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The brain is composed of diverse neuronal and non-neuronal cell types with complex
regional connectivity patterns that create the anatomical infrastructure underlying
cognition. Remarkable advances in neuroscience techniques enable labeling and
imaging of these individual cell types and their interactions throughout intact mammalian
brains at a cellular resolution allowing neuroscientists to examine microscopic details
in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with
many technical and analytical challenges with a need for high-level data analysis. Here
we review key technical considerations for implementing a brain mapping pipeline
using the mouse brain as a primary model system. Specifically, we provide practical
details for choosing methods including cell type specific labeling, sample preparation
(e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g.,
image registration to standard atlases). We also highlight the need to develop better
3D atlases with standardized anatomical labels and nomenclature across species and
developmental time points to extend the mapping to other species including humans and
to facilitate data sharing, confederation, and integrative analysis. In summary, this review
provides key elements and currently available resources to consider while developing
and implementing high-resolution mapping methods.

Keywords: brain mapping, cell type, serial two-photon tomography, light sheet fluorescence microscopy, data
confederation, digital atlas, image analysis, image registration

INTRODUCTION

Macro-circuits across the brain integrate information from regional micro-circuits to
process external stimuli, evaluate internal state, and generate behavior (e.g., motor action).
Each micro-circuit contains a diverse array of neuronal and non-neuronal cell types with
region- specific compositions. For example, glutamatergic (excitatory) and GABAergic
(inhibitory) neurons are the two major neocortical neuron types with a respective
ratio of 4:1 in the mouse brain (Isaacson and Scanziani, 2011; Tremblay et al., 2016).
Moreover, recent single cell transcriptomic approaches combined with other physiological
analyses unveiled that more than 100 different neuronal cell types exist in the mouse
isocortex (neocortex) with distinct connectivity, physiology, and molecular characteristics
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(Belgard et al., 2011; Zeng et al., 2012; Fuzik et al., 2016;
Tasic et al., 2016, 2018; Tremblay et al., 2016; Zeng and Sanes,
2017; Lim et al., 2018; Saunders et al., 2018; Zeisel et al., 2018;
Kanari et al., 2019; Winnubst et al., 2019; Gouwens et al., 2020;
Ortiz et al., 2020; Scala et al., 2020; Yao et al., 2021). Notably,
different functional regions within the neocortex such as the
primary motor-sensory and association cortices showed different
densities of excitatory and inhibitory neurons as well as variation
in their cerebrovascular networks (Kim et al., 2017; Yun et al.,
2019; Wu et al., 2021). Investigation of long–range connectivity
within the neocortex and closely connected brain regions also
identified modular and integrative circuits across brain regions
(Oh et al., 2014; Zingg et al., 2014; Hintiryan et al., 2016; Harris
et al., 2019; Foster et al., 2020). Unveiling the spatial distribution
of cell types throughout the cortex provides useful information
for inferring how the cortex and its subdivisions may function.
Likewise, comprehensive knowledge of cell type distribution
throughout the whole brain is critical to fully understanding the
dynamic intricacies and exceptional breadth of brain function.

To visualize and quantify the spatial distribution of cell
types in the entire brain, high-resolution imaging across
the whole 3D volume is necessary. Microscopy techniques
can provide up to submicron resolution details, but in its
original design, microscopy does not lend itself to volumetric
imaging. Conversely, many neuroimaging tools such as magnetic
resonance imaging (MRI) can provide volumetric imaging, but
they don’t offer sufficient resolution to image individual cells
and lack the ability to distinguish individual cell types. Mesoscale
imaging bridges these two scales by combining high-resolution
3D imaging and computational analysis to allow visualization
and quantification of axons, cell nuclei, processes, and even
synapses in intact biological samples (Odgaard et al., 1990; Dodt
et al., 2007; Mayerich et al., 2008; Li et al., 2010; Zheng et al., 2019;
Ueda et al., 2020a,b). This technical breakthrough has ushered
in a new era of neuroanatomy providing new opportunities
to advance our knowledge of the principles governing nervous
system organization and function.

Although 3D cell type mapping is highly useful, it comes
with technical and analytical challenges that require a systematic
workflow (Figure 1). Thus, the goal of this review is to provide
insight into how scientists can acquire and utilize different forms
of brain mapping to precisely examine their biological questions.
Many previous works have focused on the mouse brain due to
the variety of available transgenic animals, the compact size of
the mouse brain, and the availability of high-quality 3D atlases.
However, similar mapping approaches are also possible in other
species such as the non-human primate (NHP) as well as human
brains (Woodward et al., 2020; Rapan et al., 2021; Shapson-Coe
et al., 2021).

1. CELL TYPE SPECIFIC LABELING

In order to assess the distribution of cell types across the
brain, genetic or histological methods can be used to distinguish
specific cells from background information (Figure 2). Genetic
methods leverage cell type specific promoters to drive reporter
expression directly or indirectly through transgenic animals, viral

administration, or a combination of both (Madisen et al., 2010;
Josh Huang and Zeng, 2013; Daigle et al., 2018; Newmaster
et al., 2020). Histological labeling is achieved through whole brain
3D immunohistochemistry with cell type specific antibodies and
various tissue clearing methods (Renier et al., 2014; Yun et al.,
2019; Kirst et al., 2020; Ueda et al., 2020b). Each labeling method
has both benefits and limitations, making it important to choose
a method that best suits the proposed experiment.

1.1. Transgenic Animals
Genetic labeling with transgenic animals provides a way to
examine different cell populations across the whole brain without
immunohistochemistry (Luo et al., 2008; Taniguchi et al., 2011;
Josh Huang and Zeng, 2013; Figure 2A). One of the most popular
approaches is the Cre recombinase system. In this system, Cre
recombinase is expressed from a knock-in locus that is driven
by a cell type specific promoter (Gong et al., 2007; Madisen
et al., 2010; Harris et al., 2014). The knock-in approach labels
target cells with high accuracy and can be combined with
various conditional reporter animals to express different reporter
proteins making the Cre system highly flexible (Madisen et al.,
2010; Taniguchi et al., 2011; Harris et al., 2014; Madisen et al.,
2015; Daigle et al., 2018; Figure 2A). Reporter variants include
several different colors (e.g., Ai14 with tdTomato, Ai75 with
nuclear tdTomato, or Ai140 with an extremely high-level of
GFP), Ca++ reporters (e.g., Ai96 with gCaMP6 s), sparse labeling
models (e.g., MORF), and tools to manipulate activity (e.g., CAG-
LSL-Gq-DREADD, Ai32 with channelrhodopsin 2; Gong et al.,
2007; Taniguchi et al., 2011; Madisen et al., 2012, 2015; Harris
et al., 2014; Zhu et al., 2016; Veldman et al., 2020).

To examine the overall distribution of target cells throughout
the whole brain, a Cre driver animal can be bred with a
conditional reporter animal which leads to offspring with the
desired cell type labeled (Harris et al., 2014; Figure 2B). If the
goal is to examine a specific cell type in an anatomically defined
region, intracerebral injection of a virus carrying a reporter or
Cre recombinase will provide spatial specificity in addition to cell
type specificity (see the next section for more details; Josh Huang
and Zeng, 2013; He et al., 2016; Jeong et al., 2016; Son et al.,
2020; Figure 2B). Flippase (flp), another popular recombinase,
can be combined with Cre to further identify subtypes within
a cell type population (Farago et al., 2006; Miyoshi et al., 2010;
Taniguchi et al., 2011; Josh Huang and Zeng, 2013; He et al., 2016;
Graybuck et al., 2020). Inducible recombinase (e.g., tamoxifen
inducible CreERT) provides temporally restricted recombinase
activity which is useful in the study of cell type development from
a defined time point (Taniguchi et al., 2011; Wu et al., 2021). This
type of recombinase can also be used to achieve sparse labeling by
titrating recombinase activating drugs (e.g., tamoxifen). Sparse
labeling is particularly useful for dense cell types and single cell
tracing experiments. Another way to achieve sparse labeling is
through the MORF mouse which was designed to stochastically
label 1–3% of Cre expressing cells (Veldman et al., 2020).

One caveat of Cre recombinase-based labeling is its lack
of temporal resolution. Animals derived from the pairing of
a conditional reporter mouse and a Cre expressing mouse
will express a fluorescent reporter after a single Cre activation
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FIGURE 1 | Whole brain cell type mapping pipeline. (A) Perfusion and fixation of the brain stabilize target signals. Fixed brains labeled with fluorescent signals can
be further processed to lower background using tissue clearing. (B) Tiled images are acquired throughout the entire brain using whole brain 3D microscopy. (C) The
resulting images are stitched to reconstruct the 3D volume of the brain. (D) Computational algorithms detect target signals automatically throughout the brain. (E,F)
An individual brain (gray) is registered to an annotated standardized atlas (blue). (E) before and (F) after the registration. (G) Detected signals (purple/yellow) are
mapped onto the atlas that allows either region of interest (ROI) or evenly spaced voxel-based analysis throughout the whole brain.

even when the gene of interest and Cre are no longer being
expressed. Therefore, these animals may not accurately represent
temporal patterns of gene expression (Song and Palmiter, 2018;
Newmaster et al., 2020). This issue can be circumvented with
the use of transgenic animals with direct reporter expression
under specific cell type specific promoters. Regardless of reporter
mice, it is important to validate the expression of reporter
genes against the gene of choice using immunohistochemistry or
mRNA in situ prior to mapping effort as transgenic animals may
lead to misrepresent or over represent target cell type expression
(Zoghbi, 2003; Gerfen et al., 2013; Newmaster et al., 2020).

More detailed information about different recombinase based
cell type specific drivers and conditional reporter animals,
reference the characterization databases can be found in Allen
Institute for Brain Science1, the GENSAT project2, and the NIH
Neuroscience Blueprint Cre Driver Network3. We also refer to
recent review articles summarizing a different set of genetic tools

1https://connectivity.brain-map.org/transgenic
2http://www.gensat.org
3https://neuroscienceblueprint.nih.gov/resources-tools/blueprint-resources-
tools-library/cre-driver-network

to label specific cell types (Kim and Dymecki, 2009; Madisen
et al., 2010; Taniguchi et al., 2011; Gerfen et al., 2013; Josh Huang
and Zeng, 2013; Harris et al., 2014; McLellan et al., 2017; Daigle
et al., 2018; Debbache et al., 2018; Yook et al., 2021).

1.2. Viral Tools
Virus-mediated labeling has been critical to examine cell type
distribution in anatomically defined areas and cell-type specific
connectivity throughout the brain (Oh et al., 2014; He et al.,
2016; Jeong et al., 2016; Harris et al., 2019; Figures 2B,C). To
assess anterograde connectivity, adeno-associated virus (AAV)
with a recombinase-dependent reporter can be injected into the
target area of a cell-type specific Cre and/or Flp driver animal
(Figure 2C). This approach has been widely used to establish
wiring diagrams of different cell types in the mouse brain (Oh
et al., 2014; Gerfen et al., 2018; Harris et al., 2019; Winnubst
et al., 2019; Son et al., 2020). The main caveat to this approach
is that only cellular processes (e.g., axons and axon terminals) are
visualized and one cannot determine which cells in the targeted
regions are receiving synaptic input. To address this, trans-
synaptic anterograde tracing with different serotypes of AAV and
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FIGURE 2 | Cell type labeling and tissue clearing methods. (A) Genetic labeling methods include either reporter genes (e.g., GFP) directedly driven by the cell type
specific promoter, or recombinase systems driven by a combination of cell type specific recombinase (e.g., Cre) expression and conditional (e.g., LoxP-Stop-LoxP)
reporter gene expression (e.g., GFP). (B) Labeling can be achieved by the breeding reporter and driver animals and/or combining them with viral tools injected either
directly into a target brain location or peripheral areas (e.g., tail vein). (C) Different configurations of viral tools provide ways to label specific cell compartments and
their connection with other cells. (D) 3D immunohistochemistry with tissue clearing can be achieved by either aqueous or non-aqueous methods, both of which
affect overall tissue volume.
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herpes simplex virus is under development, but the robustness of
these viruses in mono trans-synaptic anterograde tracing remains
to be established (Lo and Anderson, 2011; Zingg et al., 2017;
Cembrowski et al., 2018; Su et al., 2020; Zingg et al., 2020; Yook
et al., 2021; Figure 2C). For retrograde tracing, viruses such
as retro AAV or Canine adenovirus type 2 (CAV-2) can be
injected into a region to be taken up by presynaptic terminals and
transported to the cell nucleus for reporter expression (Junyent
and Kremer, 2015; Tervo et al., 2016; Li et al., 2018; Figure 2C).
For mono-synaptic retrograde tracing, rabies viruses coupled
with helper viruses that restrict retrograde jumping to one
neuron have been well-established and widely used (Callaway
and Luo, 2015; Schwarz et al., 2015; Pomeranz et al., 2017; Son
et al., 2020; Huang et al., 2021; Figure 2C).

Virus-mediated labeling has become even more flexible with
the invention of AAV viruses packaged with plasmids that
contain enhancers for cell type specific expression of reporter
genes (Chan et al., 2017; Mich et al., 2021). When combined
with blood-brain barrier penetrating viruses (e.g., AAVphp.eb),
peripheral injection of this viral tool can achieve cell type specific
labeling in any animal opening new paths to cell type mapping
in non-traditional model animals and animal models of disease
(Chan et al., 2017; Mich et al., 2021; Figure 2B). With so much
flexibility, virus-mediated cell type labeling is a versatile tool that
simply requires a little creativity to effectively use. We refer to
recent excellent reviews that summarize the recent development
and application of viral tools for more details and guidance on
experimental design (Callaway and Luo, 2015; Bedbrook et al.,
2018; Haery et al., 2019; Saleeba et al., 2019; Suzuki et al., 2020;
Cong et al., 2020; Lanciego and Wouterlood, 2020; Nectow and
Nestler, 2020).

1.3. 3D Immunolabeling With Tissue
Clearing
Remarkable advances in tissue clearing and 3D immunolabeling
make it possible to label target cells with specific antibodies
in intact biological samples. This enables scientists to bypass
complex breeding schemes and care for excessively large colonies
accelerating new discoveries and extending brain mapping
technology to new species including humans (Lai et al., 2018;
Kim et al., 2021). Here, we provide a brief summary of a
few widely used clearing and chemical labeling methods to
examine cell type distribution in the whole brain. Tissue clearing
involves delipidation (first part of tissue clearing) and index
matching (second part of the clearing) with an optional and
often necessary immunolabeling step (Ueda et al., 2020a,b;
Figure 2D). Tissue clearing can be aqueous or non-aqueous
(Jensen and Berg, 2017; Qi et al., 2019; Yun et al., 2019; Ueda
et al., 2020a,b; Figure 2D). Furthermore, full brain clearing
and 3D immunolabeling can be achieved through active or
passive methods. Active methods (e.g., CLARITY, SHIELD)
use electrophoresis and chemical engineering to increase the
homogeneity of clearing and immunolabeling (Chung et al.,
2013; Chung and Deisseroth, 2013; Yun et al., 2019; Ueda et al.,
2020a,b). However, the procedure is costly due to the required
equipment and often only allows for the processing of small
batches per round. Passive clearing (e.g., iDISCO) can take longer

especially with additional immunolabeling, but it is less expensive
and a large number of samples can be processed at the same time
(Renier et al., 2014; Qi et al., 2019).

Different tissue clearing methods can introduce varying
degrees of tissue deformation (Wan et al., 2018; Ueda et al.,
2020a,b; Weiss et al., 2021). Aqueous methods tend to bloat
the tissue which can introduce tearing of delicate areas and
connected structures such as axons and vasculature (Chung
et al., 2013; Wan et al., 2018). However, aqueous clearing
methods can preserve native fluorescence well (Chung et al.,
2013; Wan et al., 2018). In contrast, non-aqueous methods
use tissue dehydration to finalize the clearing process which
often causes tissue shrinkage (Wan et al., 2018). Moreover,
non-aqueous clearing methods tend to quench endogenous
fluorescent proteins (Renier et al., 2014; Qi et al., 2019). Recently
developed non-aqueous methods such as FDISCO improve
the preservation of endogenous fluorescence, but the native
signals begin to fade after a few days, limiting the window of
opportunity for sample imaging (Qi et al., 2019). This problem
can be overcome by performing immunolabeling for endogenous
reporter proteins with a more stable secondary antibody (Renier
et al., 2014). An additional benefit of sample dehydration is that
the tissue becomes plasticized, which makes handling delicate
samples (e.g., early developing brains) easier and tissue shrinkage
can facilitate imaging of larger tissue samples (Wan et al., 2018).

Finally, it is important to consider the experimental needs
and location of the structure that is being targeted. Cell counting
is best done with signals restricted to the cell nucleus or cell
body. On the other hand, tracing and visualization of subcellular
structures such as spines will require labeling that fills the entire
cell or localizes to the cell membrane. Visualizing subcellular
structures will also benefit from expansion seen in aqueous
clearing methods (Matryba et al., 2019). In short, no one method
will work for all antibodies or probes due to different biophysical
properties of proteins and mRNA, so the appropriate literature
searches and initial pilot testing should be done before choosing a
particular method (Weiss et al., 2021). For an in-depth discussion
of 3D tissue labeling and clearing please see: Molbay et al. (2021),
Ueda et al. (2020a,b), and Weiss et al. (2021).

2. IMAGING

Following sample labeling and preparation, 3D imaging with
sufficient resolution to examine individual cells and their
processes in intact biological samples can be performed
(Figure 3). The most basic yet labor-intensive imaging method
is using serial sectioning and tiled microscopic imaging of 2D
sections followed by 3D reconstruction (Zingg et al., 2014;
Hintiryan et al., 2016; Zingg et al., 2018; Cizeron et al., 2020;
Benavidez et al., 2021; Figure 3A). Though this method is readily
available to most labs, it is difficult to scale up. High-speed
slide scanners such as the Nanozoomer (Hamamatsu) can make
this method more streamlined and have even been used to
achieve brain mapping in many different species including the
marmoset (Zheng et al., 2014; Lin et al., 2019; Woodward
et al., 2020). However, histological sectioning and mounting
on microscopic slides can also present a challenge as these
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procedures introduce unexpected volume distortion, making 3D
reconstruction challenging. Here, we will review two commonly
used automated 3D high-resolution imaging methods that ensure
precise 3D reconstruction; block-face imaging and selective
plane illumination microscopy (SPIM) imaging. Each system has
unique advantages and disadvantages (Figure 3). Labeling type,
structure of interest, and sample properties are the main dictators
of which imaging modality to choose.

2.1. Block-Face Imaging
Block-face imaging utilizes tiled microscopic images of the
surface of an intact sample block followed by serial sectioning
(Ragan et al., 2012; Zheng et al., 2013, 2019; Amato et al.,
2016; Economo et al., 2016; Figure 3B). Serial two photon
tomography (STPT) performs tiled block-face imaging with a
multiphoton microscope and high fidelity vibratome with typical
sectioning at either 50 µm or 100 µm thick (Oh et al., 2014;
Kim et al., 2017; Newmaster et al., 2020). Finer z-resolution
imaging can be acquired by adding optical sectioning within
each slice (Wu et al., 2021). STPT is a flexible modality that
has been used to map neural connectivity, cell-type density,
cerebrovasculature, and dendritic architecture (Tsai et al., 2009;
Oh et al., 2014; Zapiec and Mombaerts, 2015; Kim et al., 2017;
Newmaster et al., 2020; Wu et al., 2021). However, it is important
to note that STPT requires endogenous fluorescence expression
of target signals. Therefore, STPT mapping heavily relies on
transgenic reporter animals which can require complex breeding
schemes (Amato et al., 2016; McLellan et al., 2017). However,
the recent developments in viral tools such as AAVphp.eb and
enhancer-based viral tools enable the expression of fluorescent
proteins in non-transgenic animals discussed above, open new
possibilities for expanding the implementation of STPT brain
mapping (Chan et al., 2017; Mich et al., 2021). One distinct
advantage of STPT is simple sample preparation (Figure 3B).
Fixed brains can be used without further tissue clearing. Another
advantage to this imaging method is that the working distance
of the objective lens does not dictate the image depth of the
system because serial sectioning removes the sample surface as
imaging progresses through the volume. Therefore, STPT can be
employed to examine larger samples such as the marmoset and
human brain (Okano and Mitra, 2015; Abe et al., 2017; Lin et al.,
2019; Mancini et al., 2020).

Knife-Edge Scanning Microscopy and Micro-optical
sectioning tomography (MOST) are other variations of
block-face imaging which were originally developed with
light microscopy to achieve high-resolution 3D imaging with
ultrathin sectioning (less than 1 µm; Mayerich et al., 2008; Zheng
et al., 2013, 2019). Fluorescence MOST (fMOST) combines
fluorescence microscopy with MOST to take advantage of cell
type specific labeling. This technology images the sample on the
edge of a diamond blade as sectioning occurs (Zheng et al., 2013,
2019; Figure 3B). To achieve thin sections, brain samples are
embedded in resin or hard plastic. Thin sectioning along with
a high numerical aperture oil lens improves imaging resolution
allowing structures such as individual axons and dendritic
spines to be captured for highly accurate axon tracing and
neuron reconstruction experiments (Zheng et al., 2013, 2019).

Moreover, a recently developed line-illumination modulation
technique further improves signal-to-noise ratio and acquisition
speed (Zhong et al., 2021). The major drawbacks of this system
are that it is not commercially available and imaging at such a
high-resolution often generates more than 10 TB of data for one
mouse brain requiring a specialized data analysis infrastructure.

2.2. SPIM
SPIM or light-sheet imaging generates tiled images by
illuminating a plane of optically cleared tissue and collecting
signals in the orthogonal direction (Corsetti et al., 2019;
Figure 3C). Light-sheet imaging was originally developed
over 100 years ago, yet it did not become popular until the
recent advances in tissue clearing (Corsetti et al., 2019; Ueda
et al., 2020a,b). The illumination sheet of light is generated via
transverse facing lenses and the signal is then collected from
a second objective lens which can have many positions but is
typically in the orthogonal direction (Corsetti et al., 2019). To
obtain full brain data, the entire sample is moved through the
imaging field with a motorized stage which triggers a CMOS
camera for image collection (Ueda et al., 2020a). Because there
is no need to section the sample and the field of view (FOV) is
large, SPIM has dramatically reduced imaging time compared to
STPT and is ideal for delicate samples (e.g., developing embryos).
SPIM also has the added benefit of being intrinsically paired
with 3D immunolabeling and tissue clearing methods which can
be easily applied to different biological samples with any genetic
labeling strategy (Roostalu et al., 2019; Gómez et al., 2021).

Nonetheless, SPIM also has a number of complicated
drawbacks stemming from tissue preparation and the physical
properties of the illumination system (Wan et al., 2018; Xu
et al., 2019; Ueda et al., 2020a,b; Molbay et al., 2021; Weiss
et al., 2021). SPIM requires samples to be optically clear which
is time-consuming and often introduces tissue distortion (Dodt
et al., 2007; Renier et al., 2014; Jensen and Berg, 2017; Wan
et al., 2018; Qi et al., 2019; Figure 3C). Clearing technology itself
also limits the size of the sample as it is difficult to remove
lipids/penetrate larger volumes such as those of non-human
primates and human brains (Tainaka et al., 2018; Zhao et al.,
2019; Ueda et al., 2020a; Figure 3C). Even if these brains could
be cleared, it is challenging to create an objective lens with a
long enough working distance to collect signals from the entire
sample (Ueda et al., 2020a). Some trials are currently underway
to combine slab sectioning and SPIM imaging to overcome this
limitation (Hillman et al., 2019; Voleti et al., 2019). For a more
in-depth discussion of SPIM, refer to the following review articles
(Elisa et al., 2018; Müllenbroich et al., 2018; Wan et al., 2018;
Corsetti et al., 2019; Hillman et al., 2019; Ueda et al., 2020a).

3. IMAGE PRE-PROCESSING AND 3D
IMAGE RECONSTRUCTION (STITCHING)

Before images can be analyzed in 3D, raw data must be
preprocessed to compensate for image distortion in each image
tile and re-assembled into a volumetric dataset. Each type of 3D
microscopy comes with its own mechanical and optical artifacts
that require modality-specific attention to achieve precise 3D
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FIGURE 3 | Whole brain imaging methods. (A) Manual cutting and imaging histological sections on slides. This method is laborious and requires significant
amounts of manual effort. (B) Block-face imaging such as serial two photon tomography. The requirement of serial sectioning can introduce challenges in delicate
samples. (C) Selective plane illumination or light-sheet imaging. This method can visualize an intact and clear sample without any physical sectioning, yet this
imaging is hard to apply to large tissue (e.g., human brain) due to the limited working distance of an objective lens.

stitching. Therefore, stitching algorithms have evolved over time
to meet the particular needs of different imaging modalities
particularly when it comes to managing increasingly large
data sets. This section will discuss currently available tools for
block-face and SPIM image processing.

The main challenge in developing an accurate stitching
algorithm is accounting for different types of distortion in the X,
Y, and Z directions. For example, manual histological sectioning
is generally uniform in section thickness (Z direction), but
mounting tissue on glass slides often introduces non-uniform
distortion along the X-Y axes. In mapping through manual serial
sectioning, it is typical to use stitching software provided with
the microscope to perform X-Y stitching but then an in-house
method to align the data along the Z-axis for 3D registration
(Hintiryan et al., 2016; Bienkowski et al., 2018). Although
block-face imaging also relies on sectioning, the X-Y-Z distortion
is minimal due to its unique imaging configuration as explained
in section 2.1 and Figure 3. Therefore, stitching modules in Fiji
(or ImageJ) can be used to perform repeated two-dimensional
stitching throughout the entire image volume (Ragan et al.,
2012). To mitigate tile line artifacts in 2D reconstruction,
image tiles are normalized by an average Z projection (Ragan
et al., 2012). Then, corrected tiles can be aligned using cross-
correlation, and the overlapping pixels can be blended using

linear averaging (Ragan et al., 2012). Because this pipeline is
accomplished in Fiji, it is free, and little programming skill is
needed to stitch data. However, this simple Fiji stitching utilizes
high amounts of memory, making it less suitable for larger
data sets (e.g., over 1 TB). This has been recently overcome
by TeraStitcher, a python- based code, that uses meta-data
stored in the acquired images to calculate the minimum number
of stitching lines needed reducing the computational costs of
stitching large data (Bria and Iannello, 2012; Hörl et al., 2019;
Kirst et al., 2020). TeraStitcher also simultaneously performs
illumination corrections and allows the user to manually correct
stitching misplacement (Bria and Iannello, 2012). BigStitcher
utilizes a similar method to reduce the computational costs of
stitching and is available in Fiji as a plugin (Hörl et al., 2019).
However, BigStitcher also incorporates iterative minimization of
square displacements to improve poor distance control between
disconnected objects and improved correction for spherical and
chromatic aberrations (Matsuda et al., 2018; Hörl et al., 2019).
Spherical aberrations arise from light that enters a lens at the
edge of the lens and gets focused on a different point in the tissue
compared to the lights entering the center of the lens making the
edges of an image where stitching occurs appear blurred which
impedes accurate stitching and further analysis (Diel et al., 2020).
Chromatic aberrations occur because the refractive index and the
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focal length of a lens are dependent on wavelength. Therefore,
different wavelengths of light will produce shifted images. Thus,
spherical and chromatic aberration correction can significantly
improve the alignment of multichannel images (Marimont and
Wandell, 1994; Matsuda et al., 2018).

SPIM datasets also contain an additional aberration because
excitation and emission light need to go through the whole
cleared 3D volume which introduces optical aberrations in all 3D
axes including the z-direction (Kirst et al., 2020). WobblyStitcher
is a python-based tool that accounts for this 3D aberration by
creating max z projections to calculate a z profile per sample
which is then combined with a global optimizer to complete tile
merging (Kirst et al., 2020). While this stitching method solves an
important problem for processing SPIM images, WobblyStitcher
is only available as a python code requiring some programming
skill to handle while also demanding significant computational
power and time (Kirst et al., 2020). Another artifact that is unique
to SPIM is striping which is caused when any object blocks
light penetration into the sample. Destriping tools have been
developed to remove striping and other shadows by applying a
low pass Fourier transform filter on the 2D wavelet transform
(Swaney et al., 2019; Kirst et al., 2020). This prevents the removal
of important biological information such as entire vessels/axons
that align with the artifact while smoothing ripple-like striping.
Many other denoising algorithms are also available to enhance
the signal to noise ratio but should be approached with caution
to prevent the introduction of unexpected artifacts (Tyson and
Margrie, 2021).

4. AUTOMATED SIGNAL DETECTION

Cellular resolution information in the whole brain makes manual
detection and counting difficult if not impossible. To overcome
this issue, many automated cell counting and tracing tools have
been developed. They can be divided into three large categories:
Filter-based, Machine Learning (ML), and Deep Learning (DL).

Filter-based, non-machine learning detection utilizes simple
thresholds to select features and define objects (Sbalzarini, 2016).
Detection often starts with binarization or masking through
intensity thresholds (Figure 4A). Following binarization, objects
in the image can be separated using other filters such as water-
shedding, fast-marching, erosion, size, circularity, and many
more refined methods (Figure 4A). These simple methods can
be applied to brain mapping samples, but special attention must
be paid to the three-dimensional nature of the imaging as objects
may appear in multiple planes depending on the resolution
(Figure 4B). ClearMap is a tool that identifies the local maximum
of a 3D spherical object and assigns a single coordinate to the
center of a sphere with all connected pixels belonging to that
cell/coordinate which prevents overcounting of cells appearing
in multiple planes (Renier et al., 2016). This filter-based detection
is simple and easily achievable in any image processing software
but has limited functionality because each algorithm must be
designed per experiment and tuned by a user which can lead to
highly subjective selection patterns.

Because filter-based detection is not flexible, it does not lend
itself to complex or densely packed structures with variable

intensity or poor signal to noise ratio (Shamir et al., 2010;
Sbalzarini, 2016). For example, simple thresholding in images
with an inherent intensity gradient and multiple structures of
interest is tedious and subjective as each ROI in a large 3D
brain may have a unique intensity profile (Renier et al., 2016;
Mergenthaler et al., 2021). A task such as this (e.g., without
clear-cut rules and requiring repeated efforts) is better tackled
with machine learning approaches which can do any number
of tasks with adaptive thresholding (Figure 4C). Ilastik is a
popular user-friendly software that will utilize machine learning
to segment data based on a small number of user inputs and
training (Renier et al., 2016; Berg et al., 2019; Kreshuk and Zhang,
2019). Ilastik mainly uses random forest clustering to calculate
probabilities based on experimenter inputs to determine detected
signals (Renier et al., 2016; Berg et al., 2019; Kreshuk and
Zhang, 2019). The Weka plug-in for Fiji also works in a similar
manner to Ilastik, making it a useful add-on to Fiji-based analysis
pipelines (Arganda-Carreras et al., 2017).

Though machine learning is more flexible than filtering
methods the quality of detection depends on the quality of
the training set and the selection criteria making it subject
to human bias and limited to concrete mathematical-based
problems (Sbalzarini, 2016). When feature selection is more
challenging, deep learning (DL) can provide better automatic
annotation (Yangt et al., 2017; Figure 4D). For example, a
set of morphologically distinct neurons labeled with the same
fluorescent color in the same brain can still be separated with
DL which uses human annotation to develop its own criteria/
algorithm for counting and classifying structures (Kim et al.,
2015, 2017; Ning et al., 2020; Tyson et al., 2021; Wu et al.,
2021; Zhang et al., 2021; Figure 4D). DL requires much more
user input than machine learning, but it allows the neural
network more freedom in algorithm development, however,
implementing DL requires more computational skill and power
than other methods making it more challenging to use for
scientists with a basic level of computational skill. Finally, none
of these automated detection algorithms are 100% accurate, so
quality control and mathematical validation are critical.

The main applications of automated annotation include
cell/synapse counting, connectivity analysis, and single cell
morphological reconstruction. Counting cells (e.g., cell nuclei) is
relatively simple due to their uniform shape and is often done
using filter-based counting (Renier et al., 2016; Asan et al., 2021;
Figure 4E). In fact, many ML and DL cell counting approaches
will start with filter-based output and perform additional
refinements (Kim et al., 2015; Renier et al., 2016; Newmaster
et al., 2020; Wu et al., 2021). If the labeling is cytosolic, the DL
based NeuroGPS tool may be employed to isolate the soma from
the axon and dendritic tree (Quan et al., 2013; Figure 4D). The
benefit of this approach is that it can be combined with more
advanced connectivity and morphology analyses such as single
cell reconstruction and tracing (Gong et al., 2013; Zheng et al.,
2013; Economo et al., 2016, 2019; Han et al., 2018; Winnubst
et al., 2019; Gouwens et al., 2020; Xu et al., 2021; Figures 4F,G).
Single cell tracing can be accomplished in programs such
as Allen’s Vaa3D which contains plug-ins utilizing Euclidean
distance to identify the connected components of a skeletonized
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FIGURE 4 | Automated signal detection. (A) Cell detection pipeline using filter-based methods including intensity filters and water-shedding. (B) Cells can be
captured in multiple planes making it necessary to identify the connected components of a central point in the sphere. (C–E) Random forest-based machine learning
(C) or deep learning segmentation (D) to detect cell type signals across the whole brain (E). (F,G) Signal detection and tracing to achieve full 3D reconstruction of a
single neuron (F, adapted from Janelia MouseLight NeuronBrowser) or cerebrovascular network analysis (G).

image (Peng et al., 2010; Friedmann et al., 2020). Other Vaa3D
plug-ins such as Deep Neuron utilize deep learning to take
tracing to the next level by annotating axons and dendrites
as separate compartments within a single image (Zhou et al.,
2018). Though simple filter-based methods have been used to

quantify the density of axons in tracing experiments, these
methods cannot assign a single axon to a single soma in images
with densely packed structures. TrailMap and MIRACL use
DL to trace back overlapping axons to their respective soma
adding another level to connectivity analysis (Çiçek et al., 2016;
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Gerfen et al., 2018; Goubran et al., 2019; Friedmann et al., 2020;
Li and Shen, 2020). In neural connectivity analysis, another
interesting challenge is quantifying synapses as the size of
synaptic puncta resides near the limit of light diffraction and
synapses are densely packed along neural processes. To address
this issue, ML and DL were again employed allowing researchers
to map synapses across large three-dimensional regions, yet no
study to date has looked at the whole brain completely due to the
daunting data size and magnitude of the required analysis (Zhu
et al., 2018; Cizeron et al., 2020; Curran et al., 2021).

Many of these algorithms can be modified and applied
to other cell types within the nervous system as well. For
example, tracing the cerebrovasculature has become a popular
new frontier in 3D brain mapping as the densely packed
microvessels of the brain and their connectivity patterns are
deeply intertwined with neural structures (Blinder et al., 2013;
Xiong et al., 2017; Schmid et al., 2019; Ji et al., 2021; Wu et al.,
2021; Figure 4G). This complex system also presents a unique
challenge requiring higher resolution imaging, precise image
reconstruction, and connectivity analysis (Xiong et al., 2017;
Kirst et al., 2020; Todorov et al., 2020). Recently, open source
programs developed based on machine learning have been used
to trace and skeletonize vasculature throughout the brain (Kirst
et al., 2020; Todorov et al., 2020; Wu et al., 2021).

In summary, recently developed open source software and
AI-based tools provide great opportunities to perform high
throughput detection of various cell type features in high-
resolution 3D datasets. As the focus of brain mapping expands
beyond neurons, many new algorithms will become available to
better analyze different cell type densities and morphologies.

5. MAPPING SIGNALS ONTO STANDARD
SPATIAL FRAMEWORK

Cell type signals from individual brains vary in quantity and
spatial distribution. Moreover, each individual brain and its
sub-regions can have different volumes and shapes (Toga and
Thompson, 2001; Allen et al., 2008; Shimono, 2013; Janke
and Ullmann, 2015; Lee et al., 2021). Therefore, reproducible
analysis and interpretation of whole brain 3D data from
multiple samples requires mapping onto a common coordinate
framework. By aligning or registering individual samples onto a
standardized annotated template brain (atlas), identified signals
can be automatically assigned to anatomical areas in an unbiased
way (Figure 5A). Moreover, using this spatial framework and
mathematical deformation allows ROI volume to be calculated
from each brain for more precise estimates of cell density per
area (Kim et al., 2015, 2017; Newmaster et al., 2020). Here, we
will discuss image registration tools and currently available atlas
frameworks.

5.1. Image Registration
The process of aligning one image to another (e.g., registration)
utilizes rigid, affine, and other non-linear transformations in
varying combinations and implementations (e.g., algorithms) to
achieve optimal image matching (Toga and Thompson, 2001;
Klein et al., 2010; Avants et al., 2011, 2014; Beare et al., 2018;

Balakrishnan et al., 2019; Figures 5A,B). Rigid registration is
restricted to translation and rotation, while affine transformation
allows scaling and sheering along all three axes with each
pixel/voxel undergoing an identical transformation (Holden,
2008; Song et al., 2017). Other non-linear registration including
elastic and diffeomorphic registration allows deformable rigid,
scaling, and sheering to be applied to different parts of an
image (Avants et al., 2008, 2011; Klein et al., 2010; Mansilla
et al., 2020; Sun and Simon, 2021). Diffeomorphic registration
has the most freedom as each pixel or voxel can be moved
independently which can increase registration quality, but it
is computationally expensive compared to rigid and affine
registration methods (Avants et al., 2008, 2011; Lee et al.,
2021). Therefore, the best alignment method combines these
methods in a way that maximizes accuracy while minimizing
computational time. Alignment accuracy can be evaluated by
mathematical procedures that calculate how well intensity values
align with common metrics such as cross correlation which
maximizes the correlation between normalized intensity values
and mutual information which matches features such as edges
or intensity gradients (Andronache et al., 2008; Jiang et al., 2017;
Bashiri et al., 2018). These methods can be further explored for
specific use cases in Avants et al., 2011.

Preprocessing steps and registration can be performed
using various open source programs like Elastix, Advanced
Normalization Tools (ANTs), Insight Toolkit (ITK), and the
Statistical Parametric Mapping (SPM) package (Avants et al.,
2008, 2014; Klein et al., 2010; Kronman et al., 2020). Elastix
is a Unix command line interface that efficiently applies rigid,
affine, and elastic registration. This program has been used to
register data to reference atlases and co-register labels between
two differing adult mouse brain atlases (Ragan et al., 2012; Kim
et al., 2015; Renier et al., 2016; Chon et al., 2019; Kirst et al., 2020;
Newmaster et al., 2020; Son et al., 2020; Wu et al., 2021). ANTs is
also a Unix interface based on registration tools from ITK which
houses all of the described registration methods (Ibanez et al.,
2002; Avants et al., 2014). ITK has been used to create mouse
brain templates, register STPT samples to the Allen common
coordinate framework, and perform a number of human studies
making it broadly applicable in 3D image analysis (Kuan et al.,
2015; Pichet Binette et al., 2021; Tustison et al., 2014; Wang
et al., 2020; Whitesell et al., 2021). The SPM package, housed
within MATLAB, is commonly used for co-registering and
analyzing MRI data in human brain mapping studies including
mapping of functional resting state networks (Friston et al.,
2007; Kronman et al., 2020). Additional programs for registration
include FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), Fiji
(Schindelin et al., 2012), Medical Image Registration Toolkit
(Rueckert et al., 1999; Schnabel et al., 2001), and FreeSurfer
(Reuter et al., 2010). Many of these packages have been wrapped
together in command line or graphical user interface (GUI)
tools for an easier user experience. For example, Nipype, an
open source python tool, integrates ANTs, AFNI, SPM, FSL, and
more, while BrainMaker and NeuroInfo, a pair of commercial
packages, combine ITK and additional custom software in a GUI
to perform image preprocessing and registration (Tappan et al.,
2019). Most software is compatible with different 3D imaging
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FIGURE 5 | Image registration to a common coordinate framework. (A,B) Image registration transforms individual samples to align with an annotated template atlas
(A), allowing detected signals to be assigned to anatomical labels (B). (C,D) Comparison of STPT (C) and SPIM (D) images. The STPT image has a characteristic
intensity profile with dark white matter tracts (arrow in C), while SPIM has light white matter tracts (arrow in D). (E,F) The Allen CCF was generated by averaging
many STPT images of adult mouse brains (E) and was annotated with smooth 3D labels (F). (G,H) 3D Developmental mouse brain atlases at postnatal day 14 (G)
and 7 (H) based on STPT imaging via back registration and label importation. (I,J) Nissl staining sagittal image of P28 (I) and P4 mouse brain. Arrows highlight
morphological differences in the cerebellum between the two ages. (K) P4 3D Developmental atlases derived from 2D annotations. (L) Franklin-Paxinos labels
mapped onto the Allen CCF template with detailed segmentations in the dorsal striatum.

data including human neuroimaging. However not all software is
universally applicable across species, so additional plugins have
been developed for commonly used preclinical models, such as
SPMMouse, which allow SPM to be used with mouse brain data
(Sawiak et al., 2009). A more comprehensive list of available
software can be found at www.nitrc.org.

A major conundrum in the imaging field is cross-modality
registration because current registration methods rely on
intensity contrast to guide alignment. For example, STPT and
LSFM imaging with iDISCO based cleared samples have different
contrast profiles such as fiber tracks being labeled as dark and
light contrast, respectively (Figures 5C,D, arrows). Therefore,

attempting to align light and dark regions between images
may result in erroneous registration. One solution is to use
DL networks trained by expertly aligned multimodal data to
register novel data (Fu et al., 2020). Many open source packages
are presently available to explore DL approaches to medical
image registration, and improving DL registration will increase
the quality and applicability of image registration as image
resolution rises and whole brain imaging of larger primates,
including humans, evolves (Yangt et al., 2017; Balakrishnan
et al., 2019; Mok and Chung, 2020; Wang and Zhang, 2020).
Future efforts in neuroimaging will require innovative neuro-
engineering solutions to reduce the computational resources and
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time required to register large images. Further information about
image registration can be found in the following review articles:
(Viergever et al., 2001, 2016; Hess et al., 2018; Fu et al., 2020).

5.2. Atlases as Common Spatial
Framework
An atlas defines anatomical boundaries that can be used to
interpret target signals in an anatomical context. Historically,
brain atlases were manually annotated on 2D images by
expert neuroanatomists based on histological features. These
atlases exist for many species including mice (Kaufman, 1992;
Thompson et al., 2014; Paxinos and Franklin, 2019), rats (Paxinos
and Watson, 2006), non-human primates (Paxinos et al., 2000;
Palazzi and Bordier, 2008), and humans (Mai et al., 2008; Ding
et al., 2016). However, limitations of sparse labeling, uni-planar
views, and tissue distortion render these atlases sub-optimal
for application to 3D brain mapping. Today, 3D digital brain
atlases are available in a few selected species including humans
(Mazziotta et al., 2001; Amunts et al., 2020) non-human primates
(Liu et al., 2018; Woodward et al., 2018), and mice (Dorr et al.,
2008; Chuang et al., 2011; Szulc et al., 2015; Young et al., 2021).
Unfortunately, many of these atlases are often based on only
one sample, lack detailed segmentation, and/or are subject to
modality-specific tissue distortion. The state-of-the-art atlas used
for localizing 3D whole mouse brain signals is the Allen common
coordinate framework (CCF), an STPT based atlas comprised
of 1,675 samples averaged together with highly detailed and
smoothed 3D labels (Wang et al., 2020; Figures 5C,E,F).

In contrast to the detailed Allen CCF for the adult brain, 3D
CCFs for neurodevelopmental stages are scarce which presents
a major hurdle to understanding the developmental trajectories
of different cell types in normal and pathological conditions
(Puelles et al., 2013; Levitt and Veenstra-VanderWeele, 2015).
Though registration tools are applicable at any age, they require
size and shape matching templates. To generate such templates
for early post-natal brain mapping, we previously created
intensity averaged STPT brain templates by registering more
than 10 samples onto one best brain at each postnatal day
(P) 7, 14, 21, and 28. These 3D templates were annotated by
back registering the Allen CCF 3D labels to each template in
sequence from oldest to youngest using Elastix. These brains
were successfully used to quantify oxytocin receptor cell density
across the whole mouse brain in development (Newmaster et al.,
2020; Figures 5F–H, pink arrows show back registration). While
back registration is a common approach to developmental brain
mapping, it is not the best approach as ROIs may undergo
differential rates of development depending on their embryonic
origin (Zhang et al., 2005; Chuang et al., 2011; Figures 5I,J,
arrows for the cerebellum). A more biologically sound method
for creating developmental atlases is to create age-specific
digitized templates or reference brains for developmental time
points with anatomical labels based on neurodevelopmental
perspective (Puelles and Ferran, 2012; Puelles et al., 2013;
Thompson et al., 2014). Recent advances have attempted to
convert 2D developmental atlases to 3D atlases, but these
converted 3D anatomical labels still contain jagged surfaces due
to interpolation errors (Young et al., 2021; Figure 5K). Therefore,

neuroscience is still in great need of accurately annotated 3D
developmental atlases that can be applied to seamlessly map and
interpret datasets from different embryonic/early postnatal ages
and imaging modalities.

Current 3D atlases also lack cross-modality capabilities. The
current gold standard, the Allen CCF, is obtained from STPT
images which does not align well with datasets from other
imaging modalities (e.g., light-sheet fluorescence microscopy).
To address this gap, a light-sheet optimized template brain
was developed by averaging light-sheet images and importing
Allen labels to this space (Perens et al., 2021). However, such
a template is likely to have volume distortion specific to the
chosen tissue clearing method. Thus, the ideal spatial template
should come from an imaging modality with minimal distortion
such as high resolution, in skull, ex vivo MRI. Moving forward,
future atlases should be based on distortion-free template
space while accommodating multiple imaging modalities,
allowing for cross-modality comparison of datasets from any
experimental setup.

6. DATA SHARING AND FEDERATION

Whole brain mapping data contains rich anatomical and
functional data that one single publication cannot capture. Thus,
data sharing has become increasingly important to facilitate
further analysis of these hard-earned datasets. The FAIR data
principles describe guidelines for making digital data findable,
accessible, interoperable, and reusable (Wilkinson et al., 2016).
The FAIR principles focus on the proper use of metadata to
describe digital datasets in a way that is readable by both
computers and human scientists optimizing collaboration and
data reuse. The International Neuroinformatics Coordinating
Facility (INCF) has endorsed the use of the FAIR principles
and added more specifications (Abrams et al., 2021). For
instance, in the United States, all microscopy data collected
as part of a BRAIN Initiative grant must be shared via the
Brain Imaging Library (BIL; Benninger et al., 2020). The BIL
will soon require a list of essential metadata for 3D BRAIN
Microcopy for uploaded datasets including data contributors,
descriptors, funders, instruments, images, specimens, and related
publications (Ropelewski et al., 2021). Data from omics
experiments, electrophysiology, MRI, and electron microscopy
also have their own respective archives as described by the NIH
Notice of Data Sharing Policy for the BRAIN Initiative allowing
this data to be combined with imaging (National Institutes of
Health, 2019). The Human Brain Project, EBRAINS, and INCF
all lay out similar requirements across the world (Kleven and
Bjerke, 2021). In addition to public databases, web visualization
has been a useful data sharing tool that avoids the need to
download large-scale data. For instance, we created a website4

where high-resolution datasets of oxytocin receptor expression,
the oxytocin neuron wiring diagram, and full brain vasculature
can be easily visualized. Allen Institute of Brain Sciences also has
a large repository of brain data on the Allen Brain Map website5.

4https://kimlab.io/
5https://portal.brain-map.org/
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With the huge influx of large-scale mapping datasets,
scientists need to consider how to confederate different data from
individual research groups for integrative analysis. The main
barrier to developing a brain mapping community with highly
reproducible and shareable data lies in the existence of multiple
atlases with conflicting segmentation and ontology (Chon et al.,
2019; Figure 5L). As mentioned before, comparison between
different datasets requires registration into a standardized
common coordinate framework with a coherent anatomical
label system like the Allen CCFv3 (Muñoz-Castañeda et al.,
2020; Wang et al., 2020; BRAIN Initiative Cell Census Network
(BICCN), 2021; Takata et al., 2021). To further facilitate data
confederation, there is a significant need to have a standardized
anatomical nomenclature system within and across species.
Anatomical labels are subject to how different anatomists
select delineation criteria from their knowledge, so putting
different anatomical systems in a single common space can allow
neuroscientists to interpret their data in a more streamlined
and coherent way. For example, we recently integrated Franklin-
Paxinos atlas labels onto the Allen CCF and added detailed
segmentation in the dorsal striatum (Chon et al., 2019). This way,
data can be mapped onto the Allen CCF, but users can choose
different atlas labels to interpret their data.

Finally, as brain mapping advances, standardized
neuroanatomy terminology across species will be critical
to cross-species comparison and evolutionary studies. The
Neuroscience Lexicon6 and the Uberon ontologies database7

were developed as resources to track neuroanatomical structure
names and concepts, incorporating them into a structured
knowledge management framework with unique identifiers for
each concept (Larson and Martone, 2013; Haendel et al., 2014;
Miller et al., 2020; Yuste et al., 2020). Standardized anatomical
labels based on current data will facilitate translational research
by providing a common language between clinical and preclinical
work. In summary, data standardization and confederation can
unlock the true power of community-driven neuroscience
approaches to gain a comprehensive understanding of brain
organization in many species.

6https://scicrunch.org/scicrunch/interlex/dashboard
7https://www.ebi.ac.uk/ols/ontologies/uberon

CONCLUSION

Whole brain mapping at the cellular resolution is becoming
increasingly popular and important to gain a better
understanding of cellular organizational principles across
the whole brain. When done correctly, we can see the cellular
composition and arborization across many brain regions,
in essence allowing us to see both the individual ‘‘trees’’
within the context of the ‘‘forest’’. However, brain mapping
requires optimization at multiple steps with experiment-specific
considerations. Our review provides basic information on each
of these steps and highlights major considerations and resources
to facilitate the optimization of brain mapping experiments.
Finally, making mapping data more widely accessible will
facilitate a new era in neuroscience where collaboration and data
sharing can provide enormous synergy and impact to facilitate
the advance of neuroscience research.
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