Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Piperazinediium dioxamate

S. Murugavel, ${ }^{\text {a }}$ R. Selvakumar, ${ }^{\text {b }}$ S. Govindarajan, ${ }^{\text {b }}$ P. S. Kannan $^{\mathrm{c}}$ and A. SubbiahPandi ${ }^{\mathbf{d}^{*}}$
${ }^{\text {a }}$ Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Bharathiar University, Coimbatore 641 046, India, ${ }^{\text {c }}$ Department of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, and ${ }^{\text {d Department of Physics, }}$ Presidency College (Autonomous), Chennai 600 005, India
Correspondence e-mail: a_spandian@yahoo.com
Received 16 March 2009; accepted 2 April 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.041 ; w R$ factor $=0.119$; data-to-parameter ratio $=31.8$.

The title compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{-}$, contains a network of doubly protanated piperazinium cations (lying about centres of inversion) and dioxamate anions. The piperazinium dication adopts a typical chair conformation. The crystal structure is stabilized by cation-to-anion N $\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related structures, see: Büyükgüngör \& Odabaşoğlu (2008); Wilkinson \& Harrison (2007). For biological applications of piperazines, see: Berkheij et al. (2005); Humle \& Cherrier (1999). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006). For the use of piperazine derivatives as buffers, see: Good et al. (1966). For the piperazine nucleus and its ability to bind to multiple receptors, see: Dinsmore \& Beshore (2002).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{-}$
$V=564.35(6) \AA^{3}$
$Z=2$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$b=6.7681$ (4) \AA
$T=293 \mathrm{~K}$
$0.24 \times 0.22 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$
9313 measured reflections 2606 independent reflections 2197 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
3 restraints
$w R\left(F^{2}\right)=0.119$
H -atom parameters constrained
$S=1.09$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{-3}$
2606 reflections
82 parameters
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.24	$3.0232(9)$	152
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 3^{i \mathrm{i}}$	0.86	2.07	$2.8622(8)$	153
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {iii }}$	0.90	2.37	$3.0589(8)$	133
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {iii }}$	0.90	1.94	$2.7475(9)$	149
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {iv }}$	0.90	1.87	$2.7509(9)$	164

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y,-z$; (iii) $x, y+1, z$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

SM and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2097).

References

Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. \& van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.
Bharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. \& Narayanan, V. (2006). Polyhedron, 25, 2859-2868.
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.
Büyükgüngör, O. \& Odabaşoğlu, M. (2008). Acta Cryst. E64, o808.
Dinsmore, C. J. \& Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. \& Singh, R. M. (1966). Biochemistry, 5, 467-477.

Humle, C. \& Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wilkinson, H. S. \& Harrison, W. T. A. (2007). Acta Cryst. E63, m26-m28.

supplementary materials

Piperazinediium dioxamate

S. Murugavel, R. Selvakumar, S. Govindarajan, P. S. Kannan and A. SubbiahPandi

Comment

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore et al., 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle \& Cherrier, 1999). Also Piperazine derivatives are widely used as buffers (Good et al., 1966), and can act as complexing reagents with metal ions (Bharathi et al., 2006). Encouraged by the above information, we report the crystal structure of the title compound, piperazinium bis (dioxamate) (I) (Fig. 1).

In the crystal structure of (I), the piperazinium dication lies on a centre of inversion and adopts a typical chair conformation. The bond lengths in (I) are normal and comparable with the corresponding values observed in the related structure (Wilkinson \& Harrison, 2007). The dihedral angle between the piperazinium dication and oxamate anion is 9.54 (3) ${ }^{\circ}$. The crystal structure (Fig. 2) is stabilized by cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the $\mathrm{N}-\mathrm{H}$ atoms of the piperazinium ring and the O atoms of the oxamate (Fig. 2 and Table 1; symmetry code as in Fig. 2). The crystal packing is further stabilized by anion-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the $\mathrm{N}-\mathrm{H}$ atoms and the O atoms from the neighbouring oxamate anions (Fig. 2 and Table 1; symmetry code as in Fig. 2). Thus, the symmetry-related molecules are cross linked by these hydrogen bonds to generate a three-dimensional network.

Experimental

Piperazinium bis(dioxamate) was prepared by adding aqueous solution (15 ml) of piperazine $(0.194 \mathrm{~g} ; 0.001 \mathrm{~mol})$ to the solution $(15 \mathrm{ml})$ of oxamic acid $(0.089 \mathrm{~g} ; 0.001 \mathrm{~mol})$. The resulting clear solution was concentrated over water-bath to half the volume and kept for crystallization at room temperature. The transparent single crystals suitable for x-ray diffraction obtained after two days were filtered off, washed with ethanol and air dried.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.86-0.90 \AA$ and $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.

supplementary materials

Fig. 2. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dotted lines) in the title compound.[Symmetry code: (i) $\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}$; (iii) $\mathrm{x}, \mathrm{y}+1, \mathrm{z}$; (iv) $-\mathrm{x}, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2(\mathrm{v})-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1 /$ 2 ; (vi) $-\mathrm{x}, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; (vii) $\mathrm{x}, \mathrm{y}-1, \mathrm{z}$.]

Piperazinediium dioxamate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{-}$
$M_{r}=264.25$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=6.4323$ (4) \AA
$b=6.7681$ (4) \AA
$c=13.0032(7) \AA$
$\beta=94.488(2)^{\circ}$
$V=564.35(6) \AA^{3}$
$Z=2$
$F_{000}=280$
$D_{\mathrm{x}}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2743 reflections
$\theta=3.1-36.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.24 \times 0.22 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10.0 pixels mm^{-1}
$T=293 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$
2606 independent reflections
2197 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=36.3^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 10$
$l=-20 \rightarrow 9$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.119$
$S=1.09$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0667 P)^{2}+0.0606 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

2606 reflections
82 parameters
3 restraints
$\Delta \rho_{\max }=0.36$ e \AA^{-3}
$\Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N2	$0.08666(10)$	$0.95960(10)$	$0.40409(4)$	$0.02372(13)$
H2A	0.1752	0.9900	0.3562	0.028^{*}
H2B	0.0161	0.8502	0.3830	0.028^{*}
C3	$-0.06294(12)$	$1.12524(12)$	$0.41301(5)$	$0.02590(15)$
H3A	-0.1436	1.1441	0.3475	0.031^{*}
H3B	0.0132	1.2462	0.4297	0.031^{*}
C4	$0.20790(11)$	$0.91851(12)$	$0.50401(6)$	$0.02572(15)$
H4A	0.2938	1.0320	0.5240	0.031^{*}
H4B	0.2992	0.8064	0.4962	0.031^{*}
O1	$0.13426(8)$	$0.15896(9)$	$0.19612(4)$	$0.02683(13)$
O2	$0.44704(10)$	$-0.03929(12)$	$0.30376(4)$	$0.03431(16)$
O3	$0.28309(12)$	$0.09059(12)$	$0.05073(4)$	$0.03678(17)$
N1	$0.61883(11)$	$-0.06196(13)$	$0.15969(5)$	$0.03142(17)$
H1A	0.7247	-0.1186	0.1917	0.038^{*}
H1B	0.6182	-0.0387	0.0946	0.038^{*}
C1	$0.27471(10)$	$0.08954(10)$	$0.14582(4)$	$0.02114(13)$
C2	$0.45721(11)$	$-0.01070(11)$	$0.21043(5)$	$0.02200(14)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 2	$0.0244(3)$	$0.0285(3)$	$0.0190(2)$	$-0.0053(2)$	$0.00670(19)$	$-0.0034(2)$
C 3	$0.0285(3)$	$0.0280(3)$	$0.0214(3)$	$-0.0015(3)$	$0.0027(2)$	$0.0021(2)$
C 4	$0.0208(3)$	$0.0312(4)$	$0.0254(3)$	$0.0001(2)$	$0.0034(2)$	$-0.0022(2)$
O1	$0.0230(2)$	$0.0337(3)$	$0.0242(2)$	$0.0066(2)$	$0.00426(18)$	$0.00091(19)$
O2	$0.0304(3)$	$0.0553(4)$	$0.0179(2)$	$0.0129(3)$	$0.0059(2)$	$0.0084(2)$
O3	$0.0432(4)$	$0.0502(4)$	$0.0168(2)$	$0.0188(3)$	$0.0017(2)$	$0.0017(2)$

N1	$0.0291(3)$	$0.0460(4)$	$0.0200(2)$	$0.0156(3)$	$0.0067(2)$	$0.0051(2)$
C1	$0.0232(3)$	$0.0222(3)$	$0.0181(2)$	$0.0024(2)$	$0.0014(2)$	$0.0006(2)$
C2	$0.0225(3)$	$0.0261(3)$	$0.0178(3)$	$0.0038(2)$	$0.0039(2)$	$0.0019(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

N2-C3	1.4879 (11)
N2-C4	1.4883 (10)
N2-H2A	0.9000
N2-H2B	0.9000
$\mathrm{C} 3-\mathrm{C} 4^{\text {i }}$	1.5095 (10)
C3-H3A	0.9700
C3-H3B	0.9700
$\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	1.5095 (10)
C4-H4A	0.9700
C3-N2-C4	111.75 (6)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
H2A-N2-H2B	107.9
N2-C3-C4 ${ }^{\text {i }}$	110.33 (6)
N2-C3-H3A	109.6
$\mathrm{C} 4{ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6
N2-C3-H3B	109.6
$\mathrm{C} 4{ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.6
H3A-C3-H3B	108.1
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	110.48 (6)
N2-C4-H4A	109.6
C3i ${ }^{\text {- }}$ 4- 44 A	109.6
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4^{\text {i }}$	-56.67 (9)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	56.75 (9)
$\mathrm{O} 3-\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 1$	0.00 (4)
$\mathrm{O} 3-\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	0.00 (4)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-170.89 (8)

Symmetry codes: (i) $-x,-y+2,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.24	$3.0232(9)$	152
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots 3^{\mathrm{iii}}$	0.86	2.07	$2.8622(8)$	153
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.90	2.37	$3.0589(8)$	133
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.90	1.94	$2.7475(9)$	149
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{V}}$	0.90	1.87	$2.7509(9)$	164

Symmetry codes: (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $-x+1,-y,-z$; (iv) $x, y+1, z$; (v) $-x, y+1 / 2,-z+1 / 2$.

sup-4

Fig. 1

supplementary materials

Fig. 2

