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IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Thrombotic thrombocytopenia mimicking heparin-induced thrombocytopenia has been

observed in patients with severe Coronavirus Disease 2019 (COVID-19AU : Pleasenotethat� COVID � 19� and � SARS � CoV � 2� havebeendefinedas� CoronavirusDisease2019� and � SevereAcuteRespiratorySyndromeCoronavirus2;� respectively; intheirfirstmentioninthesentence� Thromboticthrombocytopeniamimickingheparin � inducedthrombocytopeniahasbeenobservedin . . .� Pleasecorrectifnecessary:) or after immunisation

with adenoviral vector-based vaccines against Severe Acute Respiratory Syndrome Coronavi-

rus 2 (SARS-CoV-2). Herein, we discuss the pathogenesis of the autoimmune response to

platelet factor 4 (PF4) that underlies these disorders.

There is convincing evidence that autoimmunity is involved in the pathogenesis of

COVID-19 [1,2]. Regarding the severe forms of the disease in which thromboinflammation is

prominent, both endothelial cells and platelets might be affected by autoimmune reactions in

addition to direct viral infection and cytokine-mediated activation [3,4]. Firstly, multiple anti-

phospholipid antibodies have been detected in the blood of hospitalized patients in relation

with the severity of the disease and the formation of neutrophil extracellular traps known to

contribute to thrombotic events [5]. A recent study further established that among anti-phos-

pholipid autoantibodies detected in COVID-19 patients, immunoglobulin G (IgGAU : Pleasenotethat � IgG� hasbeendefinedas� immunoglobulinG� initsfirstmentioninthesentence� Arecentstudyfurtherestablishedthatamonganti � phospholipidautoantibodies . . .� Pleasecorrectifnecessary:) to cardioli-

pin and phosphatidylserine/prothrombin might be the ones driving endothelial cell activation

[6]. In addition, anti-annexin A2 autoantibodies found in critically ill patients were suggested

to contribute to small vessel damage in the lungs [7].

Besides endothelial cell damage, activation of platelets is the other cornerstone of the pro-

thrombotic state characteristic of COVID-19 [4]. Several factors are involved including mito-

chondrial disturbances caused by hypoxia, mediators of inflammation, and other stressors,

leading to platelet hyperactivation and apoptosis [4,8]. Furthermore, infection of platelets by

the SARS-CoV-2 virus might also contribute to their activation via angiotensin converting

enzyme 2 (ACE2AU : Pleasenotethat� ACE2� hasbeendefinedas� angiotensinconvertingenzyme2� initsfirstmentioninthesentence� Furthermore; infectionofplateletsbytheSARS � CoV � 2virus . . .� Pleasecorrectifnecessary:)-dependent [9] as well as non-ACE2 mechanisms involving heparan sulfate

[10] or CD147 [11]. Following viral entry, SARS-CoV-2 ssRNA might trigger intracellular

Toll-like receptor 7–dependent activation pathways as in the case of influenza infection [12].

Antibody-mediated mechanisms involving engagement of the FcγRIIA receptor on platelets

were also shown to contribute to procoagulant activity in severe COVID-19 [13,14]. Although

the antigenic specificity of these antibodies could not always be defined, antibodies to PF4

were shown to be involved in certain AU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:cases [15–22].

PF4, also called CXCL4, is a tetrameric chemokine stored in platelet alpha-granules [23].

Upon platelet activation, PF4 is released and binds polyanions with high affinity [24]. Indeed,

PF4 was shown to play a critical role in heparin-induced thrombocytopenia [25]. Below, we
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summarize the key features of heparin-induced thrombocytopenia before proposing that

COVID-19 and adenovirus-vectored COVID-19 vaccines can on rare occasions cause autoim-

mune thrombotic thrombocytopenia mimicking heparin-induced thrombocytopenia.

PF4 autoimmunity in heparin-induced thrombocytopenia

Heparin-induced thrombocytopenia is a severe prothrombotic condition that occurs in less

than 5% of patients receiving heparin. Anti-PF4 antibodies are key biomarkers of heparin-

induced thrombocytopenia [25]. They recognize an epitope exposed on PF4 tetramers upon

conformational changes induced by their interaction with heparin or other long polyanions

[26]. Indeed, injection of heparin has been shown to induce the release of PF4 [27], resulting

in the assembly of PF4/heparin complexes, which activate complement and bind circulating B

lymphocytes in a complement-dependent manner [28]. B cells responsible for the synthesis of

PF4 autoantibodies display unique characteristics that enable them to rapidly mount an IgG

response following a first exposure to heparin [29]. Indeed, B cells, whichAU : Pleaseconfirmthattheeditstothesentence� Indeed;Bcells;whichareabletoproduceanti � PF4 . . .� didnotaltertheintendedthoughtofthesentence:are able to produce

anti-PF4 antibodies, are present in healthy individuals but in an anergic state that normally

prevents their activation. This B cell tolerance might be broken upon heparin exposure and

under some inflammatory conditions [30]. In these situations, anti-PF4 IgG antibodies elicit

thrombus formation and thrombocytopenia via multiple mechanisms. Immune complexes

assembled with PF4 bound to heparin induce platelet activation and aggregation by cross-link-

ing FcγRIIA receptors [25]. Anti-PF4 antibodies also activate the procoagulant activity of

monocytes by cross-linking their FcγRI receptors and of endothelial cells via the recognition

of PF4 firmly attached to surface proteoglycans (PGs) [31]. Thrombocytopenia results from

enhanced apoptosis and clearance of antibody-coated platelets in addition to consumption in

the coagulation process [8].

A prothrombotic syndrome with all the features of heparin-induced thrombocytopenia has

been reported in the absence of heparin exposure [32]. These observations led to the definition

of a so-called “spontaneous heparin-induced thrombocytopenia” caused by anti-PF4 autoanti-

bodies elicited by polyanions reproducing the conformational changes induced in PF4 tetra-

mers by heparin [33]. Potential polyanions triggering “spontaneous heparin-induced

thrombocytopenia” include bacterial wall components, nucleic acid materials, or endogenous

PGs released by damaged cells.

Thrombotic thrombocytopenia during COVID-19: An autoimmune

reaction induced by SARS-CoV-2?

The high incidence of thrombotic and thromboembolic events during severe COVID-19

results in the frequent administration of heparin in affected patients [34]. Thrombosis can

develop in unusual locations such as cerebral venous sinuses [35]. When thrombocytopenia

develops in this setting, heparin-induced thrombocytopenia must be considered as a possible

cause [18]. Indeed, several studies report the presence of anti-PF4/heparin antibodies in

COVID-19 patients. However, these antibodies sometimes occur in absence of heparin admin-

istration [18]. Furthermore, they do not always activate platelets in presence of heparin/PF4

complexes [36], although they do so in presence of PF4 alone [14], suggesting that they were

induced by another mechanism than classical heparin-induced thrombocytopenia [26]. There

is indeed clinico-biological evidence that infection with SARS-CoV-2 by itself can elicit anti-

body-mediated thrombotic thrombocytopenia. IgG antibodies present in the serum of severe

COVID-19 patients were found to induce platelet apoptosis and procoagulant activity via

FcγRIIA receptor-dependent mechanisms [13]. The antigenic specificity of these antibodies

was not defined, but one can speculate that at least some of them are directed against PF4.
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The model that we are proposing in Fig 1 is first based on the hyperactivation of platelets

during COVID-19, resulting in the release of PF4 in the circulation [37]. Circulating PF4

could form complexes with endogenous polyanionic PGs released by damaged endothelial

cells. Syndecan-1 and endocan are potential PG candidates since their serum levels are

increased in severely ill COVID-19 patients in association with other markers of endothelial

injury [38–40]. Complexes formed between PF4 and endothelial cell-derived polyanionic PG

would then stimulate extrafollicular B cells producing anti-PF4 antibodies. Indeed, autoim-

mune responses elicited by extrafollicular B cells were previously suggested to be involved in

the pathophysiology of severe COVID-19 [41]. Anti-PF4 antibodies would then recapitulate

the sequence of events responsible for heparin-induced thrombocytopenia. Besides anti-PF4

autoantibodies, anti-phospholipid antibodies could also contribute to platelet activation as

well as antiviral antibodies as observed in other infections [42,43].

Thrombotic thrombocytopenia following COVID-19 vaccination

Several observations of prothrombotic thrombocytopenic events following vaccination with

the adenovirus-vectored vaccine ChAdOx1 nCoV-19 vaccine (Vaxzevria, Oxford/AstraZe-

neca) were reported in European countries [44–46]. The incidence of these events is very low

(around 1 in 100,000 recipients) but still significant by comparison with the background rate.

As the clinical presentation is often reminiscent of heparin-induced thrombocytopenia, the

hypothesis of a vaccine-induced autoimmune response to PF4 was put forward. Indeed, Grei-

nacher and colleagues, Schultz and colleagues, and Scully and colleagues reported the detec-

tion of platelet-activating anti-PF4 antibodies in sera of patients suffering from unusual

thrombotic events associated with thrombocytopenia within 4 to 16 days after injection of

the ChAdOx1 nCoV-19 vaccine [44–46]. Shortly after these observations, 17 cases of

Fig 1. HypotheticalAU : PleasenotethatthecontentofFig1fileandFig1captiondonotmatch:PleasecheckandprovidenewFig1file:model for thrombotic thrombocytopenia during COVID-19. (A) SARS-CoV-2 induces the

release of PF4 by activated platelets and of polyanionic PG by endothelial cells (e.g., syndecan and endocan). (B)

Complexes of PF4 and PG expose PF4 immunogenic epitopes, which activate extrafollicular B lymphocytes secreting

PF4 autoantibodies. (C) PF4 autoantibodies bind complexes of PF4 and PG on platelets and endothelial cells and

stimulate their procoagulant activities. Cross-linking of FcγRIIA receptors also promote apoptosis and clearance of

antibody-decorated platelets. COVIDAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:-19, Coronavirus Disease 2019; PF4, platelet factor 4; PG, proteoglycan;

SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pmed.1003648.g001
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thrombocytopenic thromboses affecting cerebral venous sinuses were reported in the United

States after administration of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson), another

adenoviral vector-based COVID-19 vaccine [47]. Strikingly, serum anti-PF4 antibodies were

present in the 11 patients in whom they were searched for [47]. So far, there is no evidence for

an increased incidence of similar events after administration of mRNA vaccines, suggesting a

role for the adenoviral vectors in the induction of the anti-PF4 autoimmune response.

Indeed, Greinacher and colleagues recently reported that ChAdOx1 nCoV-19 vaccine-

induced anti-PF4 antibodies do not cross-react with the SARS-CoV-2 spike protein, excluding

a phenomenon of molecular mimicry between the viral protein and PF4 [48]. The same group

formulated several hypotheses about the vaccine components that could be involved, including

adenovirus-derived substances [49]. As adenoviruses are known to activate platelets [50], it is

plausible that the replication-deficient adenoviral vector could be directly responsible for the

release of platelet-derived PF4. However, this hypothesis implies that significant amounts of

vaccine particles would reach the bloodstream after intramuscular injection, which seems

unlikely. An alternative scenario depicted in Fig 2 would involve endothelial cells. Indeed,

endothelial cells are efficiently transduced upon intramuscular injection [51]. Transduced

endothelial cells might be directly damaged by the spike protein that they synthesize, as sug-

gested by in vitro and in vivo observations [52,53]. Furthermore, endothelial cells might

expose the spike protein on their luminal side, possibly bound to PG of the glycocalyx as

heparan sulfate PGs were shown to be attachment factors for the spike protein [54]. Platelets

might then be recruited and activated by the spike protein bound to endothelial cells [9]. PF4

released by activated platelets could combine with anionic PGs shed from endothelial cells. In

such a scenario, both the adenovirus and the spike protein would contribute to the formation

of immunogenic PF4 following vaccination with adenoviral vector-based COVID-19 vaccines.

Fig 2. Hypothetical model for thrombotic thrombocytopenia after adenoviral vector-based COVID-19 vaccines.

After intramuscular injection, vaccine adenoviruses infect endothelial cells, inducing their production of the

SARS-CoV-2 Spike protein. Heparan sulfate PG could bind the spike protein on the luminal side of endothelial cells or

be released by damaged cells. Spike proteins would activate platelets via ACE2-dependent and ACE2-independent

mechanisms. PF4 released by activated platelets would become immunogenic after binding heparan sulfate PG shed

from endothelial cells. ACE2, angiotensin converting enzyme 2; COVID-19, Coronavirus Disease 2019; PF4, platelet

factor 4; PG, proteoglycan; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pmed.1003648.g002
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Concluding remarks

Autoantibodies to PF4 contribute to thrombotic thrombocytopenia, which occasionally occurs

during COVID-19 or after vaccination with adenoviral vector-based vaccines against SARS--

CoV-2. We propose that heparan sulfate PG shed from damaged endothelial cells contribute

to making PF4 immunogenic. As far as postvaccine thrombotic events are concerned, it will be

important to specify the role of the adenoviral vector in view of the current developments of

other vaccines based on the same technology. Finally, further research is needed to identify the

risk factors, which predispose rare individuals to these severe complications.
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