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Spiraling elliptic Hermite-Gaussian 
solitons in nonlocal nonlinear 
media without anisotropy
Guo Liang1 & Zhiping Dai2

We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media 
without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. 
The n–th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the elliptic 
profile. The analytical spiraling elliptic Hermite-Gaussian solitons solutions are obtained based on the 
variational approach, which agree well with the numerical simulations. It is found that the critical power 
and the critical angular velocity for the spiraling elliptic Hermite-Gaussian solitons are the same as the 
counterpart of the ground mode.

The nonlinear propagation of optical beams with orbital angular momentum (OAM) has been discussed in recent 
years. The spiraling beams carrying the OAM can exert forces and torques on the microparticles, which make 
them rotate1. The technologies associated with OAM, including spatial light modulators and hologram design, 
have found their own applications ranging from optical tweezers to microscopy2. Spiraling solitons3 with the 
OAM are usually associated with optical vortices4, 5 and the ring-shaped beams6. Meanwhile, the vortex-free 
beams with nonzero OAM are well known in linear media, such as an elliptically shaped beam focused by a 
tilted cylindrical lens7. It was discussed that the OAM has two contributions to the dynamics of elliptic beams 
in nonlinear self-focusing media8. First, it effectively strengthens the diffraction against self-focusing and can 
suppress collapse in Kerr media. Second, it preserves the elliptic profile of stably rotating solitons in optical media 
with collapse-free nonlinearities. Spiraling elliptic solitons have been found to exist in the media with saturable 
nonlinearity8 and nonlocal nonlinearity9. It was claimed that OAM can result in the effective anisotropic diffrac-
tion for the spiraling elliptic beams9. And the deviations from the critical OAM can make the spiraling elliptic 
beams breathe10. The decrease (increase) of the OAM can make the spiraling elliptic breathers converge (diffract). 
Introducing linear anisotropy in the nonlinear media, the OAM will not be conserved. Depending on the linear 
anisotropy of the media, two kinds of evolution behaviors for the dynamic breathers, rotations and molecule-like 
librations were predicated analytically and confirmed in numerical simulations11.

In this paper, we discuss a kind of spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media, 
the n–th mode of which has n holes nested in the elliptic profile. In particular, the fundamental mode is the spi-
raling elliptic solitons8–12. By using the variational approach, we obtained the approximate analytical solutions, 
which agree with the numerical simulations well. We find the critical angular velocity of such a soliton depends 
on the initial parameters but does not depend on its order, which has potential applications in the controlling of 
the optical beams.

Model
The propagation of optical beams in nonlocal cubic nonlinear media can be modeled by the following nonlocal 
nonlinear Schrödinger equation (NNLSE)13–15
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function of the media such that ∫∫R(x, y)dxdy = 1. In the strongly nonlocal nonlinear (SNN) media, we only need 
keep the first two terms of the expansion of Δn. Then, the NNLSE is simplified to the Snyder-Mitchell mode 
(SMM)13
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0, 0, P0 = ∫∫ |ψ(r′)|2d2r′ is the input optical power, and r′ is 

the transverse coordinate vector with r′ = x′ex + y′ey. Although the SMM (2) is a phenomenological model, it can 
keep the main features of the SNN media. For example, the theoretical predictions by the Snyder-Mitchell 
model13, such as the accessible solitons and the attraction of spatial solitons, have been observed in experiments 
in the nematic liquid crystal16–18 and the lead glass19. It is worth mentioning that the fractional Fourier transform 
existing the SNN media was predicted by the SMM20, which was also observed in the lead glass.

Optical beam carrying the orbital angular momentum (OAM) has been investigated in the nonlocal nonlinear 
media modeled by Eq. (1) 9, 10, 21. Hermite soliton clusters in nonlocal nonlinear media have been introduced by 
Buccoliero et al.22. The spiraling elliptic Hermite-Gaussian beam carrying the OAM is introduced as follows
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Figure 1. Profiles of lowest order spiraling elliptic Hermite-Gaussian beam. (a) Fundamental mode with 
n = 0; (b) first-order mode with n = 1; (c) second-order mode with n = 2; (d) third-order mode with n = 3. The 
parameters of all figures are b = 1.2 and c = 0.8 in Eq. (3).

P0 σ ≡ M0/P0

n = 0 πA2bc (b2 − c2)Θ/2

n = 1 2πA2bc(b2 + c2) [2 + 3(b2 − c2)Θ]/2

n = 2 4πA2bc[3(b4 + c4) − 2b2c2 − 2(b2 − c2)] C1(b, c) + C2(b, c)Θ*

Table 1. Parameters of the spiraling elliptic Hermite-Gaussian beam for different orders of n. 
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where Hn is the n–order Hermite polynomials, b(z) and c(z) are the semi-axes of the elliptic beam, An is a param-
eter in connection with the amplitude of the optical beam, and φ = B(z)X 2 + Θ(z)XY + Q(z)Y 2 + ϑ(z) is the phase. 
The n–order spiraling elliptic Hermite-Gaussian beam has the elliptic profile, and has n holes aligned along the 
direction of the principal axis of ellipse. Figure 1 shows the lowest order spiraling elliptic Hermite-Gaussian beam 
as examples. It should be noted that the expression (3) of the elliptical beam is in the rotating coordinate system 
XYZ, where X = x cos β(z) + y sin β(z), Y = −x sin β(z) + y cos β(z), Z = z. And in the static coordinate system xyz, 
the optical beam (3) will rotate carrying the OAM during propagation, the angular velocity of which can be 
obtained as ω = dβ/dz. There exists a significant difference between the spiraling elliptic Hermite-Gaussian beam 
(3) and the complex-variable-function-Gaussian beams introduced in ref. 21, which is, the phase contains an 
additional cross term ΘXY in the former case. The fundamental mode of (3) with n = 0 corresponds to the spiral-
ing elliptic solitons discussed in our recent work9. The optical power and the OAM can be obtained by inserting 
Eq. (3) into the following two formulas P0 = ∫∫ |ψ(x′, y′)|2dx′dy′ and ψ= −ψ ψ∂

∂
∂
∂∬ ⁎M x y dxdyIm ( )
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three lowest orders, as examples, the optical power and the OAM have been obtained inTable 1. And the similar 
procedure can be employed for other higher-order modes. As can be seen from Table 1, for the fundamental 
mode of the spiraling elliptic Hermite-Gaussian beams, the OAM results from the cross term ΘXY on its phase, 
but for other high-order mode both the cross term ΘXY and the Hermite polynomials Hn(X + iY) contribute to 
the OAM.

Variational solution
Based on the variational approach23, Eq. (2) can be expressed as an Euler-Lagrange equation corresponding to 
the variational principle
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with the Lagrangian density given by ref. 24
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Figure 2. Evolution of the first-order mode of the spiraling elliptic Hermite-Gaussian solitons. Profiles are 
plotted at different propagation distances: (a) z = 0, (b) z = T/4, (c) z = T/2, (d) z = 3T/4, and (e) z = T(=2.78). 
The beam width wx and wy in the x and y directions are plotted in (f), where solid black lines and dashed color 
lines denote the variational solution and numerical simulations respectively. The parameters are b = 1.2, c = 0.8, 
and wm = 20.
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Inserting the trial solution of spiraling elliptic Hermite-Gaussian beam (3) into the Lagrangian 
∫ ∫=
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where the primes indicate derivatives with respect to the variable z. Thus it can be found that the power and the 
OAM of the system are conservative. In the following analytical calculations, we take the first-order mode of 
spiraling elliptic Hermite-Gaussian beam (3) as an example. And the similar calculations can be applied to other 
higher modes. The angular velocity can be obtained as
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Figure 3. Evolution of the second-order mode of the spiraling elliptic Hermite-Gaussian solitons.
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which reveals that the angular velocity ω is closely related to the OAM. Substituting the trial solution (3) into the 
Hamiltonian density (6) and carrying out integration ∫ ∫=

−∞

∞

−∞

∞H hdxdy, we obtain the Hamiltonian of the 
system, which is the function of b, c, B, Q and Θ. As did in our previous work9, by the substitution of Eqs (8), (9) 
and (10), the Hamiltonian is expressed by H(b′, c′, b.c), which is the summation of the generalized kinetic energy 
T and the generalized potential energy V. The generalized kinetic energy T is a quadratic function of the general-
ized velocity b′ and c′. If we assume that T = 0, i.e. b′ = c′ = 0, we can obtain the potential energy V = H(b, c) as 
follows
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Solitons can be found as the extrema of the potential V(b, c). By setting ∂V/∂b = 0 and ∂V/∂c = 0, we can 
obtain the critical power and the critical OAM
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respectively, and Mc = Pcσc, where ρ = b/c represents the ellipticity of the elliptic beam. Substitution of the critical 
power (13) and the critical OAM (14) into the expression of the angular velocity (11) yields
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Figure 4. Evolution of the third-order mode of the spiraling elliptic Hermite-Gaussian solitons.
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which shows that the spiraling elliptic Hermite-Gaussian solitons make constant-angular rotations. Then the 
period of rotation can be obtained as T = 2πb2c2/(b2 + c2).

For high-order mode of the spiraling elliptic Hermite-Gaussian beams, the critical power and the critical 
OAM can be calculated by the same process. It is found that the critical power and the critical angular velocity are 
the same as the counterpart of the ground mode, i.e. Eqs (13) and (15) respectively. While, it is different for the 
other critical parameters, for example, when wm = 20, b = 1.2, c = 0.8, we obtain σc = 2.76925 and Θc = 0.434028 
for the second-order mode of the spiraling elliptic Hermite-Gaussian solitons.

Numerical simulation
Here we take the Gaussian function as the spatial nonlocal response function25, 26, i.e.
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then the parameter γ in the SMM (2) is obtained γ π= w1/( )m
4 . Although the Gaussian response function is phe-

nomenological, which does not exist in any physical system, it can be employed to obtain the analytic solution of 
the NNLSE (1). In addition, for any reasonable response function the physical properties do not depend strongly 
on its shape. The generic properties of different types of response functions have been studied by Wyller et al. in 
terms of modulational instability27.

The method of numerical simulation used here is the split-step Fourier method28 using the variational solution 
(3) as the input. The evolution of the first-order mode of the spiraling elliptic Hermite-Gaussian solitons is shown 
in Fig. 2, where the parameters are b = 1.2, c = 0.8, and wm = 20. The second-order-moment beam widths based 
o n  t h e  v a r i a t i o n a l  s o l u t i o n  a r e  o b t a i n e d  a s  ω ω= +− − −

w b z c z[(2/3)( cos sin )]x c c
2 2 2 2 1/2

 a n d 
ω ω= +− − −

w c z b z[(2/3)( cos sin )]y c c
2 2 2 2 1/2 along the x and y directions, which agrees with the numerical simu-

lations very well as shown in Fig. 2(f). It reveals that the variational solution, including any order spiraling elliptic 
Hermite-Gaussian solitons is valid for the SNN media, as shown in Figs 3 and 4.

To address the stability of the spiraling elliptic Hermite-Gaussian solitons, we performed numerical simu-
lations of Eq. (2) by employing the initial condition as [1 + εf(x, y)]ψ(x, y), where ψ(x, y), f(x, y) are spiraling 
elliptic Hermite-Gaussian solitons and the random function with maximum amplitude less than 1, and ε denotes 
the perturbation parameter. Figure 5 presents the nonlinear propagations of the first-order mode of the spiraling 
elliptic Hermite-Gaussian solitons with 20% random noises, where we can find the profiles remain invariant up 
to z = 20. Other high-order modes of the spiraling elliptic Hermite-Gaussian solitons exhibit similar dynamics 
with added random noises. Of course, the solitons can propagate much farther with random noises than we did 
in the simulation, which in fact shows the spiraling elliptic Hermite-Gaussian solitons are stable in the nonlocal 
nonlinear media.

Conclusion
We have introduced a kind of spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media, which 
carries the the orbital angular momentum and has the elliptic profile with n holes aligning along the direction of 
the principal axis of ellipse for the n–th order mode. Based on the variational approach, we obtained the approx-
imate analytical solutions, which agree with the numerical simulations well. It was found that the critical power 
and the critical angular velocity are the same as the counterpart of the ground mode, irrespective of the order n.

Figure 5. First-order mode of the spiraling elliptic Hermite-Gaussian solitons [i.e. the soliton profiles in 
Fig. 1(b)] with 20% random noises (a), and the profile at the propagation distance z = 20 (b).
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