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The routing capability is a requisite in quantum network. Although the quantum routing of signals has been
investigated in various systems both in theory and experiment, the general form of quantum routing with
many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel
quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the
waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters,
the output channels of the input single photons can be controlled. This is demonstrated in the cases of one
output channel, two output channels and the generic N output channels. The results show that the
multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a
scheme for the experimental realization of general quantum routing of single photons.

Q
uantum routing1–9 of information from one sender to many receivers is an essential function for the
quantum network10. Single photons are suitable candidates as the carrier of quantum information due to
the fact that they propagate fast and interact rarely with the environment. The field-matter interaction

can be used to manipulate the photons. By the way, the light-light interaction by the platform of linear optics8,9,11,12

can also be used to manipulate the photons. The photon transport in a one dimensional (1D) waveguide has been
studied extensively both in theory13–26 and in experiments27–36 because the strong coupling of the waveguide-
emitter can be achieved. In the waveguide-emitter system, the waveguides act as the channels and the emitters as
the nods of the quantum network. Based on these advantages, the quantum routing of photons in the waveguide-
emitter system is promising. Recently, two output channel quantum routing of single photons is studied the-
oretically in a waveguide-emitter system6,7. The input single photons can be redirected into either of the two
output channels with a maximal probability of unity and no more than 1/2, respectively. It is interesting if the
photon can be redirected into either of the output channels with an extremely high probability. Moreover, a
general form of many output channel quantum routing of the single photons in the waveguide QED system will be
of considerable interest.

For these purposes, we propose a novel scheme for the quantum routing of single photons from one input
waveguide into N output waveguides. In our scheme, the ith output waveguide is connected with the input
waveguide by an intermediate two-level system (TLS). After scattering, the single photon injected into the input
channel is redirected into other channels. For the single output channel quantum routing, the quantum inter-
ferences redirect the input photon into the output channel completely when the intermediate TLS resonantly
interacts with the input and output channels with the same strength. The single output channel routing properties
can be modified when an additional TLS is coupled to the input channel. In the two output channel case, the
photon can be redirected into either of the output channels with an approximate unity probability. The photon
can also be redirected completely into both the output channels with various probabilities. In the generic N output
channel case, the quantum interferences prevent the photon being redirected into the other channels except the
input channel when all the TLSs resonantly interact with the channels with equal strengths for a large value of N.
They also can completely prevent the photon being directed back into the input channel for suitable parameters
for any value of N. The photon can be redirected into a desired channel with an approximate unity probability.

The schematic diagram of the system under consideration is shown in Fig. 1. The input channel is a Sagnac
interferometer37–39 composed by a semi-infinite waveguide, a 50550 beam splitter and a waveguide loop. The
input channel connects the ith infinite waveguide by an intermediate TLS at the middle point of the waveguide
loop. For simplicity, we label the interaction position x 5 0. It is convenient to bring in the even and odd operators

as aek~
1ffiffiffi
2
p arkzalkð Þ and aok~

1ffiffiffi
2
p ark{alkð Þ, with ark (alk) being the annihilation operator for the right (left)-
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moving mode with the frequency vgjkj in the waveguide. Hereafter
we will take the photon group velocity vg 5 1. The clockwise- and
counterclockwise-moving photons in the waveguide loop can be
treated as the left- and right-moving photons. If we inject a photon
into the input waveguide, an even mode quasi particle can be pro-
duced at the middle point of the waveguide loop when the phases of
the clockwise- and counter clockwise-moving photons are equal. In
the even and odd picture, the odd mode only contributes to the free
energy part in the Hamiltonian. Therefore, it is enough to study the
dynamics of the even mode. For simplicity, we omit the superscript e
of the even operator aek. The even part of the Hamiltonian can be
written as (�h~1)

H~

ð?
{?

dkka{kakz
X

i

ð?
{?

dkka{i,kai,kzvis
z
i s{

i

�

z

ð?
{?

dk gz
i ai,kzg{

i ak
� �

sz
i zh:c:

�
,

ð1Þ

with a{k a{
i,k

� �
being the even mode creation operator in the input (ith

output) waveguide, and vi being the ith TLS transition frequency.
We have taken the energies of the TLS ground states zero. The terms
of the second line in Hamiltonian (1) represent the interaction of the

TLSs with the waveguides.
g{

i ffiffiffi
2
p and

gz
i ffiffiffi
2
p are coupling strengths of the

ith TLS to the input waveguide and the ith output waveguide,
respectively. The coupling strengths can be written as

gf
i ~

ffiffiffiffiffi
cf

i

2p

s
f~+ð Þ, with cf

i being the decay rate from the ith TLS to

the waveguides. The TLS can be a real two-level atom or an artificial
two-level system. In the single-photon case, the TLS can also be a
cavity or a cavity-atom dressed system. The transition frequency of
the TLS can be tuned by Stark shift and the coupling strength
between the waveguide and the TLS can be varied by changing the
distance between them40,41. Especially, for a waveguide-atom dressed
system, the effective coupling strength of the dressed TLS to the
waveguide can be adjusted by the extra laser42. We have made two
approximations: one is to extend the frequency integration to 6‘,
the other is to assume that the coupling strengths are independent of

the frequencies, which is equivalent to the Markovian approxi-
mation. These approximations are valid since we will focus on the
pulse with a narrow frequency width around the carrier frequency.

The arbitrary state of the system in the single-excitation subspace

has the form of Y Nð Þ tð Þ
		 E

~

ð
dka

Nð Þ
k tð Þa{kz

X
i

ð
dka

Nð Þ
i,k tð Þa{i,kz

�

b
Nð Þ

i tð Þsz
i � wj i, with a

Nð Þ
k tð Þ, a

Nð Þ
i,k tð Þ and b

Nð Þ
i tð Þ being the probabil-

ity amplitudes. The state jwæ represents that all the waveguides and
TLSs contain no excitation. We assume that, initially, a photon pre-
pared in a wave packet with a Lorenzian spectrum is injected into the
input waveguide, while the TLSs and the output waveguides contain

no excitation, i.e. a
Nð Þ

k 0ð Þ~
ffiffiffiffiffiffiffi
=p

p
k{$zi

, a
Nð Þ

i,k 0ð Þ~0, b
Nð Þ

i 0ð Þ~0. Here

and are the spectral width and the center frequency of the input
wave packet, respectively. When the width ?0, the frequency of the
carrier is equal to the central frequency. This corresponds to the
monochromatic limit.

Results
Single output channel. When the input channel is connected with
only one output channel by a TLS, the probability amplitudes are

a
1ð Þ

1,k~
{

ffiffiffiffiffiffiffiffiffiffiffiffi
c{

1 cz
1

p
id1z

cz
1
2 z

c{
1
2

, and a
1ð Þ

k ~
id1z

cz
1
2 {

c{
1
2

id1z
cz

1
2 z

c{
1
2

, with di 5 vi 2 k.

Obviously, only when
cz

1

c{
1

~1 and d1 5 0, the input photon is

redirected into the output channel completely. This is due to the
quantum interferences. When the detuning d1 is large enough, the
photon will be back into the input channel with an approximate unity

probability. Here we bring in a parameter gi~
max cz

i ,c{
i


 �
min cz

i ,c{
if g to

measure the difference between the coupling strengths of the ith
TLS to the input and the ith waveguides. When g1?1, we can get

a
1ð Þ

k

			 			2<1, which is similar to the large detuning case. Although the

decay rate of the TLS to the input channel is much smaller than the
decay rate to the output channel, the photon is prevented being
redirected into the output channel. The condition g1 R ‘

corresponds to the limit that one of the two waveguides is
decoupled to the TLS. In this case, the input and output channels
are not connected, and the photon will be back into the input channel
completely. To show the details of the quantum routing of the single

phonon in the N 5 1 case, we plot the probability a
1ð Þ

1,k

			 			2 against the

detuning and decay rates in Fig. 2. The probability a
1ð Þ

k

			 			2 is not

plotted here because a
1ð Þ

k

			 			2~1{ a
1ð Þ

1,k

			 			2. The probabilities of the

Figure 1 | Schematic diagram of the multi-channel quantum routing of
the single photons. N 1D waveguides are connected with the input channel

by N intermediate TLSs.

Figure 2 | Probability of the single photon in the 1st output channel in the

long-time limit a
1ð Þ

1,k

			 			2 against the detuning and decay rate when N 5 1.
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photon in the input and output channels can be controlled by
adjusting the detuning and coupling strengths. The single photon
can be directed into either of the two channels completely or directed
into the two channels with a desired probability. The N 5 1 case is
analogous to a waveguide coupled to a L-type three-level quantum
emitter25,43,44.

Two output channels. When the input channel is connected with
two output channels by two TLSs, the probability amplitudes are

obtained as a
2ð Þ

1,k~
{

ffiffiffiffiffiffiffiffiffiffiffiffi
c{

1 cz
1

p
id2z

cz
2
2

� �
id1z

cz
1
2 z

c{
1
2

� �
id2z

cz
2
2 z

c{
2
2

� �
{

c{
1 c{

2
4

, and

a
2ð Þ

k ~
id1z

cz
1
2 {

c{
1
2

� �
id2z

cz
2
2 {

c{
2
2

� �
{

c{
1 c{

2
4

id1z
cz

1
2 z

c{
1
2

� �
id2z

cz
2
2 z

c{
2
2

� �
{

c{
1 c{

2
4

. Because the

expression of a
2ð Þ

1,k is similar to a
2ð Þ

2,k , the study of the properties

a
2ð Þ

1,k

			 			2 and a
2ð Þ

k

			 			2 is enough. The large detuning between the 1st

TLS and the input photon prevents the photon being redirected
into the 1st channel. Especially, when d2 5 0 and cz

2 ~c{
2 , it also

prevents the photon being directed into the input channel. As a
result, for an extremely large value of d1, the photon will be
redirected into the 2nd channel with an approximate unity
probability when d2 5 0 and cz

2 ~c{
2 . And when both the

detunings d1 and d2 are large enough, the photon will be directed
into the input channel with an approximate unity probability.
Besides, the photon distribution can be influenced significantly by
the coupling strengths. For example, when d2 5 0 and cz

2 ~c{
2 , the

large value of cz
1 prevents the photon being directed into both the

input and 1st channels. When g1 5 g2 5 1 and d1 5 d2 5 0, the input
photon will be directed into the input channel with a small
probability and be redirected into the other two channels averagely
with a large probability. To see the details, we plot the probabilities

a
2ð Þ

1,k

			 			2 and a
2ð Þ

k

			 			2 against the detuning and coupling strength of the

2nd TLS when d1 5 0 and cz
1 ~c{

1 ~c{
2 in Fig. 3(a) and 3(b). It is

interesting that when d2 and cz
2 is small enough, the photon will be

back into the input channel with an extremely high probability. This
will be studied in detail below.

If we do not wish the input photon to be back into the input
channel, it is easy to choose the appropriate parameters which satisfy

a
2ð Þ

k ~0. Here we take two simple cases to investigate it. One case is
when cz

1 ~c{
1 and cz

2 ~c{
2 , the condition 4d1d2zc{

1 c{
2 ~0 can be

satisfied for various values of the detunings. The other case is when d1

5 d2 5 0, the relation cz
1 {c{

1

� �
cz

2 {c{
2

� �
~c{

1 c{
2 can be easily

satisfied. Especially, in the latter case, when cz
1 ~2c{

1 and cz
2 ~2c{

2 ,
the input single photon is redirected into the two output channels

with equal probability
1
2

. We plot the probabilities of the photon

being redirected into each of the two output channels in the two
cases in Fig. 3(c) and 3(d). It shows that the input photon can be
completely redirected into the output channels with various
probabilities.

It is necessary to study a special case of N 5 2, that is, the 2nd TLS
is decoupled to the 2nd output channel, i.e. cz

2 ~0. This can be
understood that an additional TLS is coupled to the input channel
in the N 5 1 case. The additional TLS will modify the system beha-
vior. For example, when g1 5 1 and d1 5 0, we find

a
2ð Þ

1,k~
{i4d2c{

1

4id2c{
1 zc{

1 c{
2

and a
2ð Þ

k ~
{c{

1 c{
2

4id2c{
1 zc{

1 c{
2

. Hence, when

the additional TLS resonantly interacts with the input photon, i.e.
d2 5 0, the photon is directed into the input channel compared with
the N 5 1 case, in which the photon is redirected into the 1st output
channel. This can be seen in Fig. 3(a) and 3(b). When d2 is large
enough, the input photon will be almost completely redirected,
mapped to the N 5 1 case. By adjusting the additional TLS, the
photon distribution in the input and output channels can be con-
trolled. This provides more control to the single output channel case.

N output channels. We proceed to study the general case that the
input channel connects with N output channels by N TLSs. Let’s first
consider the simplest case that all of the N output channels are
identical. That is to say, all the TLS are identical, all the decay rates
to the input channel are identical, and all the decay rates to the output
channels are identical. We label di 5 d, cz

i ~cz, and c{
i ~c{. The

probability amplitudes are obtained as a
Nð Þ

i,k ~
{2

ffiffiffiffiffiffiffiffiffiffiffiffi
c{cz
p

2idzczzNc{
, and

a
Nð Þ

k ~
2idzcz{Nc{

2idzczzNc{
. It is noted that when all the TLSs interact

1 4 7 10
0

0.5

1

1
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1
−
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Figure 3 | Probabilities a
2ð Þ

1,k

			 			2, a
2ð Þ

2,k

			 			2 and a
2ð Þ

k

			 			2 against the detunings and coupling strengthes when N 5 2. (a) and (b) are the probabilities a
2ð Þ

1,k

			 			2 and

a
2ð Þ

k

			 			2 when d1 5 0 and c{
1 ~cz

1 ~c{
2 , respectively. (c) and (d) are the probabilities a

2ð Þ
1,k

			 			2 and a
2ð Þ

2,k

			 			2. (c) is the probabilities against the detuning d1 when

cz
1 ~c{

1 , cz
2 ~c{

2 , and 4d1d2zc{
1 c{

2 ~0. (d) is the probabilities against the coupling constant cz
1 when d1 5 d2 5 0, and cz

1 {c{
1

� �
cz

2 {c{
2

� �
~c{

1 c{
2 .
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resonantly with the input photon and the coupling strengths satisfy
c1 5 Nc2, the interferences prevent the input photon being directed
into the input channel and redirect the input photon into each of the

N output channels with equal probability
1
N

. When all the coupling

strengths are equal and all the detunings are zero, the probabilities

are obtained as a
Nð Þ

i,k

			 			2~ 2
1zN

� 2

and a
Nð Þ

k

			 			2~ 1{N
1zN

� 2

. As

discussed above, the quantum interferences redirect the input
photon completely from the input channel into the other channel
when N 5 1. As the number of the output channels increases, the
probability of the photon back into the input channel increases.
When N 5 3, the input photon is distributed in each of the four
channels, including the input and output channels, with equal

probability
1
4

. When the number of the output channels is large

enough, the quantum interferences direct the input photon back
into the input channel almost completely.

We now study a simple case to illustrate how to redirect the input
photon into the desired channel. We assume that N 2 1 of the N
channels are identical except the mth channel. we label di?m 5 d9,
cz

i=m~cz’, and c{
i=m~c{’. The probability amplitudes are obtained

as a
Nð Þ

m,k~
{

ffiffiffiffiffiffiffiffiffiffiffiffi
c{

m cz
m

p
id0z cz ’

2

� �
idmz cz

m
2

� �
id0z cz ’

2 z
N{1ð Þc{ ’

2

� �
z

c{
m
2 id0z cz ’

2

� � and

a
Nð Þ

k ~
idmz

cz
m
2

� �
id0z cz ’

2 {
N{1ð Þc{ ’

2

� �
{

c{
m
2 id0z cz ’

2

� �
idmz cz

m
2

� �
id0z cz ’

2 z
N{1ð Þc{ ’

2

� �
z

c{
m
2 id0z cz ’

2

� � . When

the decay rates c{
m ~cz

m are much larger than other parameters,

a
Nð Þ

m,k<{
id0z cz ’

2

id0z cz ’
2 z

N{1ð Þc{ ’
4

. The photon will be redirected into

the mth channel almost completely when 2cz’? N{1ð Þc{’. The
limit of this condition is that the N 2 1 TLSs are decoupled to the
input channel. Besides, when all the detunings are large enough, the
photon will be directed into the input channel with an approximate
unity probability. When c{

m ~cz
m , dm 5 0, and d9 is large enough, the

photon will be redirected into the mth channel with an approximate
unity probability. Similar to the N 5 2 case, the photon can be
redirected completely into the output channels where the photon
probabilities can be controlled. As a consequence, the N output
channel quantum routing of the single photons can be achieved.

The single photons are considered as the ideal carrier of quantum
information. The quantum information can be encoded by the rou-
ted photons. We label two degenerate photon modes as a1 and a2. For
example, the two degenerate modes can be horizontally and vertically
polarized modes or can be right and left circularly polarized modes.
To achieve the quantum routing of the quantum information, we
bring in N extra intermediate TLSs to make sure that each output
port is connected with the input port by two intermediate TLSs. The
distance between the two intermediate TLSs is much smaller than the
wavelength of the photon. One of the two intermediate TLSs only
interacts with a1-mode photon and the other only interacts with a2-
mode photon. In this case, the Hamiltonian can be written as

H~
X

m~1,2

ð?
{?

dkka{mkamkz
X

i

ð?
{?

dkka{mi,kami,kzvmis
z
mi

��
s{

miz
Ð?
{? dk gz

miami,kzg{
miamk

� �
sz

mizh:c:�g. To study the quantum
routing of the quantum information, we take the input state as

Yj i~ Aa
Nð Þ

k 0ð Þa{1kzBa
Nð Þ

k 0ð Þa{2k

h i
wj i, with jAj2 1 jBj2 5 1.

Obviously, when gz
1i ~gz

2i , g{
1i ~g{

2i and v1i 5 v2i, the input state
jYæ can be routed to the desired channel with desired probability. In
this case, the information remains unchanged after being routed. In
our scheme, the control information is stored in the coupling
strength and the TLSs. It will be interesting to use quantum

information to control the routing. This might be achieved by pre-
paring connections between the control quantum states and the
target quantum states.

The authors in Ref. 9 have raised a set of five requirements
imposed on a full quantum router. It will be interesting when a router
meets all the requirements. As discussed above, Our scheme will
meet all those requirements if the control information can also be
encoded into quantum states. This full quantum routing scheme in
various systems is an interesting question which need be further
studied.

Discussion
We have investigated the quantum routing of the single photons
from one channel to multiple output channels in the proposed sys-
tem. We have shown that the input photon can be redirected into any
of the channels with a high efficiency in our scheme. Alternatively, by
cascaded combining many two output channel routers demonstrated
in the presented literatures, the multiple output channel quantum
routing can be achieved. We note that our general N output channel
quantum routing shows essential advantages compared with the
cascaded combined one. In the cascaded combined scheme, the effi-
ciency of the i output channel quantum routing is limited by the
efficiency of the i 2 1 output channel quantum routing. However,
our scheme is immune to these drawbacks. It is necessary to point out
that our scheme is equivalent to that the input waveguide loop is
coupled to N output waveguide by an intermediate N 1 1-level
system at the middle point of the waveguide loop. Our scheme sheds
light on the experimental realization of quantum routing.

Methods
The continuum form of Hamiltonian (1) can be derived from its discrete form by
following the technique in Ref. 45, 46. The free Hamiltonian of the photon in the 1D
cavity of length L has the form of H0~

X
k

vk~a{
k~ak , and the interaction Hamiltonian

of the photon with the TLS has the form of HI~
X

k
~g~a{

ks{zh:c. The sum can be

converted into an integral by
2p

L

X
k
?
ð

dk. As done in Ref. 45, we can bring in the

operator a{
k~

ffiffiffiffiffi
L

2p

r
~a{k and obtain the Hamiltonian (1) with continuum form.

The Shrödinger equation governed by Hamiltonian (1) gives a set of differential
equations of probability amplitudes. By performing the Laplace transformation, the
set of differential equations under the initial condition are transformed as

a
Nð Þ

k sð Þ~
ffiffiffiffiffiffiffi
p=

p
szivkð Þ vk{$zið Þ{

X
j~1::N

ig{
j

szivk
b

Nð Þ
j sð Þ

a
Nð Þ

i,k sð Þ~ {igz
i

szivi,k
b

Nð Þ
i sð Þ

0~ sziviz
cz

i

2

� 
b

Nð Þ
i sð Þz

X
j~1::N

ffiffiffiffiffiffiffiffiffiffiffiffi
c{

i c{
j

p
2

b
Nð Þ

j sð Þz 2pg{
i

ffiffiffiffiffiffiffi
p=

p
sz zi$

ð2Þ

We proceed to obtain the expression of b
Nð Þ

i sð Þ. For simplicity, we label

ai~sziviz
cz

i

2
, bi~

ffiffiffiffiffiffi
c{

i

2

r
, and ci~

2pg{
i

ffiffiffiffiffiffiffi
p=

p
sz zi$

. The last equation in equations (2)

can be written as

aib
Nð Þ

i sð Þzbi

X
j~1::N

bjb
Nð Þ

j sð Þzci~0 ð3Þ

From equation (3), we can find
X

j~1::N
bjb

Nð Þ
j sð Þ~{

X
i~1::N

b2
i

aiP
j~1::N bjb

Nð Þ
j sð Þ{

P
i~1::N

ci bi
ai

to obtain the expression of
X

j~1::N
bjb

Nð Þ
j .

Consequently, the expression of b
Nð Þ

i sð Þ can be obtained as

b
Nð Þ

i ~{
2p

ffiffiffiffiffiffiffiffi
p=

p
sz zi$

g{
i Pj=i szivjzcz

j

� �
Pj~1::N szivjzcz

j

� �
z
P

j~1::N c{
j Pj0=j szivj0zcz

j0

� �h i ð4Þ

From the equation (4) and equations (2), the expressions of a
Nð Þ

k sð Þ and a
Nð Þ

i,k sð Þ can be
easily found.
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In the long-time limit, the amplitudes can be found by performing the inverse

Laplace transformation of a
Nð Þ

k sð Þ, a
Nð Þ

i,k sð Þ and b
Nð Þ

i sð Þ. Then we prove that the

amplitude b
Nð Þ

i tð Þ<0 when t R ‘. It means that the TLSs are in their ground states in
the long-time limit due to the interaction with the continuum of modes. Obviously,

Pj~1::N szivjzcz
j

� �
z
X

j~1::N
c{

j Pj0=j szivj0zcz
j0

� �h i
~ P

i~1::N
s{aið Þ,

with ai being the root of the equation

Pj~1::N szivjzcz
j

� �
z
X

j~1::N
c{

j Pj0=j szivj0zcz
j0

� �h i
~0. We lable ai 5 xi

1 iyi, with xi and yi being real numbers. We will show that the value of xi can only be
smaller than zero.

If xi $ 0, we can get

Pj~1::N aizivjzcz
j

� �
z
X

j~1::N
c{

j Pj0=j aizivj0zcz
j0

� �h i
~Pj~1::N imjznj

� �
z
P

j~0::N c{
j Pj0=j imj0znj0

� �h i
~0, with mj and nj being

real numbers and nj . 0. We label imjznj~Rje
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We have taken the conversation of energy condition vi,k 5 vk. After scattering, the

probabilities of the single photon in each channel are a
Nð Þ

i,k

			 			2 and a
Nð Þ

k

			 			2.
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8. Lemr, K. & Černoch, A. Linear-optical programmable quantum router. Opt.
Comm. 300, 282 (2013).

9. Lemr, K., Bartkiewicz, K., Černoch, A. & Soubusta, J. Resource-efficient linear-
optical quantum router. Phys. Rev. A 87, 062333 (2013).

10. Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).
11. Passaro, E. et al. Joining and splitting the quantum states of photons preprint at

http://arxiv.org/abs/1309.4254 (2013).
12. Vitelli, C. et al. Joining the quantum state of two photons into one. Nature Photon.

7, 521 (2013).
13. Shen, J.-T. & Fan, S. Coherent photon transport from spontaneous emission in

one-dimensional waveguides. Opt. Lett. 30, 2001 (2005).
14. Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-

dimensional waveguide coupled to a two-Level system. Phys. Rev. Lett. 98, 153003
(2007).

15. Shen, J.-T. & Fan, S. Strongly correlated multiparticle transport in one dimension
through a quantum impurity. Phys. Rev. A, 76, 062709 (2007).

16. Zhou, L., Gong, Z. R., Liu, Y.-X., Sun, C. P. & Nori, F. Controllable scattering of a
single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101,
100501 (2008).

17. Roy, D. Two-photon scattering by a driven three-level emitter in a one-
dimensional waveguide and electromagnetically induced transparency. Phys. Rev.
Lett. 106, 053601(2011).

18. Rephaeli, E. & Fan, S. Stimulated emission from a single excited atom in a
waveguide. Phys. Rev. Lett. 108, 143602(2012).

19. Longo, P., Schmitteckert, P & Busch, K. Few-photon transport in low-dimensional
systems: interaction-induced radiation trapping. Phys. Rev. Lett. 104, 023602
(2010).

20. Zheng, H., Gauthier, D. J. & Baranger, H. U. Cavity-free photon blockade induced
by many-body bound states. Phys. Rev. Lett. 107, 223601(2011).

21. Zheng, H. & Baranger, H. U. Persistent quantum beats and long-distance
entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110,
113601 (2013).

22. Zheng, H. & Baranger, H. U. Waveguide-QED-based photonic quantum
computation. Phys. Rev. Lett. 111, 090502 (2013).

23. Liao, J. Q. & Law, C. K. Correlated two-photon transport in a one-dimensional
waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010).

24. Huang, J. F., Shi, T., Sun, C. P. & Nori, F. Controlling single-photon transport in
waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013).

25. Witthaut, D. & Sørensen, A. S. Photon scattering by a three-level emitter in a one-
dimensional waveguide. New J. Phys. 12, 043052 (2010).

26. Li, Q., Zhou, L. & Sun, C. P. Waveguide QED: controllable channel from quantum
interference. preprint at http://arxiv.org/abs/1308.2011 (2013).

27. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science
319, 1062 (2008).

28. Vetsh, E. et al. Optical interface created by laser-cooled atoms trapped in the
evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603
(2010).

29. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires
coupled to quantum dots. Nature (London) 450, 402 (2007).

30. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow
fiber. Phys. Rev. Lett. 102, 203902 (2009).

31. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature
Nanotechnol. 5, 195 (2010).

32. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot
in a photonic nanowire. Nature Photon. 4, 174 (2010).

33. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327,
840 (2010).

34. Astafiev, O. et al. Ultimate on-chip quantum amplifier. Phys. Rev. Lett. 104,
183603 (2010).

35. Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in
photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

36. Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X
2, 011014 (2012).

37. Menon, V. M. et al. All-optical wavelength conversion using a regrowth-free
monolithically integrated Sagnac interferometer. IEEE Photonics Technol. Lett.
15, 254 (2003).

38. Menon, V. M., Tong, W., Xia, F., Li, C. & Forrest, S. R. Nonreciprocity of
counterpropagating signals in a monolithically integrated Sagnac interferometer.
Opt. Lett. 29, 513 (2004).

39. Bertocchi, G., Alibart, O., Ostrowsky, D. B., Tanzilli, S. & Baldi, P. Single-photon
sagnac interferometer. J. Phys. B 39, 1011 (2006).

40. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of
single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2006).

41. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q
toroid microcavity on a chip. Nature 421, 925 (2002).

42. Yan, W.-B., Fan, Q.-B. & Zhou, L. Control of correlated two-photon transport in a
one-dimensional waveguide. Phys. Rev. A 85, 015803 (2012).

43. Bradford, M., Obi, K. C. & Shen, J.-T. Efficient single-photon frequency
conversion using a sagnac interferometer. Phys. Rev. Lett. 108, 103902 (2012).

44. Bradford, M. & Shen, J.-T. Single-photon frequency conversion by exploiting
quantum interference. Phys. Rev. A 85, 043814 (2012).
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