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Abstract

Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and
docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented
triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the
plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the
molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial
citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de
novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of
carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented
animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-
induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body
weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

Citation: Ferramosca A, Conte A, Burri L, Berge K, De Nuccio F, et al. (2012) A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats. PLoS
ONE 7(6): e38797. doi:10.1371/journal.pone.0038797

Editor: Marcia B. Aguila, State University of Rio de Janeiro, Biomedical Center, Institute of Biology, Brazil

Received March 16, 2012; Accepted May 14, 2012; Published June 7, 2012

Copyright: � 2012 Ferramosca et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Aker BioMarine ASA and by 561000 contribution to Univeristy of Salento. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: Lena Burri and Kjetil Berge are employed in Aker BioMarine,
which partly paid the study. Kjetil Berge holds 140.000 stocks in Aker BioMarine ASA. This does not alter the authors’ adherence to all the PLoS ONE policies on
sharing data and materials.

* E-mail: vincenzo.zara@unisalento.it

Introduction

Dietary polyunsaturated fatty acids (PUFAs) of the n-3 and n-6

series are potent modulators of the de novo fatty acid synthesis in

liver [1,2]. Indeed, PUFAs are able to reduce both the expression

and the activity of key enzymes involved in this anabolic pathway,

such as the cytosolic acetyl-CoA carboxylase (ACC) and fatty acid

synthetase (FAS), thereby leading to a net decrease in the level of

newly synthesized fatty acids inside hepatocytes. Furthermore,

a diet supplemented with n-3 and/or n-6 PUFAs is able to

beneficially influence other aspects of lipid metabolism, such as the

levels of circulating triglycerides and cholesterol [3]. Fish oil (FO),

a dietary oil enriched in two long chain n-3 PUFAs, eicosapen-

taenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6), is

indeed used for its preventive and protective role against

cardiovascular diseases [4,5]. However, in recent years the use

of alternative dietary sources of n-3 PUFAs is rapidly spreading

amongst population.

Krill oil (KO), a novel dietary supplement extracted from

Antarctic krill (Euphausia superba), is also rich in EPA and DHA [6].

However, KO shows some peculiar characteristics which differ-

entiate it from the most commonly used FO. First, most of EPA

and DHA contained in KO are esterified in the form of

phospholipids, whereas in FO they are incorporated into

triglycerides [6]. While the small intestinal lipid absorption is

similar for both phospholipid and triglyceride forms, it has been

proposed that they could influence tissue distribution [7–11].

Second, the ratio of EPA to DHA is higher in KO than in FO and

third, KO is particularly rich in the antioxidant astaxanthin which

increase its stability [12]. The beneficial effects of KO in the

course of dyslipidemia and inflammation have been reported by

several authors both in humans and in animals [13–16].

Furthermore, a higher potency of KO in comparison to FO in

the modulation of the activity and the expression of many enzymes

involved in lipid metabolism has been demonstrated [17,18].

Nevertheless, there is still a need for further studies to reveal the

molecular mechanisms behind the health-promoting effects of

KO.

Hepatic lipogenesis, one of the anabolic pathways modulated by

KO, is characterized by a complex series of reactions starting in

the mitochondrial matrix and continuing in the cytosol. The

excess of acetyl-CoA, produced in the mitochondrial matrix and

deriving from the catabolic degradation of carbohydrates and

amino acids, is at first incorporated into citrate, which is

subsequently exported from mitochondria to the cytosol. The

mitochondrial tricarboxylate carrier or citrate carrier (CIC)

catalyzes the efflux of citrate, thereby connecting the catabolic

pathways to the anabolic ones [19]. In fact, the transported citrate

regenerates acetyl-CoA in the cytosol, which, in turn, is the primer

not only for the de novo fatty acid synthesis but also for the

cholesterol biosynthesis. Therefore, the CIC protein, along with

the more investigated ACC and FAS, represents a good candidate
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for studies monitoring possible alterations in hepatic lipogenesis

[20–22].

Previous studies have highlighted an involvement of the de novo

fatty acid synthesis in the onset of hepatic steatosis [23,24].

Interestingly, it has been reported that a dietary KO supplemen-

tation has the capacity to reduce fatty liver in mice [16]. Since we

have recently found that KO is able to strongly suppress hepatic

lipogenesis in animals fed with a standard diet [18], in this study

we have investigated the molecular mechanisms underlying the

possible protective effects of KO in animals fed a high-fat (HF)

diet. To this end, we have thoroughly analyzed several enzymatic

activities occurring in liver and belonging to both anabolic and

catabolic pathways. In parallel, we have also monitored the

changes in distinct metabolites during the selected dietary

treatment. The obtained results led us to depict a possible

framework for the molecular action of KO during this dysmeta-

bolic condition.

Results

Effect of diets on food intake and body and liver weights
Animals (male Sprague-Dawley rats) were randomly divided

into three groups and fed a control diet, a HF diet or a HF+KO

diet for 12 weeks (Table 1). The food intake did not differ

significantly between the three treatment groups during the study

(Control group: 11.861.8 g/die; HF group: 12.460.7 g/die;

HF+KO group: 11.861.4 g/die). On the contrary, a significant

increase in body weight of rats belonging to the HF group was

detectable already after 4 weeks of treatment, in comparison to

control animals (Fig. 1). This finding was predictable on the basis

of the higher caloric content of the HF diet with respect to the

standard diet (Table 1). Interestingly, the supplementation of the

HF diet with 2.5% KO (HF+KO group) significantly prevented

this effect (Fig. 1). The liver weight did not differ significantly

between the three groups at any time during the dietary treatment

(data not shown).

Hepatic de novo fatty acid synthesis
The anabolic pathway of fatty acid synthesis utilizes the carbon

units transported outside liver mitochondria by the CIC [19]. For

this reason, we investigated the transport activity of this protein in

freshly isolated mitochondria from liver of the three groups of rats.

The transport activity of this mitochondrial carrier remained

almost unaffected over time in the control group (Fig. 2A).

Approximately the same trend was observed in the case of the HF

group, i.e. almost no influence of the HF diet on the CIC activity

over time. A small yet significant inhibition of the CIC activity in

the HF group (about 12%) was only found after 4 weeks of dietary

treatment (Fig. 2A). A net and significant decrease in the CIC

activity was instead found in mitochondria isolated from the

HF+KO group. After 12 weeks, such a decrease was 59% in the

HF+KO group with respect to both control and HF groups. In this

context, it is important to underline that the CIC protein operates

in the inner mitochondrial membrane where it is deeply

embedded. Therefore, its transport activity can be influenced, at

least in principle, by the phospholipid and fatty acid composition

of the inner mitochondrial membrane. In order to investigate this

possibility, we extracted the CIC protein from the mitochondrial

membranes using a non-denaturing detergent and subsequently

purified it by hydroxyapatite chromatography. Eventually, the

purified CIC was functionally reconstituted into liposomes,

thereby obtaining the so-called proteoliposomes. The transport

activity of the purified and reconstituted CIC from the HF+KO

animals was significantly lower over time in comparison to that of

both control and HF groups (Fig. 2B). An inhibition of about 60%

was found at the 12th week of dietary treatment in HF+KO

animals with respect to the other two groups of animals.

Interestingly, the activity of the mitochondrial CIC in the rats of

the HF group, excluding the inhibition observed after 4 weeks, was

practically identical to that of the control rats (Fig. 2B). These

observations imply that the addition of 2.5% KO to the HF diet

Figure 1. Effect of KO on body weight. Body weights of rats fed
control (filled circle), HF (open circle) and HF+KO (filled square) diets are
indicated for the treatment periods in weeks. Each point represents the
mean6 SD for 10 animals. *P,0.05 vs. rats fed control diet; #P,0.05 vs.
rats fed HF diet.
doi:10.1371/journal.pone.0038797.g001

Table 1. Composition of diets (%).

Control HF HF+KO

Proteins 18.6 20.4 19.9

Lipids 6.2 35.2 36.8

Fatty acids

14:0 - 0.5 0.6

16:0 0.7 8.7 9.0

18:0 0.2 4.3 4.3

16:1 - - 0.1

18:1 (n9-7-5) 1.2 15.8 16.0

18:2 (n6) 3.1 3.5 3.5

18:3 (n3) 0.3 - -

20:5 (n3) – EPA - - 0.3

22:6 (n3) – DHA - - 0.2

S SFA 0.9 13.5 13.9

S MUFA 1.3 15.8 16.1

S PUFA 3.4 3.5 4.1

S PUFA n-3 0.3 - 0.6

Carbohydrates 44.2 36.1 35.2

kcal/100 g 310 540 549

The control group of animals received a standard diet (Global Diet 2018S from
Harlan Teklad). The HF group received a diet with 35% fat (Diet TD.03584 from
Harlan Teklad) and the KO group was fed with the above reported HF diet
supplemented with 2.5% KO. Fatty acids were extracted from the three diets
and analyzed by gas-liquid chromatography.
doi:10.1371/journal.pone.0038797.t001

Effect of Krill Oil on Hepatic Steatosis
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(35% fat) is able to significantly decrease the transport activity of

the mitochondrial CIC.

Furthermore, the kinetic properties of the CIC activity were

investigated in the proteoliposomal system. No significant differ-

ence was found in the Km values for the reconstituted CIC activity

in the three groups of rats (Table 2). On the contrary, a net

decrease in the Vmax values was found in the HF+KO group with

respect to both the control and the HF group. In good agreement

with the above mentioned results (Fig. 2A and B), a similar extent

of inhibition (about 67%) was found in the case of Vmax after 12

weeks of dietary treatment. These findings were fully validated by

western blot experiments in which the expression of the

mitochondrial CIC was monitored over time in the three

treatment groups. The decrease in the CIC activity found in the

HF+KO rats was accompanied by a strong decrease in the amount

of the mitochondrial carrier protein in the same group of animals

(Fig. 3). After 12 weeks of HF+KO dietary treatment the amount

of mitochondrial CIC decreased 55%, compared to control and

HF groups. Interestingly, a small, although significant, decrease in

the amount of CIC protein was also found at the 4th week in the

HF group in comparison to the control group. These results

suggest that the CIC inhibition due to KO supplementation of the

HF diet depends on a strong decrease in the expression of this

mitochondrial carrier protein. The amount of porin, an outer

membrane protein tested as a control, did not change in any group

at any time of treatment.

The activities of two cytosolic enzymes, ACC and FAS, to which

the mitochondrial CIC supplies carbon units for hepatic fatty acid

synthesis, were also investigated. A net decrease of the ACC

activity in the HF+KO group was observed, when compared to

that of both HF and control groups (Fig. 4A). After 12 weeks, the

ACC activity in the HF+KO group was reduced by about 65%,

when compared to control animals. A similar behaviour was

observed in the case of the FAS activity (Fig. 4B), with

approximately 60% inhibition in the HF+KO group. Hence,

parallel inhibitions were found in the activities of the cytosolic

ACC and FAS and of the mitochondrial CIC.

Hepatic fatty acid oxidation
The catabolic pathway of fatty acid oxidation occurs inside

mitochondria and, from a metabolic point of view, represents the

opposite of fatty acid synthesis. The rate-limiting step of fatty acid

oxidation is represented by the activity of CPT I which is involved

in the transport of fatty acids into the mitochondrial matrix. The

activity of CPT I remained practically constant over time in the

control rats (Fig. 5A). However, in the HF animals a clear decrease

in the CPT I activity was detected at any time during the dietary

treatment. The maximum degree of inhibition (51%) was seen

after 8 weeks of dietary tratment. On the contrary, a significant

increase in CPT I activity was found in the HF+KO rats. After 12

weeks of feeding, the CPT I activity was 2.1 and 3.4 fold higher

than those of control and HF rats, respectively. Notably, these

results were substantiated by the levels of hepatic carnitine

detected in the three groups of animals (Fig. 5B). Carnitine is

coupled to fatty acids in order to facilitate their passage across the

inner mitochondrial membrane. In fact, the carnitine levels

paralleled the trend of CPT I activities found in control, HF

and HF+KO rats (Fig. 5B). This is in line with the fact that an

increase (or a decrease) in CPT I activity is accompanied by

parallel changes in free carnitine levels [25]. Thus, KO

supplemented to the HF diet strongly stimulates fatty acid

oxidation.

Hepatic mitochondrial oxidative phosphorylation
An increased fatty acid oxidation supplies higher levels of

reducing equivalents, which are normally addressed towards the

mitochondrial oxidative phosphorylation for ATP production. We

therefore analyzed the respiratory efficiency of freshly isolated

mitochondria by oxygraphic methods (Table 3). V3, also known as

the active state of respiration (measured in the presence of

externally added ADP and respiratory substrates), did not show

massive changes in any of the treatment groups. In the rats fed the

HF diet a little yet significant decrease in V3 was observed from

the 6th week of dietary treatment onward, in comparison to

control animals. In the HF+KO animals, less evident changes in

the V3 values were found. V4, also known as the resting state of

respiration (measured in the presence of respiratory substrates

when added ADP had been completely phosphorylated to ATP),

showed more differences (Table 3). Whereas the V4 values in the

HF+KO group were practically identical to those found in control

animals, except the value measured at the 4th week, the HF

Figure 2. Effect of KO on the transport activity of mitochon-
drial CIC. Transport of citrate into rat liver mitochondria that are
freshly isolated (A) and into a reconstituted system (proteoliposomes)
(B) was measured at the times indicated. The values reported in the
figure represent the means 6 SD (n=4). *P,0.05 vs. rats fed control
diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g002

Effect of Krill Oil on Hepatic Steatosis

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38797



treatment led to a significant increase in V4 values at any time

measurement. After 12 weeks, the V4 measured in HF treated

animals was about 2.6 fold higher than those found in control and

HF+KO groups. As a consequence, the RCR (respiratory control

ratio) values were profoundly and significantly lower in HF

animals with respect to those calculated for both control and

HF+KO animals. The RCR is a direct measure of the

mitochondrial respiratory efficiency [26,27] and the values found

in animals fed the HF diet suggest that the excess of dietary fat

most probably is the cause of a partial uncoupling between

respiration and phosphorylation in mitochondria. Interestingly,

the dietary KO supplementation is able to efficiently abolish this

effect, keeping the mitochondrial respiratory efficiency unaltered

(Table 3).

In a more selective approach for investigating the functionality

of the mitochondrial oxidative phosphorylation we assayed the

activity of a single component of the respiratory chain, the

cytochrome bc1 complex or complex III [28]. A significant

decrease in the activity of the cytochrome bc1 complex was found

in HF animals at any time measurement (Fig. 6). After 12 weeks of

treatment, the decrease in mitochondrial bc1 activity was about

30% compared to control rats. On the contrary, the values of the

cytochrome bc1 activity of the HF+KO rats were practically

identical to those measured in control animals (Fig. 6).

Hepatic lipid and protein oxidation
It has been reported that a dysfunction of the mitochondrial

oxidative phosphorylation may represent one of the causes

responsible for the increase of reactive oxygen species (ROS)

[29]. ROS, in turn, may oxidatively modify cellular protein and

lipid, thereby leading to the appearance of several pathologies.

The oxidative damage of hepatic lipids is shown in Fig. 7A.

Whereas the lipid peroxide (LPO) levels were identical in both

control and HF+KO rats at any time, a significant increase (+19%)

was found in the HF animals after 12 weeks of treatment. The

analysis of protein oxidation in liver (Fig. 7B) revealed a strong

Figure 3. Effect of KO on protein levels of mitochondrial CIC. Liver mitochondrial proteins from control, HF or HF+KO-fed rats were separated
by SDS-PAGE, transferred to nitrocellulose and then immunodecorated with antisera against either the rat CIC or the mammalian porin. The values
reported in the graph represent the means6 SD (n= 4; *P,0.05 vs. rats fed control diet; #P,0.05 vs. rats fed HF diet). The amount of CIC revealed by
immunodecoration at the beginning of dietary treatment was set to 100%.
doi:10.1371/journal.pone.0038797.g003

Table 2. Km and Vmax of citrate transport in a reconstituted
system.

Weeks Km (mM)
Vmax (nmol?min21?mg
protein21)

Control HF HF+KO Control HF HF+KO

0 0.187 - - 143.3 - -

4 0.199 0.184 0.205 141.0 124.0 70.5

6 0.189 0.190 0.203 141.6 133.5 64.4

8 0.189 0.189 0.190 142.0 142.0 57.1

12 0.187 0.187 0.188 141.3 143.1 46.3

Km and Vmax values were measured in a reconstituted system at the times
indicated. Proteoliposomes were reconstituted with the CIC as described in the
Methods section. [l4C] Citrate, 0.04–0.40 mM, was added to proteoliposomes
containing 10 mM citrate. The citrate/citrate exchange was stopped 1 min after
the addition of the radiolabeled substrate by 20 mM 1,2,3-BTA. Km and Vmax
values were calculated by linear regression.
doi:10.1371/journal.pone.0038797.t002
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increase in the level of oxidized proteins in HF animals at 8

(+38%) and 12 (+65%) weeks of dietary treatment (Fig. 7B). On

the contrary, the values found in HF+KO rats at the 4th, 6th, and

8th week were only slightly increased in comparison to those

measured in control animals. At the 12th week of dietary

treatment no significant difference in the oxidative modification

of protein was detected between the HF+KO and the control

group of animals (Fig. 7B). It appears, therefore, that the HF diet is

able to increase the oxidative damage of both proteins and lipids,

expecially at longer feeding periods, and that this effect is

efficiently reversed by KO supplementation of the HF diet.

Plasma and liver lipids
A significant increase in the level of plasma triglycerides was

found in the HF rats starting from the 6th week (Fig. 8). At the

12th weeks, an increase in the level of plasma triglycerides of 71%

was found in the HF rats, compared to control animals (Fig. 8). On

the contrary, no significant difference was detected in the

triglyceride levels between control and HF+KO animals. The

subsequent assay of the levels of plasma cholesterol and

phospholipids did not reveal any significant difference between

the three groups at any time of dietary treatment (data not shown).

Additionally, there were differences in lipid levels found in liver.

The liver histologic examination revealed microvesicular fat

depositions in HF rats, whereas no fat deposition was found in

the HF+KO animals (Fig. 9A). After 12 weeks, the liver

triglyceride content was 2.1 fold higher, compared to that in

control animals. Interestingly, the KO supplementation of the HF

diet reversed this effect, thereby assuring liver triglyceride levels

very similar to those of control rats (Fig. 9B). Also the levels of total

cholesterol significantly increased in HF rats in comparison to

those of control animals (+77% after 12 weeks) (Fig. 9C). In the

HF+KO animals, instead, the increase in cholesterol levels was

significantly less evident being about +19% at the 12th week

Figure 4. Effect of KO on lipogenic enzyme activities. The
activities of ACC (A) and FAS (B) were measured in the cytosol of rat
hepatocytes at the times indicated. The values are expressed as
nanomoles of NADH (ACC) or NADPH (FAS) oxidized min21 mg
protein21 and represent the means 6 SD (n= 4). *P,0.05 vs. rats fed
control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g004

Figure 5. Effect of KO on hepatic fatty acid oxidation. (A) CPT I
activity was measured in liver mitochondria freshly isolated from rats at
the times indicated. The values are expressed as nanomoles of DTNB
reduced min21?mg protein21 and were calculated as described in the
Methods section. (B) Liver carnitine levels were also determined at the
times indicated. Data are means 6 SD (n=4). *P,0.05 vs. rats fed
control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g005
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(Fig. 9C). The assay of liver phospholipid content did not reveal

any significant difference among the various groups of animals at

any time (data not shown). Accordingly, the dietary administration

of KO in animals fed a HF diet has a normalizing effect on the

hepatic content of both triglycerides and cholesterol.

Lipid analysis of mitochondrial membranes
Cholesterol and phospholipid contents of mitochondrial mem-

branes from control and treated animals were analyzed. No

significant difference was observed in the phospholipid concen-

tration and composition of hepatic rat mitochondria in the three

groups (data not shown). However, after 8 weeks of treatment,

cholesterol content of mitochondrial membranes was affected

upon HF and HF+KO treatments. There was a strong increase in

the level of cholesterol in HF animals after 8 (+35%) and 12

(+78%) weeks of dietary treatment, in comparison to the values

found in control animals (Fig. 10A). On the contrary, the values

found in HF+KO rats were lower than those of the control group

(20% and 34% decrease after 8 and 12 weeks, respectively).

Accordingly, the cholesterol/phospholipid ratio was significantly

higher in the liver mitochondria from HF rats in comparison to the

control, whereas a strong reduction in this parameter was observed

in the HF+KO group (Fig. 10B).

Mitochondrial fatty acid composition was noticeably different

among the three treatment groups (Table 4). Palmitic acid (16:0)

and stearic acid (18:0) increased, whereas linoleic acid (18:2)

decreased in mitochondria from HF and HF+KO rats. In-

terestingly, DHA (22:6) strongly increased in the HF+KO group,

thus leading to an increase of the fatty acid unsaturation index

(U.I.) of about 25% in comparison to that of the HF rats after 12

weeks of dietary treatment. It appears, therefore, that KO

supplemented to the HF diet is able to influence mitochondrial

membrane fluidity, by modifying both cholesterol content and

fatty acid composition.

Plasma levels of glucose and insulin
The blood glucose concentration increased in both HF (76%)

and HF+KO (72%) animals after 4 weeks of dietary administra-

tion, in comparison to control rats (Fig. 11A). From the 4th week

onward, there was a progressive normalization in the levels of

blood glucose in the HF+KO treated animals, which resulted in

only slightly increased level after 12 weeks (13%), compared to

control rats. On the contrary, the modifications in glucose level

were more persistent in the HF treated animals, compared to the

control group (+33% at the 12th week). A sudden and massive

increase in the levels of insulin was revealed in the plasma of HF

animals, in comparison to control rats (Fig. 11B). After 12 weeks of

dietary treatment, insulin was increased 2.15 fold in HF animals,

in comparison to the control ones. However, the concentration of

plasma insulin in rats supplemented with KO was comparable to

that of control animals at any time during the dietary treatment

(Fig. 11B). KO is therefore able to efficiently counteract the

hyperglycidemic effects of a HF diet by normalizing the blood

glucose level and preventing an increase in the plasma insulin

concentration.

Discussion

The results reported in this study suggest that KO has a strong

capability to suppress the hepatic steatosis induced by a HF diet

administered to rats. Indeed, the addition of a low amount of KO

(2.5%) to a diet containing a large excess of fat (35%) efficiently

prevented the accumulation of triglycerides and cholesterol inside

Table 3. Mitochondrial respiratory efficiency.

Weeks V3 (nmol O2 ml21 min21) V4 (nmol O2 ml21 min21) RCR

Control HF HF+KO Control HF HF+KO Control HF HF+KO

0 73.265.9 - - 11.460.8 - - 6.460.4 - -

4 65.266.9 61.964.9 88.463.2*# 10.162.3 27.962.7* 24.061.2*# 6.661.0 2.260.2* 4.160.3#

6 76.869.9 54.861.3* 58.965.5*# 13.161.5 26.663.3* 10.061.0# 5.961.2 2.160.3* 5.960.2*#

8 83.468.9 64.863.7* 79.264.1# 15.363.1 32.861.4* 14.763.1# 5.661.6 2.060.1* 5.460.8#

12 76.866.1 61.967.0* 69.564.1 12.060.7 29.960.9* 10.861.8# 6.460.6 2.160.2* 6.561.2#

Respiratory control ratio (RCR) was calculated as the ratios of the rate of oxygen uptake in the presence of added ADP (V3) to the rate observed when added ADP had
been completely phosphorylated to ATP (V4).
*P,0.05 vs. rats fed control diet;
#P,0.05 vs. rats fed HF diet; n= 3.
doi:10.1371/journal.pone.0038797.t003

Figure 6. Effect of KO on mitochondrial bc1 complex activity.
The activity of complex III of the respiratory chain was measured in liver
mitochondria freshly isolated from rats at the times indicated. The
values are expressed as micromoles of cytochrome c reduced
min21?mg protein21 and represent the means 6 SD (n= 4). *P,0.05
vs. rats fed control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g006

Effect of Krill Oil on Hepatic Steatosis

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e38797



rat hepatocytes. In agreement with these results, lower levels of

triglycerides were also found in plasma of HF+KO animals in

comparison to the values detected in HF rats. Overall, KO was

able to keep the lipid concentrations similar or even identical to

those found in control animals fed a standard diet containing 6%

fat. This is of significance for the use of KO as a novel dietary

source of EPA and DHA in preventing cardiovascular diseases.

Figure 7. Effect of KO on oxidative modification of protein and lipid. (A) Liver lipid peroxide (LPO) levels were determined at the times
indicated. Each point represents the mean6 SD for 4 liver samples. (B) DNP-derivatized liver tissue lysates (lanes+) from control, HF or HF+KO-fed rats
were analysed for the presence of oxidized protein. DNP protein bands were visualized by chemiluminescence. Oxyblot images were analyzed by
densitometry and the values reported in the graph represent the means6 SD (n= 4). The amount of carbonylated proteins revealed at the beginning
of dietary treatment was set to 100%. *P,0.05 vs. rats fed control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g007

Effect of Krill Oil on Hepatic Steatosis
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Nevertheless, it is even more interesting to unveil the molecular

mechanisms responsible for these beneficial effects. Indeed, the

pathogenesis of metabolic syndrome and/or cardiovascular

diseases appears quite complex and recent reports suggest intricate

networks of metabolic modifications occurring in distinct parts of

the organism mediated by several and partially unknown signals

[30]. It is therefore difficult to depict a general scheme including

all the molecular steps influenced by an ingested nutrient in the

context of the entire organism. For this reason we have focused

our attention on the molecular modifications induced by KO in

liver that plays a central role in catabolic and anabolic pathways of

lipid metabolism.

The results obtained indicate that the supplementation of KO

to a HF diet strongly inhibits the hepatic fatty acid synthesis by

reducing the activity and the expression of the mitochondrial CIC.

The KO-induced CIC inhibition decreases the efflux of mito-

chondrial citrate towards the cytosol, thereby exerting at least

a dual effect. On one hand, there is a reduced supply of carbon

units in the cytosol and this in turn decreases the amount of

substrate available for hepatic fatty acid synthesis. On the other

hand, there is less citrate available for the stimulation of the

cytosolic ACC. These combined actions significantly and nega-

tively influence hepatic lipogenesis. In parallel to the inhibition of

CIC activity, the dietary KO supplementation also induces a strong

decrease in the hepatic ACC and FAS activities. These findings

therefore suggest that there is a concerted reduction of the activity

of key enzymes involved in hepatic lipogenesis. Such an effect was

also observed in animals fed with a standard diet supplemented

with the same low concentration of KO [18]. It appears therefore

that KO has an intrinsic capability of reducing hepatic lipogenesis

and that the potency of this effect is not lost in the presence of a big

amount of fat in the diet, as reported in this study. Concomitantly,

there is a strong increase in fatty acid oxidation found in the liver

of HF+KO animals. This metabolic modification most probably

can be explained by the lower levels of malonyl-CoA, the product

of ACC activity. In fact, high levels of malonyl-CoA inhibit CPT I

activity which, in this case, is instead strongly stimulated.

Besides the stimulation of fatty acid oxidation, KO also

influences the mitochondrial respiratory efficiency. Indeed, in

the HF rats a strong decrease in the mitochondrial respiratory

efficiency was clearly detected and this effect was due to a possible

uncoupling effect exerted by the excess of fatty acids present in this

kind of diet [31,32]. Interestingly, the addition of KO to the HF

diet almost completely reversed this effect, thereby leading to RCR

values comparable to those of control rats. Overall, this means that

KO is able to induce the burning of excess of fat introduced by

a hypercaloric diet, hence preventing the onset of fatty liver and at

the same time leading to a reduction in body weight. These effects

mainly, even if not exclusively, derive from a combination of

distinct molecular mechanisms, such as: i) stimulation of fatty acid

oxidation, ii) retention of normal mitochondrial respiration

efficiency, and iii) inhibition of de novo lipogenesis.

A similar study, i.e the analysis of the effects of a KO-

supplemented diet, has recently been carried out in HF fed mice

[16]. While in the present study a KO-dependent reduction of

body weight of HF fed rats was observed (Fig. 1), such an effect

was not visible in HF fed mice under KO treatment [16]. On the

contrary, in the study of Tandy et al. 2009 an increase in liver

weight was clearly visible in HF fed mice and this effect was partly

reversed by KO supplementation. Although we did not find any

significant increase in liver weight of HF fed rats in the present

study, the increase in the body weight observed in these animals

would suggest a peripheral fat deposition. However, the addition

of KO to the HF diet was able to efficiently reverse the triglyceride

accumulation found in the liver of these animals (Fig. 9A). Hence,

the results reported in this study further strengthen the ability

possessed by KO to reduce liver lipid accumulation, even when

there is no evident increase in liver weight. Various possible

explanations exist for the differences found in these studies, such as

the different animal species, the different dietary treatments,

length of study and so on. It is however clear that the main effects

exerted by KO supplementation to a HF diet, such as reduction of

hepatic steatosis and improvement of lipid metabolism, are similar

in both these studies.

Moreover, in the present study, KO was able to influence the

membrane lipid composition of liver mitochondria by reducing

cholesterol content and by increasing DHA levels. An increase in

the liver levels of DHA, which has a structural role (whereas EPA

is preferentially utilized for fatty acid oxidation or eicosanoid

synthesis) [33] was also observed by Tou et al. [34]. We can

however exclude that these modifications were in some way

responsible for the observed reduced transport activity of the

mitochondrial CIC (Fig. 2A). Indeed, a similar degree of inhibition

was found after reconstitution of the CIC activity into liposomes

which, differently from the mitochondrial membranes, showed

a well defined and constant lipid composition (Fig. 2B).

Noteworthy is also the effect of KO on the levels of haematic

glucose and insulin. An excess of dietary fat is often accompanied

by an increase in glycemia because of a reduced utilization of

sugar by peripheric tissues [35,36]. In accordance with this, an

increase of plasma insulin is also commonly found in HF fed

animals indicating a possible insulin resistance by extra-hepatic

tissues [37,38]. Interestingly, the supplementation of KO to the

HF diet reversed the hyperglycemic effect in a time-dependent

manner and blocked any increase in the level of circulating insulin.

This finding is in agreement with the prevention and/or reversal

of insulin resistance exerted by dietary EPA and DHA [39]. It is

however puzzling the finding of elevated, even if progressively

decreasing, glucose levels in HF+KO animals at the 4th, 6th and

8th weeks despite the low insulin levels found at the same time

Figure 8. Effect of KO on plasma triglycerides. The levels of
plasma triglycerides were determined at the times indicated, using
commercial kits. The values reported in the figure represent the means
6 SD (n= 4). **P,0.05 vs. rats fed control diet; #P,0.05 vs. rats fed HF
diet.
doi:10.1371/journal.pone.0038797.g008
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intervals. This phenomenon is currently unexplained and merits

further investigation.

Fig. 12 depicts, in a schematic way, all the above described liver

metabolic pathways influenced by the addition of KO to a HF

diet. It became evident that KO positively influences many

metabolic steps in a way that counteracts the potentially negative

effects of a hypercaloric and hyperlipidic diet, which often

characterizes the nutritional habits of western populations. In

Figure 9. Effect of KO on liver lipids. (A) Cresyl violet staining of liver histological sections from rats fed for 12 weeks with control, HF or HF+KO
diet. The levels of liver triglycerides (B) and cholesterol (C) were determined at the times indicated. Each point represents the mean 6 SD for 4 liver
samples. *P,0.05 vs. rats fed control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g009
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view of the results reported in this pre-clinical study, further

clinical studies are warranted to confirm the effects of KO on

human metabolism.

Materials and Methods

Materials
Bio-Rad protein assay kit and hydroxyapatite (Bio-Gel HTP)

were purchased from Bio-Rad; Amberlite XAD-2, Dowex AG1-

X8, Pipes, Triton X-100, Triton X-114, Sephadex G-75, 1,2,3-

benzenetricarboxylate (1,2,3-BTA), cardiolipin, acetyl-CoA, phos-

phoenolpyruvate, ATP, NADH, NADPH, pyruvate kinase, lactate

dehydrogenase, malonyl-CoA, 5,59-dithio-bis (2-nitrobenzoic acid)

(DTNB), carnitine, palmitoyl-CoA, cytochrome c and decylubi-

quinol (DBH2) were from Sigma; [1,5-14C] citrate was from

Healthcare and egg yolk phospholipids were from Fluka; Krill oil

(KO) was a generous gift of Aker BioMarine ASA (Oslo, Norway).

Kits for the assay of triglycerides, total cholesterol and phospho-

lipids were purchased from Futura System; kits for the de-

termination of plasma insulin concentration and protein oxidation

were purchased from Millipore; kit for assay of lipid oxidation was

from Merck, whereas that for the assay of carnitine levels was

purchased from Biovision. All other reagents were of analytical

grade.

Ethics Statement
This study was carried out in strict accordance with the

European Committee Council 106 Directive (86/609/EEC) and

with the Italian animal welfare legislation (art 4 and 5 of D.L. 116/

92). The Italian Ministry of Health specifically approved this

study.

Animals
Male Sprague-Dawley rats (70–100 g) were obtained from

Harlan (Carezzana, Italy) and housed individually in animal cages

at a temperature of 2261uC with a 12:12 hour light-dark cycle

and 30–40% humidity. After 1 week of acclimatization, 10 rats

were sacrificed (week 0) and 120 rats were divided into three

groups of 40 animals each. The first group (control group) received

a standard diet containing 6% fat (Global Diet 2018S from Harlan

Teklad). The second group (HF group) received a diet with 35%

fat (Diet TD.03584 from Harlan Teklad). The third group of

animals (HF+KO group) was fed with the above reported HF diet

supplemented with 2.5% KO. Diet composition is shown in

Table 1. The animals were treated for 12 weeks and had ad libitum

access to diets and water. Body weight, liver weight and food

intake were recorded throughout the study. 10 animals in each

group were sacrificed at week 4, 6, 8 and 12.

Citrate transport in rat liver mitochondria
Rat liver mitochondria were prepared by following standard

procedures and mitochondrial protein concentration was de-

termined by the Bradford method [40]. Freshly isolated rat liver

mitochondria were then loaded with malate. To this purpose, they

were incubated (about 40–50 mg protein) at 20uC in 10 ml of

100 mM KCI, 20 mM Hepes, 1 mM EGTA, pH 7.0, in the

presence of 2 mg/ml rotenone and 0.75 mM L-malate. After

2 min, 20–30 mmol/g protein of mersalyl was added in order to

inhibit the dicarboxylate carrier. After 1 min at 20uC, the

mitochondria were diluted with the above reported ice-cold buffer

and centrifuged at 20,000 g for 5 min at 2uC. Then the reisolated

mitochondria were washed once and finally resuspended in 1.5 ml

of the same buffer.

[14C]citrate/malate exchange was determined by using the

inhibitor stop method. This assay, carried out at 9uC, was initiated

by the addition of 0.5 mM [14C]citrate and stopped by 12.5 mM

1,2,3-BTA. The mitochondria were immediately reisolated by

centrifugation, washed once and acidified with 20% HClO4. The

obtained supernatant was counted by liquid scintillation.

Reconstitution of the citrate transport into liposomes
Rat liver mitochondria (10–15 mg proteins) were solubilized

with a buffer containing 3% Triton X-100 (w/v), 20 mM Na2SO4,

1 mM EDTA, 10 mM Pipes, pH 7.0, at a final concentration of

about 10 mg protein/ml. After incubation for 10 min at 2uC, the

mixture was centrifuged at 25,000 g for 20 min at 2uC thereby

obtaining a supernatant, referred to as mitochondrial extract.

600 ml of this extract (corresponding to about 6–7 mg protein),

supplemented with 2 mg/ml cardiolipin, were applied to a cold

hydroxyapatite column and eluted with a buffer containing 0.5%

Triton X-100 and 5 mM citrate/NaOH, pH 7.0. The initial

Figure 10. Effect of KO on cholesterol and phospholipid
contents in liver mitochondria. The levels of liver cholesterol (A)
and cholesterol/phospholipids ratio (B) were determined at the times
indicated. Each point represents the mean 6 SD (n=3). *P,0.05 vs. rats
fed control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g010
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mixture used for the reconstitution experiments contained: 50 ml

of hydroxyapatite eluate, 90 ml of 10% Triton X-114, 20 ml of

20 mg/ml cardiolipin, 100 ml of 10% phospholipids in the form of

sonicated liposomes, 70 ml of 100 mM Pipes (pH 7.0) and 35 ml of

200 mM citrate in a final volume of 700 ml. After vortexing, this

mixture was passed 15-times through the same Amberlite XAD-2

column, in order to obtain the proteoliposomes. Citrate present

outside the proteoliposomes was removed by passing them through

a Sephadex G-75 column preequilibrated with 50 mM NaCI and

10 mM Pipes (pH 7.0). The first 600 ml of the turbid eluate were

collected, distributed in reaction vessels (180 ml) and used for the

transport studies.

The assay of citrate transport was intiated by the addition of

0.5 mM [14C]citrate (unless otherwise indicated) to reconstituted

proteoliposomes incubated at 25uC, and stopped after the

indicated time by adding 20 mM 1,2,3-BTA. The radioactivity

external to proteoliposomes was removed from each sample by

chromatography on Dowex AG1-X8 columns and the internal

radioactivity was measured by scintillation counting.

Western blot analysis
The expression of the mitochondrial CIC was determined by

western-blotting analysis. Polyacrylamide gel electrophoresis was

performed in the presence of 0.1% SDS (SDS-PAGE) according to

standard procedures. The mitochondrial proteins that have been

separated by SDS-PAGE were transferred to a nitrocellulose

membrane. For protein detection, antisera directed against the C-

terminus of the rat liver CIC and against the mammalian porin

were used at a dilution of 1:36103. The immunoreacted proteins

were detected by the peroxidase reaction, using N, N9 Diamino

Benzydine (DAB) and hydrogen peroxide.

Assay of enzymes involved in fatty acid synthesis and
oxidation

Rat liver cytosol was obtained by centrifuging the post-

mitochondrial supernatant at 20,000 g for 20 min at 2uC. The

pellet was discarded and the supernatant was then centrifuged at

105,000 g for 1 h. ACC activity was measured using a NADH-

linked assay as described by [41]. FAS activity was measured by

disappearance of absorbance of NADPH at 340 nm by adding

1 mg of cytosolic proteins to a mixture containing 85 mM acetyl-

CoA, 0.126 mM NADPH, 100 mM phosphate, pH 6.5. The

reaction was started with 0.115 mM malonyl-CoA [42].

Total carnitine palmitoyl-CoA transferase (CPT) activity was

determined spectrophotometrically at 412 nm in freshly isolated

rat liver mitochondria, essentially as described previously [43].

CPT I activity was calculated by subtracting the CPT activity that

was insensitive to 100 mM malonyl-CoA from the total CPT

activity experimentally determined. Liver carnitine levels were also

determined using a commercial kit (L-carnitine assay kit,

Biovision), according to the manufacturer’s instructions.

Mitochondrial respiration efficiency
Mitochondrial respiration (0.3 mg of mitochondrial protein/ml)

was measured in a medium consisting of 220 mM sucrose, 20 mM

KCl, 2.5 mM KH2PO4, 1 mM EDTA, 20 mM Hepes, 5 mM

MgCl2, 2 mg/mL rotenone, 0.1% BSA and 5 mM K-succinate,

pH 7.4, by a Clark oxygen electrode at 25uC. After 2 min, state 3

respiration was induced by the addition of 0.3 mM ADP.

Respiratory control ratio (RCR) was calculated as the ratios of

the rate of oxygen uptake in the presence of added ADP (state 3) to

the rate observed when added ADP had been completely

phosphorylated to ATP (state 4).

Assay of mitochondrial complex III activity
Complex III activity was determined by measuring the re-

duction of oxidized cytochrome c at 550 nm. Rat liver mitochon-

Table 4. Fatty acid composition (mol%) of mitochondrial membrane phospholipids.

14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:4 20:5 22:6 U.I.

Control 0.6 22.0 0.5 23.0 7.4 20.0 ND 12.0 0.2 2.7 113

Week 0 HF - - - - - - - - - - -

HF+KO - - - - - - - - - - -

Control 0.6 24.0 0.4 25.0 9.5 21.0 ND 15.0 0.4 2.5 129

Week 4 HF 0.8 27.0 0.3 29.0 13.0 11.2 ND 13.0 0.2 2.5 99

HF+KO 0.3 30.0 0.4 28.0 12.0 9.9 ND 9.0 0.4 4.5 97

Control 0.6 24.0 0.4 25.0 13.0 19.8 ND 15.0 0.3 2.7 131

Week 6 HF 0.7 28.0 0.1 29.0 13.0 11.0 0.3 15.0 ND 2.9 113

HF+KO 0.4 29.0 0.3 29.0 11.0 13.0 0.4 12.3 0.6 5.4 123

Control 0.5 21.0 0.3 26.0 8.3 18.9 0.1 11.0 ND 2.2 103

Week 8 HF 0.3 30.0 0.1 31.0 12.5 8.6 ND 13.5 0.5 2.5 86

HF+KO 0.3 28.0 0.4 32.0 9.6 10.4 0.2 12.1 0.1 4.3 106

Control 0.6 25.0 0.4 23.0 9.0 20.0 0.1 13.6 ND 2.7 120

Week 12 HF 0.4 27.0 0.2 29.9 14.8 9.1 ND 11.4 0.2 2.5 95

HF+KO 0.5 35.0 0.4 21.0 9.2 10.0 0.2 13.0 0.1 6.1 119

Data correspond to the mean of values obtained in two independent preparations. Differences between values of every couple were less than 10%. Fatty acids were
extracted from mitochondrial membrane phospholipids after saponification. After derivatization with methanolic boron trifluoride, fatty acid methyl esters were
separated by gas-liquid chromatography and identified by using known standards.
U.I., Unsaturation index, S mol% of each fatty acid x number of double bonds of the same fatty acid; ND, not detected.
doi:10.1371/journal.pone.0038797.t004
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dria (40 mg protein) were incubated for 1 min at 30uC in a reaction

medium containing 50 mM potassium phosphate (pH 7.2), 0.01%

(wt/vol) Tween-20, 50 mM EDTA, 4 mM KCN and 40 mM

oxidized cytochrome c. The reaction was initiated by adding the

ubiquinol analog, decylubiquinol (DBH2), to a final concentration

of 50 mM, and the rate of cytochrome c reduction was calculated

from the absorbance increase at 550 nm. Specific activity was

calculated as micromoles of cytochrome c reduced min21 mg

protein21 with an extinction coefficient of 19.6 mM21 cm21.

Lipid measurements in plasma and liver
For the determination of plasma lipids rats were starved

overnight before sacrifice. Blood was collected and centrifuged

to separate plasma (3,000 g, 10 min).

Liver lipids were extracted using a 1:1 mixture of chloroform

and methanol. The extracts were dried under nitrogen flow and

resuspended in a suitable volume of 0.1% Triton X-100 before

carrying out the individual lipid assays. Liver and plasma

triglycerides, as well as cholesterol and phospholipid levels, were

measured using commercial kits (Futura srl).

Figure 11. Effect of KO on plasma levels of glucose and insulin. (A) Blood glucose concentrations were determined using reactive strips and
a commercial glucometer. (B) Plasma insulin concentrations were analyzed with commercial enzyme-linked immunosorbent assay kits. The values
reported in the figure represent the means 6 SD (n= 4). *P,0.05 vs. rats fed control diet; #P,0.05 vs. rats fed HF diet.
doi:10.1371/journal.pone.0038797.g011
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For histologic examination of the livers, intracardiac perfusion

with 4% formaldehyde, freshly prepared from paraformaldehyde,

was performed. Livers were then removed and post-fixed in

formaldehyde for 1 h followed by three 1 h washing steps in

phosphate-buffered saline (PBS). Liver pieces from the right

ventral lobe were introduced into histological cassettes before

paraffin wax embedding, cutted, mounted on slides and stained

according to standard cresyl violet protocols.

Phospholipid, cholesterol and fatty acid analysis of
mitochondrial membranes

Total lipids were extracted from mitochondria (10 mg protein)

by the Bligh and Dyer procedure [44]. The extracts were dried

under a flow of N2 and resuspended in a proper volume of

chloroform. Phospholipids were quantitatively assayed by de-

termining inorganic phosphate by the procedure reported in

Nakamura [45]. Cholesterol was extracted from mitochondria and

assayed by HPLC [46].

To analyze fatty acids, liver mitochondria were saponified with

ethanolic KOH for 2 h at 90uC. Fatty acids were extracted as

reported in [46], and their corresponding methyl esters were

prepared by trans-esterification with methanolic boron trifluoride

(17% BF3) at 65uC for 30 min. Methyl esters of the fatty acids

(FAMEs) were then analyzed by gas-liquid chromatography. The

helium carrier gas was used at a flow rate of 1 ml min21. FAMEs

were separated on a 30 m60.32 m HP5 (Hewlett Packard)

capillare column. The injector and detector temperatures were

maintained at 250uC. The column was operated isothermally at

150uC for 4 min and then programmed to 250uC at 4uC/min.

Peak identification was performed by using known standards, and

relative quantification was automatically carried out by peak

integration.

Glucose and insulin measurements
For the determination of blood glucose and plasma insulin, rats

were starved overnight before sacrifice. Blood glucose concentra-

tion was determined using reactive strips and a commercial

glucometer (One Touch Basic Plus, LIFESCAN, Johnson &

Johnson). Plasma insulin concentration was analyzed with

commercial enzyme-linked immunosorbent assay kits (Millipore

EZRMI-13K).

Determination of oxidative damage
Lipid peroxidation levels in liver samples were determined using

a lipid hydroperoxide assay kit (Merck) which measures the redox

reactions with ferrous ions.

The protein carbonyl contents in liver tissue lysates were

detected by the OxyBlot Protein Oxidation Detection Kit

(Millipore), according to the manufacturer’s instructions. The

carbonyl groups in the protein side chains were derivatized to 2,4-

dinitrophenylhydrazone (DNPhydrazone) by reaction with 2,4-

dinitrophenylhydrazine (DNPH). The DNP-derivatized protein

samples were separated by polyacrylamide gel electrophoresis

followed by western blotting. DNP protein bands were visualized

by chemiluminescence. Oxyblot images were analyzed using an

imaging densitometer.

Statistical analysis
Experimental data represent the means 6 SD. The data were

analyzed by one-way ANOVA and a Tukey-Kramer post hoc

analysis was used to detect significant differences between the

means at a level of P,0.05.

Figure 12. Liver metabolic pathways influenced by the addition of KO to a HF diet. A red X symbolizes inhibition; a green triangle
symbolizes stimulation. OAA, oxaloacetate.
doi:10.1371/journal.pone.0038797.g012
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