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Perinatal Oxidative Stress May 
Affect Fetal Ghrelin Levels in 
Humans
Zhong-Cheng Luo1,2, Jean-François Bilodeau3, Anne Monique Nuyt4, William D. Fraser8, 
Pierre Julien6,7, Francois Audibert2, Lin Xiao2, Carole Garofalo5 & Emile Levy5

In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown 
whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton 
pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers 
of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health 
biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-
to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin 
concentrations. Strong positive correlations were observed between maternal and cord plasma 
biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). 
Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently 
negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; 
r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, 
p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to 
oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were 
observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect 
fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to 
metabolic syndrome related disorders remain to be elucidated.

Consistent evidence suggests that the perinatal period is a critical developmental time window in “programming” 
future risk of metabolic syndrome [obesity, impaired glucose tolerance, elevated blood pressure, high serum 
triglycerides and low serum high-density lipoprotein (HDL) levels] and related disorders (e.g. type 2 diabetes)1,2 
How this vulnerability is developed during fetal life remains unclear. Oxidative stress - the loss of balance between 
pro-oxidation and anti-oxidation forces in the biological systems, has been associated with multiple perinatal 
adverse conditions including diabetes, preeclampsia, preterm birth and low birth weight that are predictive of an 
elevated risk of the metabolic syndrome in postnatal life3, and hence may be a common pathway in developmental 
metabolic programming4. Experimental studies in animal models and cell lines support the role of redox balance 
in modulating the expression of many genes5,6, and the beta-cell function could be a sensitive target to oxidative 
stress7–9. However, there is a lack of data on whether oxidative stress may affect metabolic health biomarkers in 
human fetuses/newborns. The present study sought to explore the hypothesis that perinatal oxidative stress may 
affect circulating levels of metabolic health biomarkers as related to fetal growth (insulin, IGF I and IGF II), insulin 
sensitivity, beta-cell function and energy regulation (leptin, adiponectin, ghrelin) in human fetuses/newborns. 
We studied leptin, adiponectin, ghrelin since they are important hormones in the regulation of energy balance 
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and insulin sensitivity10. Interestingly, ghrelin is mainly secreted by the pancreas during fetal life, rather than the 
fundus of the stomach in adult humans11. It is unknown whether this “pancreatic” fetal hormone is related to 
perinatal oxidative stress.

Methods
Subjects and specimens. In a prospective pregnancy cohort study on fetal insulin sensitivity12, maternal and 
cord venous blood specimens were specifically collected for assays of biomarkers of oxidative stress for assessing 
its role in early life metabolic health. Briefly, a total of 339 healthy women (without pre-existing diabetes or other 
severe maternal illnesses) bearing a singleton fetus without malformation were recruited at 24–28 weeks gestation in 
Montreal (Sainte-Justine, Jewish General, and Saint Mary’s Hospitals) between August 2006 and December 2008. A 
total of 248 mother-infant pairs (73%) with maternal (24–28 weeks gestation) and cord plasma specimens available 
for assays of oxidative stress biomarkers constituted the final study cohort. There were 25 pregnancies complicated 
by gestational diabetes according to the 2003 American Diabetes Association’s 2-hour 75 g oral glucose tolerance 
test (OGTT) diagnostic criteria13, fourteen pregnancies complicated by gestational hypertension (including 3 
cases of preeclampsia), and 11 by preterm deliveries (all mild preterm, 33–36 weeks). They were included since 
their exclusions did not affect all results. The characteristics of the study cohort have been described previously12.

Maternal venous blood specimens were collected at 24–28 weeks gestation, and cord venous blood specimens 
were collected immediately after delivery of the baby but before delivery of the placenta. A tube of EDTA blood 
sample was specifically collected for assays of oxidative stress biomarkers by adding 0.1% butylated hydroxytoluene 
to prevent oxidation after specimen collection. All blood specimens were kept on ice and centrifuged within 30 
minutes after collection. Plasma specimens were stored in multiple aliquots at − 80 °C until biochemical assays.

Ethics statement. The study was approved by the Research Ethics Committee of Sainte-Justine Hospital 
Research Center, University of Montreal, and adhered to the tenets and guidelines of the Declaration of Helsinki. 
Written informed consent was obtained from all participants.

Biochemical assays. Plasma total F2-isoprostanes including 7 isomers (8-iso-PGF2α , 15(R)-PGF2α , 
8-iso-15(R)-PGF2α , iPF2α -IV, iPF2α -VI, 5-iPF2α -VI, 5-8,12-iso-iPF2α -VI) (pg/ml) were measured by 
high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using a column packed 
with core-shell particles14. The intra- and inter-assay coefficients of variation (CVs) were in the range of 2.6% to 
8.2%. Plasma malondialdehyde (MDA) was measured by HPLC with fluorescence detectionx14. The intra- and 
inter-assay CVs were in the range of 3.6% to 6.8%.

Plasma unacylated ghrelin was measured by a human unacylated ghrelin immunoassay kit (SPI-BIO, Bertin). 
The intra- and inter-assay coefficients of variation (CVs) were in the range of 2.8% to 9.2%. We chose to measure 
unacylated ghrelin since it accounts for about 99% of total ghrelin, while acylated ghrelin accounts for only about 
1% of total ghrelin in cord blood15. Also, for accurate measurement of acylated ghrelin, specimens need special 
treatment to prevent the degradation of acylated ghrelin, but this was not done during specimen collection and 
processing in the study. Without timely anti-deacylation treatment, acylated ghrelin would be rapidly converted 
to unacylated ghrelin in blood samples16. Therefore, the measurement of plasma unacylated ghrelin is effectively 
the measurement of total ghrelin in the present study. For simplicity, we used the term ghrelin in lieu of unacylated 
ghrelin in results presentation.

Data on maternal and cord plasma concentrations of leptin and adiponectin, insulin-like growth factor I (IGF-I), 
IGF-II and surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio) and beta cell func-
tion (proinsulin-to-insulin ratio) are available in the study cohort12,17,18. The intra- and inter-assay CVs in the assays 
of plasma glucose, insulin, proinsulin, IGF-I, IGF-II, leptin and adiponectin were in the range of 2.0% to 10.4%.

All assays were blinded to the labs. The lab staff had no information on clinical characteristics of study subjects.

Oxidative stress biomarkers. Maternal and fetal oxidative stress levels were represented by plasma total 
F2-isoprostanes and MDA concentrations. F2-isoprotanes, the products of lipid peroxidation, are reliable bio-
markers of in vivo oxidative stress19. MDA, another product of lipid peroxidation, was used for evaluating the 
consistency of associations between oxidative stress and fetal metabolic health biomarkers. Many previous studies 
used enzyme-linked immuno-assays to measure only one specific isomer of F2-isoprostaness - the 8-iso-PGF2α  
which accounts for only a small fraction of total F2-isoprostanes14, as an oxidative stress biomarker. The use of our 
recently developed technique for measuring F2-isoprostanes by HPLC-MS/MS allows the simultaneous measure-
ments of seven isomers. In addition to total F2-isoprostanes, we explored the associations of specific F2-isoprostane 
isomers with fetal metabolic health biomarkers.

Fetal metabolic health biomarkers. Fetal metabolic health biomarkers included cord plasma 
glucose-to-insulin ratio (a surrogate indicator of fetal insulin sensitivity)20 proinsulin-to-insulin ratio (a surrogate 
indicator of beta-cell function21), insulin, IGF-I and IGF-II (key fetal growth hormones)17, leptin, adiponectin and 
ghrelin concentrations. Leptin, adiponectin and ghrelin are important hormones in regulating insulin sensitiv-
ity and energy balance22,23. We hypothesized that perinatal oxidative stress may “program” long-term metabolic 
risk through affecting one or more of these fetal growth and metabolic health biomarkers. Birth weight (z score, 
according to the Canadian sex- and gestational age-specific birth weight standards24) was also examined because 
oxidative stress has been associated with impaired fetal growth in some studies25,26.

Statistical analysis. Median (inter-quartile range) and Mean± SD (standard deviation) are presented for 
plasma ghrelin, MDA and F2-isoprostanes concentrations. Biomarker data (positively skewed crude data dis-
tribution) were log-transformed in partial correlation analyses adjusting for gestational age at blood sampling 
(maternal or cord blood) and glucose concentration (an important indicator of metabolic status at the time of blood 
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sampling), and in t test or analysis of variance for differences between groups where appropriate. Generalized linear 
models were used to assess the associations of oxidative stress with cord plasma metabolic health biomarkers in 
log-transformed data adjusting for maternal and pregnancy characteristics. The effects were expressed in percentage 
change [for a dependent variable (y) in log scale, the regression coefficient (β) effectively represents the proportion 
of change in the original scale [log y1 – log y0 =  β, then log (y1/y0) =  β, thus y1/y0 =  eβ , and the percentage change is 
(eβ -1)*100%]. The co-variables considered for inclusion in the adjusted models were maternal race (White, others), 
age (< 35, ≥ 35 years), parity (primiparous: yes/no), pre-pregnancy BMI (kg/m2), smoking (yes/no), alcohol use 
(yes/no), gestational diabetes (yes/no), gestational hypertension (yes/no), infant sex (boy, girl), gestational age 
(week), ponderal index (birth weight/length3, kg/m3), mode of delivery (cesarean, vaginal) and cord plasma glu-
cose concentration (SD score). Co-variables with p values < 0.20 were retained in the parsimonious final adjusted 
models. Birth weight was not included in the adjusted models since it was highly correlated with ponderal index, 
a surrogate indicator of fetal adiposity associated with insulin sensitivity12,27. Data management and analyses were 
conducted using Statistical Analysis System (SAS), Version 9.2 (SAS Institute, Cary, North Carolina). P values 
< 0.003 were considered statistically significant, accounting for 16 primary comparisons of interest (8 cord plasma 
biomarkers as the primary outcomes, 2 cord plasma oxidative stress biomarkers as the primary exposures, total 
number of primary comparisons =  8*2 =  16, adjusted p value cutoff =  0.05/16 =  0.003). The study had a power of 
99% to detect an absolute correlation efficient of 0.3 or greater, taking into account of multiple tests.

Results
Comparing plasma concentrations in cord vs. maternal blood, MDA (median: 332.2 vs. 168.2 pmol/ml) and total 
F2-isoprostanes (median: 3232.1 vs.2320.9 pg/ml) were all significantly higher (Table 1). Plasma concentrations 
were higher in cord versus maternal blood in each of the seven F2-isoprostane isomers. Ghrelin concentrations 
were also much higher in cord vs. maternal plasma. Descriptive statistics on other biomarkers (glucose-to-insulin 
ratio, proinsulin-to-insulin ratio, IGF-I, IGF-II, leptin, adiponectin) in this cohort have been reported in previous 
works12,17,18, and thus are not presented here.

Gestational age at birth was positively correlated to cord plasma leptin (crude r =  0.22, p =  0.0007) and 
adiponectin (r =  0.19, p =  0.0025) concentrations, but negatively correlated to cord plasma IGF-I (r =  − 0.22, 
p =  0.0001) concentrations. There were no significant correlations between gestational age and cord plasma MDA 
(r =  − 0.10, p =  0.12), F2-isoprostanes (r =  − 0.06, p =  0.36), ghrelin (r =  0.10, p =  0.12), insulin (r =  − 0.11, 
p =  0.09), proinsulin (r =  − 0.12, p =  0.05) and IGF-II (r =  0.09, p =  0.17) concentrations.

Scatter plots revealed negative relationships between maternal or cord plasma F2-isoprostanes and cord plasma 
ghrelin concentrations (tests for linear trends in log transformed data, all p <  0.0001) (Fig. 1), and between maternal 
plasma MDA and cord plasma ghrelin concentrations (p <  0.0001). There was also a negative relationship between 
cord plasma MDA and ghrelin concentrations, but the association was not statistically significant (p =  0.066).

Adjusting for gestational age at maternal and cord blood sampling and glucose concentration, significant 
positive correlations were observed between maternal and cord plasma concentrations in ghrelin (partial 
r =  0.33, p <  0.0001) and biomarkers of oxidative stress (partial r =  0.33 for MDA, r =  0.74 for F2-isoprostanes, 
all p <  0.0001) (Table 2). Consistent negative correlations were observed between cord plasma ghrelin levels and 
indices of oxidative stress in both maternal (partial r =  − 0.32, p <  0.0001 for MDA; r =  − 0.31, p <  0.0001 for 
total F2-isoprostanes) and cord plasma (partial r =  − 0.13, p =  0.04 for MDA; r =  − 0.32, p <  0.0001 for total 
F2-isoprostanes). There were no significant correlations in maternal or cord plasma concentrations of MDA or 
total F2-isoprostanes with cord plasma concentrations of insulin, leptin, adiponectin, IGF-I or IGF-II. Similarly, 
there were no significant correlations in oxidative stress biomarkers with cord plasma glucose-to-insulin and 
proinsulin-to-insulin ratios (Table 2), or with cord plasma proinsulin concentrations (data not shown).

Exploratory analyses showed that cord plasma ghrelin concentrations were negatively correlated with four 
specific F2-isoprostane isomers (partial r =  − 0.34 for 8-iso-PGF2α , p <  0.0001; r =  − 0.31 for 15(R)-PGF2α , 
p <  0.0001; r =  − 0.34 for 8-iso-15(R)-PGF2α , p <  0.0001; r =  − 0.17 for iPF2α -IV, p =  0.007), but no significant 

Maternal plasma (24–28 weeks gestation) Cord plasma

Median (IQR) Mean±SD Median (IQR) Mean±SD Pξ

MDA, pmol/ml 168.2 (106.6, 266.5) 244.6 ±  311.8 332.2 (238.1, 514.4) 413.3 ±  298.4  <  0.0001

F2-Isoprostanes, pg/ml

8-iso-PGF2α 129.1 (92.5, 186.3) 146.8 ±  108.6 189.1 (133.9, 283.0) 240.9 ±  223.8  <  0.0001

15(R)-PGF2α 430.7 (354.3, 540.8) 462.5 ±  236.3 531.9 (431.5, 738.7) 612.1 ±  378.6  <  0.0001

8-iso-15(R)-PGF2α 127.8 (92.8, 126.0) 128.9 ±  66.7 202.4 (156.9, 281.5) 218.8 ±  127.7  <  0.0001

iPF2α-IV 68.7 (60.0, 80.5) 70.6 ±  30.1 76.1 (66.1, 92.9) 82.6 ±  42.0  <  0.0001

iPF2α-VI 297.5 (249.2, 398.1) 390.6 ±  591.4 466.2 (374.4, 658.2) 598.8 ±  637.6  <  0.0001

5-iPF2α-VI 188.4 (161.5, 212.3) 212.4 ±  140.5 261.1 (223.1, 306.4) 306.0 ±  201.1  <  0.0001

( ±  )5-8,12-iso-iPF2α-VI 966.5 (808.3, 1304.9) 1123.0 ±  587.5 1384.7 (1134.4, 1691.6) 1517.2 ±  634.7  <  0.0001

Total F2-Isoprostanes 2320.9 (1884.6, 2802.8)8) 2370.0 ±  1084.3 3232.1 (2720.7,3844.3 ) 3358.3 ±  1465.5  <  0.0001

Ghrelin, pg/ml 130.0 (83.7, 178.5) 153.6 ±  119.7 392.8 (268.9, 570.1) 465.2 ±  297.5  <  0.0001

Table 1.  Maternal and cord plasma concentrations of oxidative stress biomarkers (MDA, F2-Isoprostanes) 
and ghrelin in mother-newborn pairs (N = 248). MDA =  malondialdehyde; IQR =  inter-quartile range  
(25th, 75th); SD =  standard deviation. ξ P value in paired t tests for differences comparing concentrations in cord 
plasma versus maternal plasma in log-transformed data.
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Figure 1. Scatter plots of cord plasma ghrelin concentrations in relation to oxidative stress biomarkers [F2-
isoprostanes and MDA (malondialdehyde)] in maternal and cord plasma. All data presented are in log scale.

Maternal plasma  
(24–28 weeks) Cord plasma

MDA F2-isoP MDA F2-isoP Ghrelin

Mother plasma

F2-isoP 0.31τ

Ghrelin −0.23‡ −0.39τ − 0.07 −0.33τ 0.51τ

Cord plasma

MDA 0.33τ 0.09

F2− IsoP 0.20† 0.74τ 0.11

Ghrelin −0.31τ −0.31τ − 0.13* −0.32τ

Leptin − 0.05 − 0.18† − 0.02 − 0.06 0.05

Adiponectin − 0.05 − 0.17† 0.01 − 0.03 0.06

Insulin 0.04 − 0.01 0.04 0.03 − 0.02

Glucose/insulin − 0.02 − 0.06 − 0.01 − 0.09 0.05

Proinsulin/insulin − 0.03 − 0.03 − 0.07 0.06 − 0.06

IGF-1 0.01 0.03 − 0.06 0.02 − 0.15*

IGF-II 0.01 − 0.07 − 0.04 − 0.04 − 0.04

Birth weight (z) 0.05 0.04 − 0.09 − 0.03 -0.16†

Table 2.  Partial correlation coefficients (n = 248 mother-newborn pairs) between oxidative stress and 
fetal (cord plasma) metabolic health biomarkers.ξ ξPartial correlations adjusting for gestational age at blood 
sampling (maternal and cord blood) and glucose concentration (an important indicator of metabolic status at 
the time of blood sampling); data were log-transformed for biomarkers with skewed crude data distribution 
before the correlation analyses. Correlation coefficients in bold remained significant after accounting for 
multiple tests at p <  0.001. *p <  0.05, †p <  0.01, ‡p <  0.001, τ  p <  0.0001. MDA =  malondialdehyde; F2-
Isop =  total F2-isoprostanes.
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correlations with the other three F2-isoprostane isomers (r =  − 0.09 for iPF2α -VI, p =  0.15; r =  − 0.03 for 
5-iPF2α -VI, p =  0.63; r =  0.05 for 5–8,12-iso-iPF2α -VI, p =  0.49). There were no significant correlations between 
all specific F2-isoprostane isomers and cord plasma leptin or adiponectin concentrations (all p >  0.1), except for 
that cord plasma concentrations of 5-iPF2α -VI and adiponectin were weakly correlated (r =  0.16, p =  0.02).

Adjusting for maternal plasma ghrelin concentration, pre-pregnancy BMI, infant sex, gestational age, ponderal 
index and mode of delivery (other co-variables were excluded at p >  0.2 in multivariate generalized regression mod-
els), significant negative associations remained in maternal or cord plasma F2-isoprostanes and maternal plasma 
MDA concentrations with cord plasma ghrelin concentrations (Table 3). For each log unit increase in plasma 
concentration, cord plasma ghrelin decreased by 14.2% for maternal plasma MDA (adjusted p <  0.001), by 10.7% 
for maternal plasma total F2-isoprostanes (adjusted p =  0.039), and by 14.0% for cord plasma total F2-isoprostanes 
(adjusted p =  0.002), respectively. The association between cord plasma MDA and ghrelin became not statistically 
significant (p =  0.206) after the multivariate adjustment, but the point estimate also showed a negative association. 
There was a strong influence of maternal ghrelin on fetal circulating ghrelin concentration: each log (pg/ml) unit 
increase in maternal ghrelin was associated with a 68% increase in cord plasma ghrelin (p <  0.001).

Cord plasma ghrelin concentration was negatively correlated with birth weight z score (accord-
ing to the Canadian sex and gestational age-specific fetal growth standards (21)) (r =  − 0.15, p =  0.02). 
Large-for-gestational-age (LGA >  90th percentile, n =  27) infants had lower ghrelin concentrations than AGA 
infants (median: 306.4 vs. 397.2 pg/ml, p =  0.03). However, cord plasma ghrelin concentrations were not signifi-
cantly different comparing birth weight small-for-gestational-age (SGA <  10th percentile, n =  14) vs. appropriate-for 
gestational age (AGA) infants (median: 443.0 vs. 397.2 pg/ml, p =  0.55).

There were no significant correlations between birth weight (z score) and oxidative stress biomarkers (MDA 
or F2-isoprostanes) (all p >  0.05, data not shown). Cord plasma concentrations of MDA, total F2-isoprostanes or 
specific F2-isoprostane isomers were similar comparing SGA vs. AGA newborns, except for that SGA infants had 
lower 5-iPF2α -VI concentrations (median: 228.3 vs. 262.6 pg/ml, p =  0.01). There were no significant differences 
in cord plasma biomarkers of oxidative stress in LGA vs. AGA infants.

There were no significant differences in maternal and cord plasma concentrations of ghrelin or biomarkers of 
oxidative stress comparing gestational diabetic (n =  25) versus non-diabetic pregnancies, or gestational hyper-
tensive (n =  14) versus non-hypertensive pregnancies, or preterm (n =  11) vs. term births (all p >  0.05, data not 
shown). Excluding these patients from the analyses, the results were similar. There were no significant differences 
in cord plasma biomarkers of oxidative stress in caesarean-section (n =  70) vs. vaginal deliveries, or between boys 
and girls (all p >  0.05, data not shown).

Discussion
Main findings. To our knowledge, this is the first study demonstrating a consistent negative correlation in per-
inatal (maternal or fetal) oxidative stress with circulating ghrelin levels in human fetuses/newborns. Also, this is the 
largest pregnancy cohort demonstrating that maternal and fetal oxidative stress levels are strongly positively correlated.

Data interpretation in comparisons with previous studies. The developmental programming hypothesis 
is well recognized2, but data on perinatal biomarkers that may be related to the mechanisms of metabolic programming 
remain scanty in humans28. The present study provides important evidence suggesting that perinatal oxidative stress does 
not affect most fetal metabolic health indicators as measured at birth in a relatively low-risk pregnancy cohort (without 

Per log unit increase in concentration of: Adjusted % change (95% CI) in cord plasma plasma ghrelin concentration ξ P

Maternal plasma (24–28 weeks)

 MDA − 14.2 (− 20.9, − 7.0)  <  0.001

 Total F2-isoprostanes − 10.7 (− 19.9, − 0.6) 0.039

 Ghrelin 68.1 (50.4, 87.9)  <  0.001

Cord plasma 

 MDA − 6.9 (− 16.8, 4.1) 0.206

 Total F2-isoprostanes − 14.0 (− 21.8, − 5.3) 0.002

Table 3.  Adjusted percentage change (95% CI)ξ in cord plasma ghrelin concentration in relation to 
maternal plasma ghrelin, maternal and cord plasma MDA and F2-isoprostanes concentrations. ξ Co-
variables considered for inclusion in the adjusted models were maternal race, age, parity, pre-pregnancy body 
mass index, smoking, alcohol use, gestational diabetes, gestational hypertension, infant sex, gestational age, 
ponderal index, mode of delivery and cord plasma glucose concentration; only co-variables with p values <  0.20 
were retained in the final adjusted models (pre-pregnancy BMI, infant sex, gestational age, ponderal index 
and mode of delivery). The models for the effects of MDA and F2-isoprostanes on cord ghrelin concentration 
were further adjusted for maternal ghrelin concentration. Separate models were fitted for maternal and cord 
blood oxidative stress biomarkers (MDA, total F2-isoprostanes) as they were strongly correlated. Model’s R 
squares are in the range of 0.34 to 0.39. The adjusted % change was calculated from the regression coefficient 
of the dependent variable (y) in log scale per log unit increase in the independent variable (x), because the 
regression coefficient (β) represents the proportion of change in y in the original scale (ghrelin concentration): 
log y1 – log y0 =  β, then log (y1/y0) =  β, thus y1/y0 =  eβ , and the percentage change is (eβ -1)*100%. 
MDA =  malondialdehyde; CI =  confidence interval.
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pre-gestational serious chronic illnesses such as diabetes or hypertension). However, oxidative stress was associated with 
decreased fetal ghrelin levels. In addition, there is a strong influence of maternal ghrelin levels on fetal ghrelin levels.

Ghrelin is an important hormone in regulating food intake and energy balance, and is primarily secreted by the 
fundus of the stomach in adult humans and rodents, but is primarily secreted by the pancreas during the perinatal 
period11. Ghrelin circulates in two forms: unacylated and acylated. Acylated ghrelin is considered the biologically 
active form with respect to its growth hormone secretion stimulation and orexigenic effects through binding to 
growth hormone secretagogue receptor29. However, unacylated ghrelin is not biologically inactive, and may coun-
ter the metabolic effects of acylated ghrelin30. Unacylated ghrelin in the predominant form in fetal circulation11, 
but little is known about its biological relevance. A recent intervention study demonstrated a negative association 
between oxidative stress and circulating ghrelin concentrations in adults31. There is an absence of data on perinatal 
oxidative stress in relation to ghrelin levels in fetuses/newborns. We observed a consistent negative correlation 
between maternal or fetal oxidative stress and fetal ghrelin levels. On the other hand, it has been proposed that 
both acylated and unacylated ghrelin may have a protective effect against oxidative stress in cell and animal model 
studies32,33. There is a possibility of reverse causality that lower ghrelin levels might be a cause of higher oxidative 
stress levels in the newborns. However, the consistent negative correlations of both maternal and cord blood oxi-
dative stress biomarkers with cord ghrelin levels are reassuring, since it is unlikely that fetal ghrelin would cause 
oxidative stress in the mothers. The implications of fetal ghrelin concentration for postnatal metabolic health are 
unknown. Considering the plurality of biological effects of ghrelin, it is possible that the oxidative stress associated 
changes in fetal ghrelin levels may be related to a developmental metabolic programming effect on long-term 
susceptibility to obesity and metabolic syndrome in postnatal life.

Interestingly, we observed that the associations between F2-isoprostanes and fetal circulating ghrelin levels 
appear to be restricted to certain isomers (8-iso-PGF2α , 15(R)-PGF2α , 8-iso-15(R)-PGF2α , and iPF2α -IV). 
This finding requires confirmation from other independent cohort studies. F2-isoprostane isomers are biological 
active molecules. The 8-iso-PGF2α  is the most studied F2-isoprostane isomer which has been associated with 
potent vascular constrictive effects, while research on the biological effects of other isomers has been limited, and 
isomer-specific biological effects may exist34. Much remains to be known about the biological effects of various 
F2-isoprostane isomers. There is an absence of data on the physiological relevance of various F2-isoprostane 
isomers in metabolic health. Our preliminary data indicate that certain F2-isoprostanes may be related to ghrelin 
synthesis or secretion during fetal development.

Apart from ghrelin, we did not observe any significant association between oxidative stress and other fetal 
metabolic health biomarkers including leptin, adiponectin, glucose-to-insulin ratio, proinsulin-to-insulin ratio, 
insulin, IGF-I and IGF-II. Also, we could not confirm an association between oxidative stress and poor fetal growth. 
Caution is warranted in data interpretation since the number of SGA infants is small (n =  14) in the study cohort. 
It should be noted that there is a tendency of under-reporting null association in the literature35. It has been rec-
ognized that fetal metabolic programming may occur within normal birth weight ranges2. It appears that in this 
relatively low risk pregnancy cohort (free of major pre-gestational illnesses), there was no significant impact of 
perinatal oxidative stress on fetal growth and most fetal metabolic health biomarkers. Preterm delivery has been 
associated with elevated insulin levels at birth and early childhood in a recent large prospective cohort study36. 
We could not detect any significant differences in cord blood oxidative stress and metabolic health biomarkers in 
preterm vs term births, but caution is warranted in data interpretation since the number of preterm infants is small.

Strengths and limitations. Main study strengths are the largest pregnancy cohort on maternal and fetal 
oxidative stress, and objective biomarker measurements (assay labs’ blindness to patients’ clinical characteristics). 
Main study limitation is that we only have data on total ghrelin, but could not detect different forms of ghrelin. 
However, it is known that concentrations of acylated and unacylated ghrelin are highly correlated, and unacylated 
ghrelin accounts for about 99% of total ghrelin in cord blood15. The study is observational in nature, and we could 
speculate, but not affirm that the observed associations are causal.

Conclusions
Oxidative stress was negatively correlated with circulating ghrelin concentrations, but not associated with insulin, 
leptin, adiponectin, IGF-I and IGF-II concentrations, or glucose-to-insulin and proinsulin-to-insulin ratios in 
human fetuses/newborns. The implications in developmental metabolic programming remain to be understood. 
The observations invite the hypothesis that oxidative stress in early life may affect fetal ghrelin levels to “program” 
the vulnerability to metabolic syndrome and related disorders in adulthood.
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