Henderson et al. 2000).

To answer these questions, methods for the combined analysis of the two types of data

have been developed recently. A naive method is to incorporate the longitudinal measures

directly into the Cox model as time-varying covariates. As noted by researchers (e.g.,

Tsiatis et al. 1995; Yu et al. 2004), this method does not account for measurement errors in

the time-varying covariates and therefore can cause the estimated relative risk parameter in

the time-dependent Cox model to be biased toward the null (Prentice 1982).

Tsiatis et al. (1995) proposed a two-stage approach to improve the naive method. In this

approach, a linear mixed-effects model is fit to the longitudinal data, and then the fitted

trajectory is incorporated into the Cox model as time-varying covariates. However, this

approach has the potential for biased estimates when the longitudinal process is infor-

matively censored at the event time (Hanson et al. 2011).

Disadvantages of the naive method and two-stage approach motivated the recent

development of joint models for longitudinal and survival data (see Tsiatis and Davidian

2004 for a review). In joint models, there are two components: a longitudinal process and a

survival process. For individual i, the longitudinal process, Yi(t), is modeled with an

underlying latent process gi(t) and the deviations ei(t) due to the measurement error and

biological variation, i.e., Yi(t) = gi(t) ? ei(t). In this paper, we use latent growth models

for longitudinal data given their strengths such as (1) occasions of measurement need not

be equally spaced, (2) the models can account for both measured and unmeasured

covariates, (3) the models can account for measurement errors, and (4) as in general

structural equation models, statistical models are flexible. In the survival process, event

time Ti depends on gi(t) or random effects included in gi(t) or both. Joint likelihoods are

specified based on these two components, then estimation and inferences are made using

frequentist (Wulfsohn and Tsiatis 1997; Henderson et al. 2000; Song et al. 2002) or

Bayesian (Faucett and Thomas 1996; Xu and Zeger 2001; Wang and Taylor 2001; Brown

and Ibrahim 2003; Guo and Carlin 2004; Hatfield et al. 2011) approaches.

Several advantages have been noted with joint modeling (Ibrahim et al. 2010): (1) It

addresses the informative censoring induced from the absence of longitudinal observations

beyond the event time (Muthén et al. 2009); (2) It reduces estimation biases by accounting

for measurement error and informative censoring; (3) It may increase statistical efficiency

by using all of the data simultaneously in a single model; (4) It allows inferences for all

three aspects: the treatment effect on longitudinal process; the association between the

longitudinal process and survival; and the treatment effect on survival including the direct

treatment effect on survival, the indirect treatment effect on survival through the latent

longitudinal process, and therefore the overall treatment effect on survival, which is the

sum of the direct and indirect effect.

Sponsors of oncology clinical trials routinely and increasingly include patient-reported

outcome (PRO) measures over time to evaluate the effect of treatment on symptoms,

functioning, and quality of life (QoL). PRO data, along with tumor progression and overall

survival rate, provide a comprehensive assessment of benefit and risk for treatment in late-

stage cancer. Treatment that delays tumor progression is often associated with better

symptoms and QoL progress. On the other hand, improvement in symptoms and QoL may

serve as an indicator of a positive tumor response or lack of tumor progression. As an

effective treatment often impacts both tumor progression/survival and symptoms simul-

taneously, it is important to understand the impact of a treatment on both outcomes and the

association between two types of outcomes through joint modeling.
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In this paper, we applied joint models to data from a randomized phase III oncology

clinical trial in patients with malignant pleural mesothelioma (MPM) (Vogelzang et al.

2003). Researchers in this Vogelzang et al. (2003) study (also known as EMPHACIS)

collected PRO measures throughout the course of treatment, using the patient-reported

Lung Cancer Symptom Scale (LCSS) (Hollen et al. 1995). Previously, researchers have

investigated the prognostic effect of baseline PRO measures on overall survival in patients

with MPM (Bottomley et al. 2007). We however were interested in the association

between post-baseline PRO scores and time to progressive disease (TTPD). The main goal

of applying joint models in this study was to assess the treatment effect on LCSS symp-

toms and global measures of functioning and QoL, the association between the longitudinal

LCSS items and TTPD, and the overall treatment effect on TTPD.

The remainder of this paper is organized as follows. In Sect. 2, we describe the

EMPHACIS dataset. In Sect. 3, we formulated several joint models based on a latent

growth model for longitudinal PRO data and a Cox proportional hazard model for survival

data. The longitudinal and survival components were linked through either a latent growth

trajectory or shared random effects. We adopted the path diagrams to visually represent the

joint models; these diagrams help to illustrate the indirect and direct relationships among

observed and latent variables. Section 4 presents results from our joint models applied to

the EMPHACIS datasets with detailed interpretation. In addition, results from the joint

modeling approach were compared with the results from separate modeling approaches.

We conclude in Sect. 5 with a discussion of results and limitations of the joint modeling

approach, and offer suggestions concerning model extensions.

2 Motivating example, the MPM clinical trial

2.1 Patients

EMPHACIS was a global phase III clinical trial conducted to evaluate the efficacy of

pemetrexed/cisplatin, compared with cisplatin alone, as first-line treatment for patients

with MPM (Vogelzang et al. 2003).

A total of 448 eligible patients were randomly assigned and received therapy

(pemetrexed/cisplatin, n = 226; cisplatin alone, n = 222), and they were considered as the

intent-to-treat (ITT) population. Pemetrexed/cisplatin or cisplatin was administered on day

1 of a 21-day cycle. A regimen of pemetrexed/cisplatin or cisplatin was defined as six

cycles of therapy. A patient who was receiving benefit from treatment could receive

additional cycles based on the discretion of the investigator. Treatment was discontinued

for disease progression or intolerable toxicity, or on patient or investigator request.

Pemetrexed/cisplatin patients received more treatment cycles (median, 6 cycles; range,

1–12 cycles) than those receiving cisplatin alone (median, 4 cycles; range, 1–9 cycles).

The TTPD was the time from randomization until a documented progression or death from

any cause. For patients without progressive disease at the time of analysis, the date of the last

follow-up was considered right-censored. Vogelzang et al. (2003) showed an increased TTPD of

1.8 months (median 5.7 months in pemetrexed/cisplatin versus 3.9 months in cisplatin alone).

2.2 Patient-reported outcome measures

The PROs were measured with the well-established and validated LCSS, a nine-item

instrument scored through responses that patients recorded on 100-mm visual analog scales,
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with zero representing absence of the symptoms or impairment, or high QoL, and 100

representing as much symptoms or impairment as there could be or low QoL. The nine scales

represent six lung-cancer-related symptoms (anorexia, cough, dyspnea—shortness of breath,

fatigue, hemoptysis, and pain) and three global measures (symptom distress, interference

with carrying out normal activities, and global QoL). To be consistent with the LCSS

validation studies in mesothelioma (Hollen et al. 2006), which indicated that hemoptysis was

not a relevant symptom in patients with MPM, we excluded hemoptysis from our analyses.

Accordingly, we included two average symptom burden indices (ASBIs) in our analyses: the

ASBI5 (the mean of the five remaining symptom items: anorexia, cough, dyspnea, fatigue,

and pain) and the ASBI8 (the mean of the five symptom items and the three global items).

The LCSS assessments were scheduled at two baseline visits (4–6 days and 1–2 days

before the start of study drug therapy), weekly during the study (at days 8 ± 1, 15 ± 1, and

19 of each cycle), and approximately every 3 months after the patient had received his or her

last dose of treatment if the patient had not initiated subsequent therapy. To eliminate intra-

cycle variability in the LCSS scores and reduce computational burden, we calculated the

mean of each patient’s scores for each LCSS item within each cycle. Accordingly, for each

cycle the LCSS were assessed, we included the corresponding measurement time into the

models as the mean number of days from randomization to LCSS assessments within the

cycle.

Before disease progression or death, over 90 % of the patients completed LCSS

assessments at each cycle per study protocol. Beyond disease progression, very few LCSS

assessments were available. Given one of our primary interests was to assess the associ-

ation between the TTPD and LCSS scores obtained prior to TTPD, we excluded the LCSS

measurements obtained after tumor progression. In addition, considering that the protocol

defined regimen was 6 cycles, we excluded the LCSS measurements obtained after cycle 6,

which allowed us to focus on the treatment effect on the LCSS scores within the first 6

cycles. Only 20 (4.5 %) patients received more than 6 cycles of treatment; the exclusion of

these data should have little impact on our results. Termination of LCSS measurements

was closely related to TTPD, which introduced the problem of informative censoring.

3 Methods

For individual i, let Yij be the observed longitudinal data at times tij; j ¼ 0; . . .; Ji, and let

gi(t) be the latent trajectory function underlying Yij. Let Ti be the observed event time,

which is the minimum of the event time Ti
0 and the censoring time Ci. Let di be the

censoring indicator,

di ¼
1; if T0

i [ Ci; censored

0; if T0
i �Ci; event:

�

Let Zi be the treatment indicator, Zi = 1 if individual i received pemetrexed/cisplatin and

Zi = 0 if cisplatin was received, so that treatment effect refers to pemetrexed/cisplatin

versus cisplatin.

3.1 Separate analyses

Before looking into the joint models, we performed separate analyses for longitudinal data

and survival data. When longitudinal data are incomplete, the MMRM is a commonly used
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method (Siddiqui et al. 2009). We included treatment, cycle, and treatment-by-cycle

interaction as fixed effects and BIC was used to choose between compound symmetry and

AR(1) covariance matrices in the MMRM analysis.

For the survival data, we fit the Cox proportional hazards model with treatment as the

only covariate (Cox 1975), i.e.,

log hiðtÞ ¼ log h0ðtÞ þ aZi;

where hi(t) and h0(t) are the hazard function for individual i and the baseline hazard

function.

3.2 Cox model with time-varying covariates

We also performed the combined analysis that incorporated the longitudinal measures

directly into the Cox model as time-varying covariates. This method can be described as

log hiðtÞ ¼ log h0ðtÞ þ X0siaþ cYiðtÞ;

where X0si is the covariate vector affecting survival that may include treatment (Zi) and

other covariates, a is the corresponding coefficient vector, and c measures the association

between longitudinal measures and survival. This naive method does not account for

measurement errors of longitudinal outcome.

3.3 Joint models for longitudinal data and survival data

Joint models have two linked components: the longitudinal component and the survival

component. The longitudinal component consists of a model for longitudinal outcome, in

which a trajectory function is often specified. The survival component consists of a model

for survival data. We describe two types of joint models in which the longitudinal and

survival components are linked differently. Both types of models use the following latent

growth model to describe the longitudinal data,

Yij ¼ giðtijÞ þ eij ð1Þ

giðtÞ ¼ f ðtÞT bi ð2Þ

bi ¼ bXi þ fi ð3Þ

where eij�Nð0; r2Þ are mutually independent measurement errors, f ðtÞ is a vector of

functions of t; bi is an individual specific parameter vector (random effects), b is a

regression parameter matrix, and fi are residuals following a multivariate normal distri-

bution with mean zero and variance covariance matrix Rr�r.

The formulation of the longitudinal model above offers great flexibility and links

well to the commonly used mixed-effects models. For example, consider a mixed-effects

model, Yij ¼ b00 þ b10tij þ b11Zitij þ f0i þ f1itij þ eij; where the fixed-effects part is b00 ?

b10tij ? b11Zi tij, assuming a treatment-by-time interaction, and the random-effects part is

f0i þ f1itij. This model can be easily written in the latent growth model format with the

following specification:

fðtÞ ¼ ð1; tÞ0; bi ¼ ðb0i; b1iÞ0; b ¼ b00 0

b10 b11

� �
; Xi ¼ ð1; ZiÞ0; fi ¼ ðf0i; f1iÞ:0

This model is introduced as l_s below.
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In our analysis, we considered five choices of gi(t) depending on the shape of the

trajectory function and the treatment effect associated with the trajectory function. The first

three choices, named l_s, l_i, and l_is assume a linear growth for each LCSS item, i.e.,

gi(t) = b0i ? b1it. In addition, model l_s assumes treatment effect on slope only

(b0i ¼ b00 þ f0i; b1i ¼ b10 þ b11Zi þ f1i); model l_i assumes treatment effect on intercept

only; and model l_is assumes treatment effect on both intercept and slope. The other

two choices, named q_s and q_sq, assume a quadratic growth for each LCSS item,

i.e., gi(t) = b0i ? b1it ? b2it
2. Model q_s assumes treatment effect on slope only (b0i ¼

b00 þ f0i; b1i ¼ b10 þ b11Zi þ f1i; b2i ¼ b20 þ f2i) and model q_sq assumes treatment

effect on both slope and quadratic coefficient. In models l_s, l_is, q_s, and q_sq, where a

treatment effect on slope is assumed, a treatment-by-time interaction is explicitly assumed.

We checked the treatment effect on the intercept in the two linear growth models although

we expect that there is no difference at baseline across treatment groups for this ran-

domized trial.

3.3.1 Trajectory model

In the trajectory model, the longitudinal and survival components are linked through the

latent trajectory. For example, Xu and Zeger (2001) proposed to use a Markov Chain

Monte Carlo algorithm to estimate the posterior distribution for parameters in the joint

model in which the survival component consists of

log hiðtÞ ¼ log h0ðtÞ þ X0siaþ cgiðtÞ; ð4Þ

where c measures the association between survival and the trajectory gi(t) that varies

continuously over time.

An alternative way to describe the survival component was proposed by Asparouhov

et al. (2006) and is detailed here. First, the time interval is split into subintervals

[tk-1, tk), k = 1, 2,…,K, t0 = 0, tK ¼ 1; and a separate survival variable Tik and cen-

soring indicator dik are created for each subinterval [tk-1, tk) from the original survival

variable Ti and censoring indicator di as follows:

Tik ¼
tk � tk�1; if tk\Ti;
missing; if Ti\tk�1;
Ti � tk�1; otherwise;

8<
: dik ¼

1; if tk\Ti;
missing; if Ti\tk�1;
di; otherwise:

8<
: ð5Þ

Then, for t in the time interval [tk-1, tk),

log hikðtÞ ¼ log h0ðtÞ þ X0siaþ cgiðtk�1Þ; ð6Þ

h0(t) is a non-parametric baseline hazard function, and the likelihood for the survival

variable tKi-1 B Ti \ tKi is

pðTi; dijbi; a; cÞ ¼
YKi

k¼1

hikðTikÞð1�dikÞexp �
XKi

k¼1

Z tk�1þTik

tk�1

hikðsÞds

( )
: ð7Þ

This model uses the stepwise predictor gi(tk-1) and is estimated by the maximum likeli-

hood algorithm. If the step size is chosen to be sufficiently small, the difference between

this model and the model described by Xu and Zeger (2001) will be negligible.

We used the model proposed by Asparouhov et al. (2006) in this paper. When applying

this model to the EMPHACIS trial data, we let tk ¼ 0:7k; k ¼ 1; 2; . . .; 7; because each
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cycle was 0.7 month. We considered five trajectory models with (5–6) for the survival

component and the models l_i, l_s, l_is, q_s, and q_sq for the longitudinal component.

These models are named by adding the prefix ‘‘traj’’ to the corresponding longitudinal

model name. The path diagram in Fig. 1a represents the trajectory model trajq_s. In the

figure, the rectangles represent the observed variables, the ellipses represent latent vari-

ables (I for intercept, S for slope, Q for quadratic coefficient, and Y�k = g(tk)), and the

arrows point to the dependent variables.

(a)

(b)

Fig. 1 Path diagrams of joint models trajq_s and remq_s. Trt treatment; I intercept (b0i); S slope (b1i); Q
quadratic coefficient (b2i); y�k = g(tk)

188 Health Serv Outcomes Res Method (2012) 12:182–199

123



3.3.2 Shared random-effects model

In the shared random-effects model, the longitudinal component and survival component

are linked through the random-effects bi:

log hiðtÞ ¼ log h0ðtÞ þ X0siaþ b0ic: ð8Þ

Similar to the trajectory models, we considered five choices for the longitudinal component

(l_i, l_s, l_is, q_s, and q_sq), along with (8) for the survival component. These models are

named by adding the prefix ‘‘rem’’ to the corresponding longitudinal model name. The path

diagram in Fig. 1b represents the random-effects model remq_s:

giðtÞ ¼ b0i þ b1it þ b2it
2; b0i ¼ b00 þ f0i; b1i ¼ b10 þ b11Zi þ f1i; b2i ¼ b20 þ f2i;

log hiðtÞ ¼ log h0ðtÞ þ aZi þ c0b0i þ c1b1i þ c2b2i;

and h0(t) is a non-parametric baseline hazard function. In this setting, it is easy to see a

direct treatment effect (a) on TTPD and an indirect treatment effect (c1b11) on TTPD

through random slopes (b1i). Combining the direct and indirect treatment effects, we

derived the overall treatment effect on TTPD as a ? c1b11. The decomposition of the

overall effect into the direct and indirect effects can be generalized to a non-treatment

covariate if it is incorporated into both the longitudinal and survival components of the

joint model. This feature represents an important advantage of the shared random-effects

model.

We used the software Mplus Version 6 (Muthén and Muthén 1998–2010) to fit the

trajectory models and shared random-effect models using maximum likelihood estimation.

Different joint models were compared using the Bayesian Information Criterion (BIC)

(Schwarz 1978) defined as

BIC ¼ �2 log Lða; c; r; b;RÞ þ p logðnÞ;

where p is the number of parameters in the model, n is the sample size, and the joint log-

likelihood is given by:

log Lða; c; r; b;RÞ ¼
Xn

i¼1

log

Z
pðTi; dijbi; a; cÞ

YJi

j¼1

pðYijjbi; rÞpðbijb;RÞdbi;

pðYijjbi; rÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
p exp �ðYij � f ðtijÞT biÞ2

2pr2

( )
;

pðbijb;RÞ ¼
1

ð2pÞr=2jRj1=2
exp � 1

2
ðbi � bXiÞTR�1ðbi � bXiÞ

� �
:

In the trajectory model, pðTi; dijbi; a; cÞ is given in (7), and in the shared random-effect

model,

pðTi; dijbi; a; cÞ ¼ hiðTiÞð1�diÞexp �
Z Ti

0

hiðsÞds

� �

with hið�Þ given by (8).

The BIC is readily available in Mplus for both trajectory and random-effects models.

The model with a lower value of BIC is preferred. There are many other approaches for

model selection. For example, researchers using Bayesian approaches for joint modeling
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often use the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002). Guo and

Carlin (2004) and Hatfield et al. (2011) used the DIC for model selection in joint modeling

and provided rich discussions on the DIC.

4 Results

4.1 Separate analyses

In the MMRM analyses, we used both compound symmetry and AR(1) covariance

matrices. Because the MMRM analyses with AR(1) gave smaller BIC, we reported the

results using the AR(1) covariance matrix in Table 1. The least square mean (LSMean) and

standard error (SE) of the LSMean for each LCSS item in each treatment arm at cycle 6 are

reported, as well as the P-value for testing the difference in LCSS mean score between the

two treatment arms at cycle 6. Significantly (or trending to significantly) lower mean scores

in pemetrexed/cisplatin were observed on dyspnea, ASBI5, and ASBI8 (P-values \0.1).

For survival data, we fitted the Cox proportional hazards model with treatment as the

only covariate and the hazard ratio (HR) for treatment (pemetrexed/cisplatin versus cis-

platin) was HR0 = 0.73 (P-value = 0.001).

4.2 Cox model with time-varying covariates

The naive method was applied, i.e., each LCSS item was incorporated in the Cox model as

a time-varying covariate. The HRs for a one-point increase in LCSS items and the HRs for

treatment are presented in Table 3 under ‘‘Naive Model’’. The P-values for these HRs were

all less than 0.01, indicating significant effects of both LCSS and treatment on TTPD. The

hazard increased approximately from 9 % (cough) to 23 % (ASBI5), with a 10-point

increase in the observed LCSS score.

Table 1 Least square means (LSMean) at cycle 6 from the mixed-effects model for repeated measures
(MMRM) analysis

LCSS item Cisplatin Pemetrexed/cisplatin Difference

LSMean SE LSMean SE P-value

Anorexia 32.4 2.2 32.3 1.9 0.961

Cough 11.8 1.5 10.5 1.3 0.523

Dyspnea 36.9 2.0 30.9 1.7 0.023

Fatigue 44.7 2.1 41.3 1.8 0.218

Pain 28.7 2.0 25.0 1.7 0.157

Interference 48.5 2.0 44.5 1.8 0.136

QoL 47.3 2.0 43.6 1.7 0.164

Symptoms 38.9 2.0 35.4 1.7 0.194

ASBI5 31.6 1.4 28.3 1.2 0.076

ASBI8 36.9 1.4 33.2 1.3 0.053

LCSS Lung Cancer Symptom Scale, ASBI5 the mean of the five symptom items (anorexia, cough, dyspnea,
fatigue, and pain), ASBI8 the mean of the five symptom items and the three global items (interference, QoL,
and symptoms). SE standard error
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4.3 Joint models without covariates other than treatment

We jointly modeled TTPD with each LCSS item using the five trajectory models and the

five random-effects models described in Sect. 3. Treatment was the only covariate we

considered in both longitudinal and survival components. There were no significant

treatment effects on random intercepts in the trajl_i, trajl_is, reml_i, and reml_is models

(all P-values >0:05 except for anorexia in the reml_is with P-value = 0.039). Under the

trajectory model framework, the trajq_s models gave the smallest BIC. Table 2 lists BIC

for the trajq_s models, and BIC differences between the other four trajectory models and

the trajq_s model. Under the random-effects model framework, again using the model q_s

for the longitudinal component led to the smallest BIC. Table 2 lists BIC for the remq_s

model, and BIC differences between the other four random-effects models and the

remq_s model. According to Raftery (1995), under either the trajectory or the random-

effects model framework, the BIC difference between q_s and q_sq represents positive

evidence favoring q_s, and the BIC difference between q_s and the three l models rep-

resents very strong evidence favoring q_s (difference of 0–2, 2–6, 6–10, and [10 repre-

sents weak, positive, strong, and very strong evidence, respectively, of favoring the model

with smaller BIC). Therefore, we chose to present the detailed results from the best models

under each framework, trajq_s and remq_s, in Tables 3 and 4, respectively.

Table 3 shows a significant treatment effect on slope of dyspnea (P-value = 0.039)

only, trending to a significant treatment effect on slope of ASBI5 (P-value = 0.072) and

ASBI8 (P-value = 0.079). When comparing the HRs of treatment from the trajq_s model

(column ea) with those from the naive method, the differences were minor. When com-

paring the HRs of the LCSS items, those from trajq_s (column ec) were all bigger than

those from the naive method. Both phenomena are consistent with the findings in Ibrahim

et al. (2010). Through simulation, they showed that the naive model and the joint model

give nearly unbiased estimates for the direct treatment effect on survival (i.e., a here) and

the naive model gives the biased estimate towards the null for the association between the

longitudinal process and survival (i.e., c here).

Table 4 provides the parameter estimates for the other joint model, remq_s. There was a

significant treatment effect on slope of dyspnea, pain, ASBI5, and ASBI8 (P-values for b11

were less than 0.05). On the one hand, this finding indicates that there was a significant

treatment-by-time interaction effect on the growth of dyspnea, pain, ASBI5, and ASBI8.

On the other hand, because the difference in the mean LCSS scores between the

pemetrexed/cisplatin and cisplatin arms at time point t was b11t under model remq_s, we

could infer that patients in the pemetrexed/cisplatin arm had a significantly lower score on

dyspnea, pain, ASBI5, and ASBI8 at cycle 6. This is similar with the findings in the

MMRM analysis, in which significant or trending to significant treatment effects at cycle

6 were found on dyspnea, ASBI5, and ASBI8. From the parameter estimates of

(b00, b10, b11, b20), we plotted the fitted mean quadratic growth curves under each treat-

ment arm in Fig. 2 for the four items with a significant treatment effect on slope. The

growth curves for pemetrexed/cisplatin are beneath those for cisplatin for all ten items; this

finding was expected because the estimates for b11 were all negative. These curves show a

beneficial effect of pemetrexed/cisplatin on the progress of the LCSS items.

In Table 4, c0, c1, and c2 measure the association between the random features b0i, b1i,

and b2i of the LCSS trajectory and TTPD. For cough, dyspnea, pain, ASBI5, and ASBI8,

all three features were significantly associated with TTPD (P-values for c0, c1 and c2 were

less than 0.01). For symptoms, two features were significantly associated with TTPD

(P-value\0.01 for c0 and P-value\0.05 for c1). For the other four items, only the intercept
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Table 3 Results from the naive method and joint model trajq_s

LCSS Item Naive model Joint Model Trajq_s

HR (LCSS) HR (Trt) b00 b10 b11 b20 ec: HR (LCSS) ea: HR (Trt)

Anorexia 1.011 0.67 28.8 5.93 -0.138 -1.15 1.014 0.66

Cough 1.009 0.72 14.7 -1.29 -0.410 0.193 1.015 0.72

Dyspnea 1.010 0.73 32.6 2.74 -1.280* -0.327 1.011 0.73

Fatigue 1.012 0.70 36.4 6.62 -1.033 -1.032 1.014 0.70

Pain 1.016 0.70 26.8 0.63 -0.891 0.061 1.018 0.71

Interference 1.013 0.66 41.5 5.87 -0.881 -0.905 1.015 0.66

QoL 1.012 0.69 41.1 4.86 -0.873 -0.710 1.014 0.69

Symptoms 1.012 0.68 34.1 3.08 -0.805 -0.432 1.014 0.68

ASBI5 1.021 0.69 27.9 3.09 -0.866 -0.435 1.025 0.68

ASBI8 1.019 0.67 32.0 3.72 -0.883 -0.516 1.022 0.67

LCSS Lung Cancer Symptom Scale, ASBI5 the mean of the five symptom items (anorexia, cough, dyspnea,
fatigue, and pain), ASBI8 the mean of the five symptom items and the three global items (interference, QoL,
and symptoms), HR hazard ratio, Trt treatment

b00: mean of intercepts b0i in LCSS trajectory gi(t) = b0i ? b1it ? b2it
2

b10: mean of slopes b1i for patients treated with cisplatin

b11: treatment effect on b1i; *P-value \0.05

b10 ? b11: mean of slopes b1i for patients treated with pemetrexed/cisplatin

b20: mean of quadratic coefficient b2i

c: the association between LCSS trajectory and time to progressive disease (TTPD)

P-values for c and a were less than 0.01

Table 4 Results from the remq_s model

LCSS item b00 b10 b11 b20 c0 c1 c2 ea
eaþc1b11

Anorexia 28.8 6.09 -0.37 -1.12 0.018** 0.060 0.293 0.66 0.65

Cough 14.7 -1.24 -0.62 0.26 0.017** 0.083** 0.359** 0.74 0.70

Dyspnea 32.6 2.89 -1.60* -0.25 0.010** 0.064** 0.260** 0.76 0.68

Fatigue 36.3 6.92 -1.29 -1.03 0.014** 0.041 0.104 0.69 0.65

Pain 26.8 0.84 -1.30* 0.16 0.017** 0.087** 0.333** 0.74 0.66

Interference 41.5 6.08 -1.12 -0.88 0.017** 0.040 0.127 0.65 0.62

QoL 41.1 5.05 -1.06 -0.70 0.015** 0.032 0.070 0.67 0.65

Symptoms 34.1 3.26 -1.08 -0.39 0.015** 0.059* 0.219 0.69 0.65

ASBI5 27.9 3.23 -1.17* -0.35 0.024** 0.105** 0.414** 0.71 0.63

ASBI8 32.0 3.86 -1.14* -0.45 0.022** 0.086** 0.317** 0.69 0.62

LCSS Lung Cancer Symptom Scale, ASBI5 the mean of the five symptom items (anorexia, cough, dyspnea,
fatigue, and pain), ASBI8 the mean of the five symptom items and the three global items (interference, QoL,
and symptoms). b’s have the same meanings as those in Table 3. c0, c1, c2 measure the association between
random features of the LCSS trajectory and time to progressive disease (TTPD)

In columns b11, c0, c1, and c2, * P-value \0.05, **P-value \0.01

ea is the direct treatment effect (pemetrexed/cisplatin versus cisplatin) in hazard ratio and eaþc1b11 is the
overall treatment effect in hazard ratio. P-values \0.01 for the direct treatment effects and P-values \0.001
for the overall treatment effects
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of the trajectory was significantly associated with TTPD (P-value\0.01 for c0). Joint tests

on null hypothesis H0: c0 = c1 = c2 = 0 were performed using Wald-tests; the P-values

were all less than 0.001.

The overall treatment effects in terms of HRs are listed in column eaþc1b11 in Table 4. They

are consistently smaller than HR0 = 0.73 (i.e., the treatment effect without incorporating

any longitudinal LCSS item), even when the treatment effect on LCSS was not significant.

This finding is consistent with those by Ibrahim et al. (2010) and Chen et al. (2011).

4.4 Joint model with other covariates

In the analyses presented in Sect. 4.3, we did not incorporate any covariates other than

treatment. In this section, we considered six covariates in the model remq_s: bf for B12 and

folic acid supplementation before treatment (bf = 1 if fully supplemented; bf = 0 if never

or partially supplemented), kpsb for baseline Karnofsky performance status (KPS)

(kpsb = 1 if baseline KPS = 90 or 100; kpsb = 0 if baseline KPS = 70 or 80), stagele3

for tumor stage (stagele3 = 1 if tumor stage is III or less; stagele3 = 0 if tumor stage is

IV), agelt65 for age group (agelt65 = 1 if age\65 years old; agelt65 = 0 if age >65 years

old), gender (1 if male, 0 if female) and race (1 if Caucasian, 0 if other). We did not include

treatment and bf in the random intercept sub-model because the intercept represents the

baseline status and is not impacted by post-baseline interventions, such as administration of

treatments or supplementation of B12 and folic acid.

The parameter estimates and their 95 % confidence intervals from the joint model of

ASBI5 are summarized in Fig. 3. From the left plot for the sub-model of the random

Fig. 2 Fitted population-level quadratic growth curve of LCSS scores in the remq_s model. The cisplatin
group is in gray, and the pemetrexed/cisplatin group is in black
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intercept (b0i), we see a significantly smaller intercept of ASBI5 (i.e. less symptoms at

baseline) in men than women, in patients who have better performance status than those

have worse performance status, and in patients who have tumor stage III or less at baseline

than those have tumor stage IV. The middle plot for the sub-model of random slope (b1i)

shows that patients receiving pemetrexed/cisplatin had significantly smaller slopes (i.e.,

slower worsening or quicker improving). The right plot for the sub-model of TTPD shows

that all three random effects have significantly positive associations with the hazard and

pemetrexed/cisplatin and stage III or less were significantly associated with improved

TTPD.

By looking at the same plots for other items, several common findings are found: (1)

patients with better performance status at baseline had significantly smaller intercepts of

the item; (2) At least one random effect showed a significant positive association with the

hazard; and (3) Pemetrexed/cisplatin and stage III or less were significantly associated with

improved TTPD.

Similar to deriving the overall treatment effect on TTPD, we were able to derive the

overall effect of other covariates from the joint model. Table 5 lists the direct and overall

effects of treatment, kpsb, and stagele3 on TTPD. For every item, the overall kpsb effect

was much larger (i.e., had a lower HR) than its direct effect. This was expected because

kpsb had a significant effect on the intercept and the intercept was significantly associated

with TTPD for every item. Thus, the indirect effect of kpsb on TTPD through intercept was

big. In contrast, the direct and overall stagele3 effects were similar. The overall treatment

effects were very similar to those from the remq_s model without covariates (see Table 4).

Given this is a randomized study, this was not surprising. However, in a non-randomized

observational study, joint models with covariates may be necessary to reduce bias.

5 Discussion

In this paper, we applied the joint modeling approach to an analysis of longitudinal PRO

and survival outcomes from a clinical trial in patients with mesothelioma. Joint models

Fig. 3 Parameter estimates and 95 % confidence intervals for effects of covariates on random intercepts,
random slopes, and TTPD in the remq_s model for ASBI5 with covariates. Confidence intervals that exclude
the null value of 0 are in black
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allow us to simultaneously assess treatment effect on both longitudinal PRO and survival

outcomes, as well as the association between these two outcomes. Our joint models pro-

duced different and seemingly more accurate results compared with models focused on

PROs alone, or survival alone, or the naive model ignoring measurement errors in PROs by

directly handling informative censoring and accounting for measurement errors. In addi-

tion, our joint models allowed specific modeling of PROs with latent trajectory and linked

PROs and TTPD either through a latent trajectory or shared random effects. We compared

our joint modeling approach with several standard approaches that analyzed longitudinal

and survival data separately. Our joint models not only suggested a beneficial treatment

effect on nearly all PRO measures at the end of the treatment period, but also were able to

describe patterns (or trajectories) in PROs throughout the treatment period. Given the large

treatment effect observed on TTPD in this study, both separate and joint modeling

approaches showed a significant treatment effect on TTPD. However, the treatment effect

on TTPD appeared to be larger in the joint models, which represented findings consistent

with Ibrahim et al. (2010) and Chen et al. (2011). These authors showed that when the

longitudinal data are associated with treatment, ignoring the longitudinal data in the sur-

vival model will lead to a biased estimate of the overall treatment effect on survival. In

addition, our joint models allowed us to quantify the direct treatment effect on TTPD, as

well as the indirect treatment effect through PROs.

A few specific features of the joint models deserve further discussions. First, in our

longitudinal model for PROs, we explored both linear and non-linear trajectories (quadratic

curves). Indeed, data from the mesothelioma trial suggested that the non-linear trajectory

might be a better choice. For all the PRO measures with the exception of cough and pain,

the fitted trajectories showed that PROs appeared to be worse during the first 3 months or

the first four cycles for both treatment groups, and remained the same or improved after

that. The initial worsening of PROs could be related to a large proportion of patients

experiencing tumor progressions early on during the treatment, and/or the toxicity asso-

ciated with the treatment. The rebound of PROs after 3 months suggested that those

Table 5 Direct and overall effects of treatment, kpsb, and stagele3 on TTPD in terms of hazard ratios

LCSS item Treatment kpsb stagele3

Direct Overall Direct Overall Direct Overall

Anorexia 0.65 0.64 0.88 0.69 0.77 0.72

Cough 0.72 0.68 0.78 0.71 0.72 0.73

Dyspnea 0.74 0.67 0.84 0.69 0.71 0.72

Fatigue 0.68 0.64 0.85 0.67 0.73 0.72

Pain 0.72 0.65 0.81 0.65 0.75 0.70

Interference 0.65 0.62 0.95 0.66 0.75 0.72

QoL 0.67 0.65 0.88 0.66 0.73 0.73

Symptoms 0.68 0.64 0.87 0.65 0.77 0.74

ASBI5 0.71 0.62 0.92 0.64 0.73 0.71

ASBI8 0.69 0.62 0.94 0.63 0.74 0.71

Kpsb baseline Karnofsky performance status (KPS) (kpsb = 1 if baseline KPS = 90 or 100; kpsb = 0 if
baseline KPS = 70 or 80); stagele3 tumor stage (stagele3 = 1 if tumor stage is III or less; stagele3 0 if
tumor stage is IV), TTPD time to progressive disease, LCSS Lung Cancer Symptom Scale, ASBI5 the mean
of the five symptom items (anorexia, cough, dyspnea, fatigue, and pain), ASBI8 the mean of the five
symptom items and the three global items (interference, QoL, and symptoms)
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patients who were alive without tumor progression might have benefited from the treat-

ment either in tumor response or improved tolerability. Further explorations are necessary

to clarify this. Second, we used different functions to link the longitudinal and survival

data: the trajectory function itself or shared random effects (such as slope in the trajectory

function). In our analysis, use of either link function provided similar results (Tables 3, 4)

as long as the shape of the growth curves was specified as quadratic. Guo and Carlin (2004)

compared several link functions in their joint models, and showed that linking intercept

(initial CD4 level) and the rate of CD4 decrease (slope) to survival provided a better fit in

their analysis of data from AIDS clinical trials. However, their analyses were limited to a

linear growth curve for longitudinal data. In the presence of a non-linear growth curve, use

of the trajectory function as the link might provide a simple interpretation that survival is

influenced by the current value of the longitudinal outcomes. Third, we showed that

important baseline covariates could be included in our joint model. Our analysis confirmed

the well-known association between performance status and PROs as well as the associ-

ation between the stage of tumor and TTPD. Both performance status and the stage of

tumor are important prognostic factors for TTPD and overall survival. In the setting of our

clinical trials, both performance status and the stage of tumor were included as stratifi-

cation variables in the randomization scheme, so treatment effects remained the same in

the joint model including covariates. However, in a non-randomized observational study,

joint models with covariates may be necessary to reduce bias.

While we have carefully considered our models and analyses, our work has several

limitations. We have modeled each PRO item with TTPD one at a time. While this helped

to establish the association between each PRO item and TTPD, often a treatment impacts

multiple dimensions of PRO simultaneously, and changes in various PRO dimensions are

related. An alternative is to develop a multivariate longitudinal model for all PRO items

and link it to the survival model or reduce PROs to a single score, similar to the use of

ASBI in our analysis. In either part of our joint models, assumptions may be violated either

due to skewness of the PRO data with an excessive amount of zero data (i.e., absence of

symptoms) or non-proportional hazards. Several modifications may lead to improvement in

the performance of the joint models. For the longitudinal model, one may transform the

PRO scores by a square-root transformation (Ibrahim et al. 2010), use a zero-inflated beta

model (Hatfield et al. 2011), or model the change in PROs from baseline, which is more

likely to be normally distributed. For the survival model, we may use alternatives to

proportional hazards models, such as piece-wise exponential or parametric models.

Currently, no standard software exists to fit a wide range of joint models. Indeed, this

presents a computational challenge, impeding the broader use of joint models in practice.

Several authors have developed models that can be implemented in SASr or WinBUGS

(Guo and Carlin 2004; Ibrahim et al. 2010). An R package JM was recently developed for

joint modeling of longitudinal and time-to-event data (Rizopoulos 2010). We chose Mplus

to implement our models. Besides the trajectory and the shared random-effects models,

other possibilities for joint modeling to meet different inference needs can also been

implemented in Mplus, such as predicting survival from growth mixture (Muthén et al.

2009). While Mplus offered great flexibility in modeling longitudinal data with latent

variables (such as the latent growth model, the latent class model, and the growth mixture

model), several modifications are necessary in order to incorporate these longitudinal

models into the survival model (e.g., creating survival variables on subintervals in joint

models when using the trajectory function as the link). In general, we found most of our

models and their extensions could be easily fit by Mplus using a frequentist-based com-

putational algorithm. The Bayesian package for Mplus is currently under development.
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As joint models become more commonly used for analyzing multiple clinical outcomes,

there are abundant research opportunities for future work. One that potentially has a

significant impact on clinical research and regulatory importance is the examination of the

association between intermediate outcomes (such as TTPD and PROs) and ultimate out-

comes (such as overall survival). A three-way joint model linking TTPD, PRO changes,

and overall survival could be developed (Asparouhov et al. 2006). As various options for

joint models exist, efficient and robust model selection criteria need to be developed in

order to build the best joint models in both Bayesian and frequentist settings. Finally, our

joint models offer a flexible framework in modeling multiple outcomes from clinical

research. The idea of borrowing information across outcome types (such as efficacy and

safety) through carefully selected fixed or random effects is easily generalizable.
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