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ABSTRACT

Pangenomes offer detailed characterizations of core and accessory genes found in a set
of closely related microbial genomes, generally by clustering genes based on sequence
homology. In comparison, metagenomes facilitate highly resolved investigations of the
relative distribution of microbial genomes and individual genes across environments
through read recruitment analyses. Combining these complementary approaches can
yield unique insights into the functional basis of microbial niche partitioning and
fitness, however, advanced software solutions are lacking. Here we present an integrated
analysis and visualization strategy that provides an interactive and reproducible frame-
work to generate pangenomes and to study them in conjunction with metagenomes.
To investigate its utility, we applied this strategy to a Prochlorococcus pangenome in
the context of a large-scale marine metagenomic survey. The resulting Prochlorococcus
metapangenome revealed remarkable differential abundance patterns between very
closely related isolates that belonged to the same phylogenetic cluster and that differed
by only a small number of gene clusters in the pangenome. While the relationships
between these genomes based on gene clusters correlated with their environmental
distribution patterns, phylogenetic analyses using marker genes or concatenated
single-copy core genes did not recapitulate these patterns. The metapangenome also
revealed a small set of core genes that mostly occurred in hypervariable genomic
islands of the Prochlorococcus populations, which systematically lacked read recruitment
from surface ocean metagenomes. Notably, these core gene clusters were all linked
to sugar metabolism, suggesting potential benefits to Prochlorococcus from a high
sequence diversity of sugar metabolism genes. The rapidly growing number of microbial
genomes and increasing availability of environmental metagenomes provide new
opportunities to investigate the functioning and the ecology of microbial populations,
and metapangenomes can provide unique insights for any taxon and biome for which
genomic and sufficiently deep metagenomic data are available.

Subjects Bioinformatics, Ecology, Genomics, Microbiology

Keywords Comparative genomics, Metagenomics, Microbial ecology, Metapangenomics, anvi’o,
Hypervariable genomic islands, Sugar metabolism, Pangenomics, TARA Oceans

INTRODUCTION

During the last two decades, the genomic content of more than 100,000 microbial isolates
has been characterized and used to study the gene pool, adaptation capabilities, and
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evolution of microorganisms (Smith et al., 1997; Alm et al., 1999; Makarova et al., 2006;
Kumar et al., 2011; Ferndndez-Gémez et al., 2013). Cultivation-based approaches have
paved the way for the emergence of powerful strategies to identify core and accessory
genes shared between closely related genomes through pangenomics (Read et al., 2003;
Tettelin et al., 2005; Zhu et al., 2015). Genomic comparisons of isolates can shed light

on the biogeographic partitioning of variable genes within microbial lineages based on
isolation source (Reno et al., 2009; Porter et al., 2016). Yet de novo investigations of the role
of genomic traits in the adaptation of microorganisms to the environment remain difficult
as cultivation alone does not offer insights into the abundance or distribution patterns of
isolated populations.

Shotgun metagenomics, the sequencing of DNA directly extracted from the environment
(Handelsman et al., 1998), allows the study of microbial communities without the
need for cultivation. As of today, metagenomic data originating from a wide range of
ecosystems make up a large fraction of the sequences stored in public databases (Qin et
al., 2010; Bork et al., 2015). Researchers have used metagenomics to discover new bioactive
molecules (Lorenz ¢ Eck, 20055 Thies et al., 2016), investigate the functional potential of
ecosystems (Tringe et al., 2005; Al-Amoudi et al., 2016), and access the genomic context of
uncultivated microorganisms (Tyson et al., 2004; Haroon et al., 2016; Delmont et al., 2017).
Metagenomic data also provide a means to quantify the abundance and relative distribution
of genomes in environmental samples through read recruitment (Tyson et al., 2004; Dutilh
et al., 2014; Eren et al., 2015). Although the environmental signal resulting from such
analyses provides insights into the ecological niche of individual populations (Sharon et
al., 2013; Bendall et al., 2016; Anderson et al., 2017; Quince et al., 2017), this approach alone
does not reveal to what extent genes that may be linked to the ecology and fitness of
microbes are conserved within a phylogenetic clade.

Recently, pangenomic approaches have been used to characterize the gene content
of microbial populations in environmental samples through metagenomic read
recruitment (Delmont & Eren, 2016; Scholz et al., 2016; Nayfach et al., 2016). Combining
well-established practices from pangenomics (identifying gene clusters and inferring
relationships between genomes based on shared genes), with the emerging opportunities
from metagenomics (the ability to track populations precisely across environments through
genome-wide read recruitment) could provide a framework to investigate the ecological
role of gene clusters that may be linked to the niche partitioning and fitness of microbial
populations. To explore the potential of this concept, we developed a novel workflow
within an existing open-source software platform (Eren et al., 2015), and characterized the
metapangenome of Prochlorococcus isolates and single-cell genomes on a large scale.

Prochlorococcus is an extensively studied photosynthetic bacterial taxon abundant in the
euphotic zone of low latitude marine systems (Chisholm et al., 1988; Olson et al., 1990; Rusch
et al., 2010), which fixes a substantial amount of carbon from the atmosphere (Flombaum et
al., 2013). Cultivation efforts targeting Prochlorococcus resulted in the recovery of genomes
that represent members from five major phylogenetic clades divided into groups that are
adapted to high-light (sub-clades HL-I and HL-II) or low-light (sub-clades LL-I, LL-II,
LL-III, and LL-IV) (Biller et al., 2014a). Environmental surveys and culture experiments
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revealed the ecological niche and temporal dynamics of HL and LL Prochlorococcus ecotypes
in the oceans, as well as correlations between the genomic traits of isolates and their response
to environmental variables (West et al., 2001; Rocap et al., 2003; Malmstrom et al., 2010).
A previous study by Colerman ¢ Chisholm (2010) used a pangenome of 12 Prochlorococcus
isolates to discuss the differential occurrence in Prochlorococcus populations between two
sampling stations after identifying core versus accessory genes and observing that only
a few genes differed significantly in abundance between the sites. In addition, Kent et al.
(2016) showed a strong association between the Prochlorococcus accessory gene functions
and the community composition of this lineage on a large scale using metagenomes from
the Global Ocean Sampling expedition. Yet to the best of our knowledge, pangenomes
have never been linked to metagenomes at an appropriate resolution to monitor the
distribution of individual gene clusters. Monitoring individual gene clusters is essential
to scrutinize their prevalence across multiple microbial genomes, and infer associations
regarding their potential role in fitness and niche partitioning of microbial populations to
which they belong.

Here we investigated the gene clusters we identified in 31 Prochlorococcus isolates
in conjunction with their occurrence in the surface of marine systems using 30.9
billion metagenomic reads from the TARA Oceans Project (Sunagawa et al., 2015). Our
investigation revealed that closely related Prochlorococcus populations sharing the same
high-light niche (i.e., near the surface) exhibit considerable differences in their relative
abundance that could be explained by a small number of differentially occurring gene
clusters. Finally, we extended our analysis of 31 isolates with 74 single-amplified genomes
(SAGs) and revealed intriguing patterns within Prochlorococcus hypervariable genomic
islands by quantifying the link between individual gene clusters and the environment

MATERIALS AND METHODS

The URL http://merenlab.org/data/2018_Delmont_and_Eren_Metapangenomics/
contains a reproducible workflow that extends the descriptions and parameters of
programs used in our study to (1) compute the Prochlorococcus pangenome using 31
isolate genomes, (2) profile reads isolate genomes recruited from metagenomes, and (3)
generate a metapangenome for Prochlorococcus.

Genomes and metagenomes

We acquired 31 isolate genomes and 74 SAGs (minimum length >1 Mbp) of Prochlorococcus
from the National Center for Biotechnology Information (NCBI), and downloaded 93
TARA Oceans metagenomes from the European bioinformatics institute (EBI) repositories.
Table S1 reports accession numbers and other information for each isolate genome, SAG
and metagenome.

Data preparation, quality filtering, and read recruitment

We removed the low-quality reads from the TARA Oceans dataset using ‘iu-filter-
quality-minoche’, which is a program in illumina-utils v1.4.1 (Eren et al., 2013) (available
from https://github.com/merenlab/illumina-utils), which implements the noise filtering
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parameters described by Minoche, Dohm ¢ Himmelbauer (2011). After simplifying the
header lines of 31 FASTA files for Prochlorococcus isolate genomes using the anvi’o script
‘reformat-fasta’, we concatenated all FASTA files into a single file, and used Bowtie2
(Langmead & Salzberg, 2012) with default parameters and the additional ‘--no-unal’ flag
to recruit quality-filtered short metagenomic reads on to Prochlorococcus isolate genomes
(‘read recruitment’ is an analogous term to ‘mapping’, or ‘short read alignment’). We used
samtools (Li et al., 2009) to convert resulting SAM files into sorted and indexed BAM files.

Phylogenomic analysis

We used Phylosift v1.0.1 (Darling et al., 2014) with default parameters to quantify
evolutionary distances between genomes. Briefly, Phylosift (1) identifies a set of 37 marker
gene families in each genome, (2) concatenates the alignment of each marker gene family
across genomes, and (3) computes a phylogenomic tree from the concatenated alignment
using FastTree 2.1 (Price, Dehal ¢» Arkin, 2010). We finalized the phylogenomic tree by
setting a midpoint root with FigTree v.1.4.3 (Rambaut, 2009).

Analysis of metagenomic read recruitment

We used anvi’o (Eren et al., 2015) v3 (available from http://merenlab.org/software/anvio/)
to profile the read recruitment results following the workflow outlined by Eren et al. (2015).
Briefly, we first used the program ‘anvi-gen-contigs-database’ to profile Prochlorococcus
genomes, during which Prodigal v2.6.3 (Hyatt et al., 2010) with default settings identified
open reading frames. We used InterProScan v5.17-56 (Zdobnov ¢» Apweiler, 2001) and
eggNOG-mapper v0.12.6 (Huerta-Cepas et al., 2016) outputs for our genes with the
program ‘anvi-import-functions’ to import annotations from other databases, including
PFAM (Bateman et al., 2004), and eggNOG (Jensen et al., 2008). We then used the program
‘anvi-run-ncbi-cogs’ to annotate genes with functions by searching them against the
December 2014 release of the Clusters of Orthologous Groups (COGs) database (Tatusov
et al., 2000) using blastp v2.3.0+ (Altschul et al., 1990). We finally used the program ‘anvi-
profile’ to process the BAM file and generate an anvi’o profile database, which stored the
coverage and detection statistics of each Prochlorococcus genome in the TARA Oceans data.
We used ‘anvi-import-collection’ to link contigs to genomes from which they originate.
Finally, the program ‘anvi-summarize’ generated a static HTML output that gave access
to the mean coverage values of each genome (and individual genes within them) across
metagenomes.

Operational definition of ‘population’

In the context of our study we define ‘population’ as an agglomerate of naturally occurring
microbial cells, genomes of which are similar enough to align to the same genomic reference
with high sequence identity as defined by the read recruitment stringency. Therefore, we
assume that the isolate genomes in our study provide access to environmental populations
to which they belong through the recruitment of short metagenomic reads.

Criterion for ‘detection’
Assessing the occurrence of low abundance genomes in complex data accurately can be
problematic due to non-specific recruitment of short reads to regions that are conserved
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across multiple populations. For instance, although Prochlorococcus populations are
virtually absent from the Southern Ocean (Flombaum et al., 2013), our genomes recruited
up to 0.01% of the metagenomic reads from the Southern Ocean metagenomes matching
to non-specific targets. To avoid high false-detection rates, we assumed that a genome was
‘detected’ in a given metagenome only if more than 50% of its nucleotide positions had at
least 1X coverage.

Classification of isolate genes as ‘environmental core’ and
‘environmental accessory’

Assuming the environmental niche of a population is defined by the metagenomes in which
it is ‘detected’, here we define ‘environmental core genes’ of a population as the genes that
are systematically detected in its niche. In contrast, the genes that are not systematically
detected within the niche of a given population represent its environmental accessory genes.
Genes in a population that are classified as ‘environmental core’ given metagenomic data
can be classified as ‘accessory’ given a pangenome, and vice versa. To avoid any confusion
between these operationally distinct class designations, we refer to the genes classified given
the metagenomic data as the ‘environmental core genes’ (ECGs), and the ‘environmental
accessory genes’ (EAGs). To identify ECGs and EAGs for each genome independently, we
used the anvi’o script ‘anvi-script-gen-distribution-of-genes-in-a-bin’ with the parameter
‘--fraction-of-median-coverage 0.25'. This script recovers the sum of coverage values for
each gene in a given genome across all metagenomes in which the population is ‘detected’,
and marks the genes that have less than 25% of the median coverage of all genes found
in the genome as EAGs. We then visualized resulting gene classes using the program
‘anvi-interactive’.

Computing the pangenome, and the definition of gene clusters

The anvi’o pangenomic workflow developed for this study consists of three major steps:
(1) generating an anvi’o genome database (‘anvi-gen-genomes-storage’) to store DNA and
amino acid sequences, as well as functional annotations of each gene in genomes under
consideration, (2) computing the pangenome (‘anvi-pan-genome’) from a genome database
by identifying ‘gene clusters’, and (3) displaying the pangenome (‘anvi-display-pan’) to
visualize the distribution of gene clusters across genomes, interactively bin gene clusters
into logical groups, and inspect the alignment of genes in a given cluster interactively. In
our study, a ‘gene cluster’ represents sequences of one or more predicted open reading
frames grouped together based on their homology at the translated DNA sequence level.
Gene clusters with more than one sequence may contain orthologous or paralogous
sequences, or both, from one or more genomes analyzed in the pangenome. To compute
the Prochlorococcus pangenome, we first generated an ‘anvi’o genomes storage database’
from the FASTA files of 31 Prochlorococcus isolate genomes using the ‘--internal-genomes’
flag. We then used the program ‘anvi-pan-genome’ with the genomes storage database,
the flag ‘--use-ncbi-blast’, and parameters ‘--minbit 0.5, and ‘--mcl-inflation 10’. This
program (1) calculates similarities of each amino acid sequence in every genome against
every other amino acid sequence using blastp (Altschul et al., 1990), (2) removes weak hits
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using the ‘minbit heuristic’, which was originally described in ITEP (Benedict et al., 2014),
to filter weak hits based on the aligned fraction between the two reads, (3) uses the MCL
algorithm (Van Dongen ¢ Abreu-Goodger, 2012) to identify gene clusters in the remaining
blastp search results, (4) computes the occurrence of gene clusters across genomes and
the total number of genes they contain, (5) performs hierarchical clustering analyses for
gene clusters (based on their distribution across genomes) and for genomes (based on gene
clusters they share) using Euclidean distance and Ward clustering by default, and finally
(6) generates an anvi’o pan database that stores all results for downstream analyses and can
be visualized by the program ‘anvi-display-pan’.

Computing the metapangenome

Here we define ‘metapangenome’ as the outcome of the analysis of pangenomes in
conjunction with the environment where the abundance and prevalence of gene clusters
and genomes are recovered through shotgun metagenomes. To connect the environmental
distribution patterns of genomes to the Prochlorococcus pangenome, we used the program
‘anvi-gen-samples-database’ with the genome coverage estimates reported in the summary
of the anvi’o profile database for metagenomic data. To quantify the ratio of ‘environmental
core genes’ (ECGs) and the ‘environmental accessory genes’ (EAGs) in each gene cluster
in the resulting pangenome, we used the anvi’o program ‘anvi-script-gen-environmental-
core-summary’ with default parameters. The program ‘anvi-display-pan’ visualized

the Prochlorococcus metapangenome, and ‘anvi-summarize’ generated a summary of
gene clusters.

Analysis of Prochlorococcus single-amplified genomes

We performed a pangenomic analysis combining the 74 SAGs and 31 isolate genomes of
Prochlorococcus following the same workflow as for the isolate genomes alone. From the 74
SAGs, we then selected five phylogenetically distant ones and performed a metapangenomic
analysis following the same workflow as for the isolate genomes (including the same
metagenomic dataset). Our selection of few distant SAGs was intended to minimize
the dilution effect due to competing read recruitment onto identical regions from
multiple genomes.

Visualizations

We used the ggplot2 (Ginestet, 2011) library for R to visualize the relative distribution
of genomic groups on the world map. Anvi'o performed all other visualizations, and we
finalized our figures for publication using Inkscape, an open-source vector graphics editor
(available from http://inkscape.org/).

RESULTS

Environmental distribution of Prochlorococcus isolate genomes

To estimate the abundance and relative distribution patterns of the 31 Prochlorococcus
isolate genomes in environmental samples, we mapped to them 30.9 billion quality-filtered
metagenomic short reads from 93 TARA Oceans samples (0.2-3 pm planktonic size
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fraction) that cover the Atlantic Ocean, Pacific Ocean, Indian Ocean, Southern Ocean,
Mediterranean Sea and Red Sea (Table S1). Prochlorococcus genomes recruited 1.68
billion reads (5.44% of the dataset) from the surface (0-15 m depth; n=61), and the
subsurface chlorophyll maximum layer (17-95 m depth; n = 32) metagenomes. The
relative distribution of all Prochlorococcus genomes ranged from below the detection limit
in the Southern Ocean to 24.1% in a surface metagenome from the Indian Ocean (Table S2).

In agreement with the literature, genomes from the Clade LL-II and Clade LL-III
were not detected in the metagenomic dataset: although the isolation source for most
LL-TI/IIT genomes were 120 m (Rocap et al., 2002), the subsurface samples in TARA Oceans
metagenomes averaged 53.7 m and never exceeded 100 m. The remaining clades displayed
contrasting distribution patterns. The HL-I and HL-II genomes were enriched in surface
samples, but they were geographically antagonistic: HL-I dominated in the Mediterranean
Sea, while HL-II, the most abundant Prochlorococcus clade in the dataset, occurred mostly
in the Indian Ocean and Red Sea (Fig. S1). Read recruitment results were also in line with
previous observations suggesting temperature as one of the main drivers of distribution
patterns of HL-1 and HL-II (Johnson et al., 2006; Biller et al., 2014b and references therein),
as 93% and 95% of the reads recruited by the HL-I and HL-II genomes originated from
samples that were below and above 22 °C, respectively. The LL-I and LL-IV genomes (more
characteristic to the subsurface layer) were also detected in different geographic locations,
but in lower proportions (Table 52). Overall, the trends observed here are largely consistent
with results from previous environmental surveys and culture experiments (Johnson et al.,
2006; Larkin et al., 2016), and emphasize the limited niche overlap of Prochlorococcus clades
in the euphotic layer of marine systems on a large scale.

The pangenome of Prochlorococcus isolate genomes

Our pangenomic analysis of the 31 Prochlorococcus isolate genomes with a total of 60,054
genes resulted in 7,385 gene clusters. We grouped these gene clusters into five bins based
on their occurrence across genomes: (1) HL + LL core gene clusters (n=766), (2) HL
core gene clusters (n=492), (3) LL core gene clusters (n = 144), (4) singletons (i.e., gene
clusters associated with a single genome; n=2,215), and (5) other gene clusters that do
not fit any of these classes (n=3,768) (Fig. S2). The singletons and HL + LL core gene
clusters corresponded to 30% and 10.4% of all clusters, respectively. This relatively small
core genome is consistent with previous pangenomic investigations and supports the
concept of a Prochlorococcus ‘open pangenome’ (Kettler et al., 2007). 49.1% of all clusters
contained genes that were annotated with COG functions (Table S3). The functional
annotation rate reached 90.5% for the HL 4 LL core gene clusters. In contrast, it was
only 37.2% for the singletons. As the shared gene content between genomes are effective
predictors of their phylogenetic relationships (Snel, Bork ¢ Huynen, 1999; Dutilh et al.,
2004), we used the distribution of gene clusters to determine the relationships among
our genomes. The genomic groups that emerged from this analysis matched the six
Prochlorococcus phylogenetic clades (Fig. 1). However, a noticeable difference emerged
from the organization of clades based on gene clusters. Previous phylogenetic analyses
using the internal transcribed spacer region (Biller et al., 2014b) placed LL genomes into
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Figure 1 Organization of Prochlorococcus genomes based on shared gene clusters compared to phy-
logenomics. The dendrograms on the top shows the clustering of 31 isolate genomes based on the distri-
bution of 7,385 gene clusters recovered from the pangenomic analysis (Euclidian distance and ward clus-
tering). The tree at the bottom organizes the same genomes based on phylogenomics using 37 concate-
nated core genes. Colors indicate the phylogenetic affiliations of genomes based on published literature.
Full-size & DOI: 10.7717/peer;j.4320/fig-1

polyphyletic clades (LL-I being an outlier), which was echoed by the phylogenomic analysis
we performed in this study using 37 core genes (Fig. 1). In contrast, gene clusters grouped
genomes primarily based on their adaptation to light regimes (Fig. 1). This result suggests
that employing the whole genomic content, instead of only marker genes, may be more
advantageous when the goal is to infer ecological rather than evolutionary relationships
between a set of closely related genomes.

Environmental core and accessory genes in Prochlorococcus isolate
genomes

Genomic islands are widespread in Prochlorococcus (Coleman et al., 2006; Coleman e
Chisholm, 2010) and genes from a given genome may not be found uniformly in all marine
ecosystems. Besides the detection estimates at the genome level, recruiting reads from
metagenomic data also provides an opportunity to investigate the occurrence and relative
distribution of individual genes. We used read recruitment statistics to differentiate genes
that co-occurred with the population across metagenomes from those that consistently
failed to recruit reads from the environment despite the occurrence of the population. While
the first group of genes is common to most cells in a given population (i.e., connected to
the environment), the second group of genes occurs only in a fraction of the members
of the population, or shows sporadic distribution patterns across environments (i.e., not
connected to the environment). This analysis revealed 42,777 environmental core genes
(ECGs) and 6,528 environmental accessory genes (EAGs) in 25 Prochlorococcus genomes
(genomes from the Clade LL-II and Clade L-III were not detected in the metagenomic
data, hence did not yield any estimates) (Table S3). The EAGs represented in average
13.4% (£4.65%) of all genes for each Prochlorococcus genome, exposing a non-negligible,
and relatively stable portion of genes occurring only in a small subset of the cells within

Delmont and Eren (2018), PeerJ, DOI 10.7717/peerj.4320 8/23


https://peerj.com
https://doi.org/10.7717/peerj.4320/fig-1
http://dx.doi.org/10.7717/peerj.4320#supp-6
http://dx.doi.org/10.7717/peerj.4320

Peer

EQPAC1

A High-Light
Group |
isolate

Mediterranean Sea (7)
Atlantic Ocean Northeast (7)
Atlantic Ocean Southeast (6)
Atlantic Ocean Northwest (6)
Atlantic Ocean Southwest (6)

Red Sea (6)
Indian Ocean North (11)
Indian Ocean South (10)

Pacific Ocean North (8)
Pacific Ocean Southeast (16)
Pacific Ocean Southwest (7)
Southern Ocean (3)

AR \
/(Environmental core and accessor>\

genes based based on their detection

across metagenomes

MIT9314
A High-Light
Group Il
isolate
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each population to which we had access through the genomic database and metagenomic
data, consistent with previous metagenomic surveys of this lineage (Colemnan ¢ Chisholm,
2010). The synteny of most EAGs in a given genome were not random, and they mostly
were clustered into hypervariable genomic islands (Fig. 2). The classification of the genes
in an isolate genome based on their environmental connectivity through metagenomics
offers unique insights regarding their occurrence within a population. Furthermore, this
particular use of metagenomes is also essential to subsequently quantify the environmental
connectivity of genes in pangenomes.

The metapangenome reveals closely related isolates with different
levels of fitness

A metapangenome provides access to the environmental detection of individual genes
in gene clusters, along with the ecological niche boundaries of individual genomes. The
Prochlorococcus metapangenome revealed differences within the members of the Clade
HL-II with respect to their rate of detection in the environment (Fig. 3; see the interactive
version at the URL http://anvi-server.org/p/INIBAB). Interestingly, the organization of
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Figure 3 The metapangenome of Prochlorococcus. Each one of the 7,385 gene clusters contains one or more genes contributed by one or more
isolate genomes. Bars in the 31 first layers indicate the occurrence of gene clusters in a given isolate genome. Gene clusters are organized based on
their distribution across genomes (i.e., gene clusters that co-occur in the same group of isolates are closer to each other), and genomes are organized
based on gene clusters they share using Euclidian distance and ward ordination. The three next layers describe the gene clusters in which at least one
gene was functionally annotated using Pfams, EggNOGs, or COGs. Another layer describes the ratio of environmental core versus environmental
accessory genes (ECGs/EAGs) within each PC. Gray areas account for the genes in genomes undetected in the metagenomic dataset.(continued on
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Figure 3 (...continued)

Finally, the last layer corresponds to our selections of gene clusters. The “HL + LL Core” selection corresponds to the gene clusters that contained
genes from all genomes. The “LL Core” and “HL Core” selections correspond to clusters that contained genes characteristic to the LL- and HL-
adapted genomes, respectively. The last selection (“Singletons”) corresponds to clusters that contained one or multiple genes from a single genome.
The right-hand side section of the figure provides additional data for each isolate. The bottom rectangle displays the relative distribution of genomes
across 93 metagenomes and is followed by layers that show the average distribution of each isolate in the metagenomic dataset and the phylogenetic
clades to which they belong. The dendrograms on the top represents the hierarchical clustering of genomes based on the occurrence of gene clusters.

genomes in HL-II based on gene clusters matched their detection gradient within their
niche, with the least abundant and the most abundant genomes in the metagenomic data
being at the two extremes of the cluster that described the Clade HL-II (Fig. 3, Table 52). We
tentatively grouped the HL-II genomes into three sub-groups based on their abundance in
the metagenomic dataset: HL-II-Low (n = 3) with an average relative abundance 0f 0.037%,
HL-II-Medium (# = 10) with an average relative abundance of 0.14%, and HL-II-High
(n=4) with an average relative abundance of 0.5%. Based on this grouping, HL-II-High
genomes were 13.5 times more abundant in the environment on average compared to
HL-II-Low genomes, despite being closely related enough to be described in the same
phylogenetic group for HL. In light of this observation, we investigated whether the
differentially distributed gene clusters could identify the functional basis of the apparent
change in fitness. Noticeably, the HL-II-Low genomes were lacking gene clusters that
resolve to DNA repair (DNA ligase; 3-methyladenine DNA glycosylase; DEAD DEAH
box helicase) compared to the HL-II-High genomes (Table S3). All 31 isolates carried
DNA repair genes, as it is a critical protection mechanism towards light induced damages
occurring in the surface layer of marine systems (Jeffrey et al., 1996); however, HL-II-High
genomes carried a unique set of DNA repair genes that were missing from HL-II-Low
genomes. Also missing from the HL-II-Low genomes were gene clusters corresponding to
enzymes of the cupin superfamily, the fructose-bisphosphate aldolase class II, glutamine
amino transferase, PAP fibrilin, a metal-binding protein, and 25 gene clusters to which we
could not assign a function. The metapangenome provided access to genomic features that
may explain the functional basis of such variation of fitness between closely related members
of the HL-II group. Assuming that an increased relative abundance in the environment is
equivalent to increased fitness, characterization of the genomic features that contribute to
these differences, especially those of unknown functions, warrants further study.

Genes and functions connect the hypervariable genomic islands of
Prochlorococcus populations

We then turned our attention to the key contribution of our metapangenomic workflow;
the environmental connectivity of the pangenome as defined by the proportion of ECGs
and EAGs found in each gene cluster. The percentage of EAGs from genomes that occurred
in our metagenomic data differed markedly between the HL 4 LL core gene clusters
(4.31%), LL core gene clusters (0.28%), HL core gene clusters (12.4%), and singletons
(66%) (Fig. 3; Table S3). More than an order of magnitude difference between the ratio of
ECGs to EAGs among the LL and HL core gene clusters suggests that, given the available
isolate genomes, Prochlorococcus genes characteristic to low-light regime may be more
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stable than those characteristic to high-light regime. These results also indicate that genes
present in all isolate genomes (HL 4 LL core) were maintained in a large fraction of the
cells in populations we investigated, while those that are specific to a single isolate largely
occurred in smaller number of cells in the environment and remained below our detection
limit. Exceptions to low number of EAGs in HL + LL core were gene clusters #33, #44 and
#431 (see Table 53). The percentage of EAGs for these gene clusters in HL isolates were
100%, 95.2% and 95.2%, and their functions resolved to ‘nucleotide sugar epimerase’, ‘udp-
glucose 6-dehydrogenase’ and ‘mannose-1-phosphate guanylyltransferase’, respectively.
In contrast, these gene clusters contained only ECGs in the LL isolates (Table S3). Sugar
uptake by Prochlorococcus has been observed in both culture and in situ (Gomez-Baena et
al., 2008; Mufioz Marin et al., 2013; Mufioz-Marin et al., 2017) and this process can support
the growth of Prochlorococcus populations in the surface ocean (Moisander et al., 2012).
The occurrence of multiple sugar metabolism genes in every HL isolate that are absent in
almost all metagenomes poses an interesting conundrum.

To investigate whether this could be due to a cultivation bias that selects for members
from these populations with a certain set of sugar utilization genes, we analyzed 74 single
amplified genomes (SAGs) from a study by Kashtan et al. (2014) (Table S4). Our analysis
revealed that these gene clusters also occurred in a large number of SAGs (75.7% to
81.1%) (Table S4). Most interestingly, metapangenomic analysis of SAGs using the same
metagenomic dataset and bioinformatics workflow we used for the isolates also revealed
that all genes in these gene clusters were EAGs (Table 54), consistent with our observations
in the HL isolates, and ruling out the ‘cultivation bias” hypothesis. Yet these results left us
with a puzzling observation as we have identified Prochlorococcus gene clusters widespread
in both isolate genomes and SAGs of the HL clades with genes rarely detected in the
surface oceans and seas. Methodological differences could explain the conflict between
the high prevalence of these gene clusters across genomes in the pangenome and the low
detection of each gene in them across metagenomes: gene clusters are formed based on
homology between amino acid sequences (Tettelin et al., 2005), hence can contain genes
with relatively low sequence similarity, while metagenomic read recruitment is done at the
DNA sequence-level, and is more stringent.

Notably, genes in clusters #33, #44 and #431 occurred in hypervariable genomic islands
of the isolates and SAGs (Fig. 4, Tables S3 and 54), and as a result are surrounded by other
EAGs that are not part of the Prochlorococcus core genome. To the best of our knowledge
this is the first time the Prochlorococcus core pangenome is linked to hypervariable genomic
islands, indicating that core functionalities of this major lineage associated with sugar
metabolism are maintained in a variety of versions within each population. Finally,
analyzing the functionality of all EAGs led us to expose a prevalent role of sugar metabolism
in hypervariable genomic islands beyond the three core gene clusters (Fig. 4 and Fig. S3).
Briefly, functions such as udp-glucose 4-epimerase, dTDP-4-dehydrorhamnose 3,5-
epimerase, dTDP-4-dehydrorhamnose reductase, dTDP-glucose 4-6-dehydratase, GDP-
mannose 4,6-dehydratase and glucose-1-phosphate cytidylyltransferase were dominated
by EAGs and occurred mostly in hypervariable genomic islands of the HL populations
(Table S5). Overall, our analyses suggested a high rate of gene diversification traits for
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sugar metabolism in Prochlorococcus that may be contributing to the remarkable fitness of
this group in the surface ocean.

DISCUSSION

The quantity of data in genomic databases and metagenomic surveys is increasing
rapidly thanks to the advances in biotechnology and computation. Metapangenomes
take advantage of both genomes and metagenomes to link two important endeavors in
microbiology: inferring the relationships between isolate genomes through identifying the
core and accessory genes they harbor de novo, and investigating the relative distribution of
microbial populations and individual genes in the environment through metagenomics.

Our metapangenomic workflow has similarities to the method described in a recently
introduced metagenomics pipeline by Nayfach et al. (2016), as both efforts offer solutions
to expand conventional analyses of pangenomes by not only estimating the abundance
and distribution of gene clusters in the environment, but also linking them to the
distribution patterns of microbial populations. In addition to this shared goal, our approach
provides a flexible starting point with project-specific genomic databases (rather than pre-
computed references), and includes a comprehensive visualization strategy to summarize
metapangenomes.

The Prochlorococcus metapangenome revealed subtle distribution gradients among
isolates that belonged to the same phylogenetic clade, and exposed differentially occurring
gene clusters that could be related to genomic traits affecting the fitness among closely
related members. It also revealed gene clusters that occurred in every isolate genome and
in most single-cell genomes but were largely missing in the environment, exposing a core
genome connecting hypervariable genomic islands of distinct Prochlorococcus phylogenetic
clades. Interestingly, these gene clusters were biased towards sugar utilization. Variable
genomic islands of Prochlorococcus among co-occurring cells (Colerman et al., 2006) have
previously been linked to the resistance of viral infections (Avrani et al., 2011). Our findings
here suggest that high sequence diversification among genes involved in sugar metabolism
may be beneficial for Prochlorococcus populations, which should be further addressed.
In addition, gene clusters revealed that at least some of the genes in Prochlorococcus
genomic islands represent common functions with high rate of intra-population diversity
at the DNA-level, rather than recent horizontal transfers from other lineages. These
observations contribute to the ongoing debate on the origin, evolution and ecological role
of hypervariable genomic islands within microbial populations (Hacker ¢» Carniel, 2001,
Coleman et al., 2006; Wilhelm et al., 2007; Juhas et al., 2009; Ferndndez-Gémez et al., 2012;
Vineis et al., 2016). In addition to these novel insights, the parallels in our findings and the
extensive literature on Prochlorococcus emphasizes the potential of metapangenomics to
facilitate the recovery of key insights from novel and less studied microbial populations,
including those with no cultured representatives.

The vast majority of isolate and single-amplified genomes contain only a subset of
the complete set of genes microbial populations maintain within their niche boundaries
(Parkhill et al., 2000; Coleman et al., 2006; Juhas et al., 2009; Coleman ¢ Chisholm, 2010).
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Metagenomic data make it possible to classify genes in genomes based on their occurrence
in the environment. However, metagenomic short read recruitment alone does not provide
access to genes that are lacking in available genomes, even if they may be critical for the
functioning of the populations they originate. Characterizing all accessory genes of a
given population in the environment is challenging due to the limited coverage of the
environmental metagenomes and genomic databases. These limitations require careful
interpretations of the observations that emerge from the metapangenomic workflow and
awareness that complete understanding of the accessory genes of the environment may
require additional efforts (Kashtan et al., 2014).

CONCLUSION

Here we developed novel software solutions and analytical tools within the open-source
software platform anvi’o to create and study metapangenomes with interactive visualization
and inspection capabilities. Our analysis of the Prochlorococcus metapangenome revealed
a small number of gene clusters that may be linked to subtle fitness trends among very
closely related members of this group, and displayed inter-connectivity of hypervariable
genomic islands across multiple clades. Our findings suggest that metapangenomes can
provide highly resolved linkage between core and accessory genes of microbial populations
and the environment, for any taxon and biome for which genomic and metagenomic
data are available, and can provide experimental targets to explore the functional basis of
niche partitioning and fitness. Besides isolate and single-cell genomes, this strategy can also
employ metagenome-assembled genomes, and be used to study questions in the context of
biotechnology or medicine.
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