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Over many centuries, the homing pigeon has been selectively bred for returning home
from a distant location. As a result of this strong selective pressure, homing pigeons
have developed an excellent spatial navigation system. This system passes through the
hippocampal formation (HF), which shares many striking similarities to the mammalian
hippocampus; there are a host of shared neuropeptides, interconnections, and its role
in the storage and manipulation of spatial maps. There are some notable differences
as well: there are unique connectivity patterns and spatial encoding strategies. This
review summarizes the comparisons between the avian and mammalian hippocampal
systems, and the responses of single neurons in several general categories: (1) location
and place cells responding in specific areas, (2) path and goal cells responding between
goal locations, (3) context-dependent cells that respond before or during a task, and (4)
pattern, grid, and boundary cells that increase firing at stable intervals. Head-direction
cells, responding to a specific compass direction, are found in mammals and other
birds but not to date in pigeons. By studying an animal that evolved under significant
adaptive pressure to quickly develop a complex and efficient spatial memory system,
we may better understand the comparative neurology of neurospatial systems, and plot
new and potentially fruitful avenues of comparative research in the future.
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INTRODUCTION

All vertebrates require a strong spatial memory system to store and retrieve important locations in
their environment, so that they may navigate amongst them. Some species are better than others
due to behavioral requirements like long-distance migration, scatter hoarding, or other complex
behavioral needs. While there has been a half century of productive research investigating the neural
systems of spatial memory in rodents and primates (e.g., O’Keefe and Dostrovsky, 1971; Moser
et al., 2008), studies in non-mammalian vertebrates with significant spatial memory needs were
far less common. Fortunately, avian studies are increasing in frequency and providing valuable
comparative studies on the importance of the brain in coordinating spatial behaviors. In birds,
which require good spatial memory to migrate and locate pertinent environmental cues, neural and
genetic studies have been performed on black-capped chickadees (Poecile atricapillus, Pravosudov
et al., 2012, 2013; Croston et al., 2015), homing pigeons (Columba livia, Bingman et al., 2003;
Gagliardo et al., 2014; Herold et al., 2015), and a growing body of data collected in domestic chicks
(Gallus gallus, Tommasi et al., 2012; Mayer et al., 2018; Morandi-Raikova et al., 2020). There are
also studies in the tufted titmouse (Baeolophus bicolor, Payne et al., 2021), quail (Coturnix japonica,
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Ben-Yisahay et al., 2021), zebra finch (Taeniopygia guttata,
Mayer et al., 2013), and the streaked shearwater (Calonectris
leucomelas, Takahashi et al., 2022). In summary, all findings to
date have supported the key role of the hippocampal formation
in underlying spatial behaviors in birds.

Both the hippocampus (Hp) of mammals (Figure 1A) and the
hippocampal formation (HF) of birds (Figure 1B) play a key role
in learning and memory; ablating this structure severely impairs
spatial memory formation (Colombo et al., 2001; Bingman et al.,
2003, 2005; Tommasi et al., 2003). Birds with higher spatial
memory demands have larger relative hippocampal volumes
compared to those that do not (Volman et al., 1997; Cnotka et al.,
2008). How this structure processes aspects of the environment,
and how it combines visual, magnetic, proprioceptive, and
auditory inputs is still poorly understood, but a host of studies
over the last two decades have attempted to understand how a
brain structure so evolutionarily and morphologically dissimilar
to the mammalian Hp has, under heavy selective pressure,
turned a non-migratory and sedentary rock pigeon (Lowther
and Johnston, 2020) into one of the premiere navigators of
the animal world.

While not normally a species that has extensive spatial
memory requirements, the rock pigeon has been selectively bred
by humans to have exceptional navigational abilities, even at
a young age. Over the last few millennia, humans have used
members of this strain to return to a home loft from hundreds
of miles away, even if the release point is from a location they
have never visited (Blume, 2004). As a result of this strong
adaptive selection, homing pigeons have developed a remarkable
spatial memory system, one that rivals humans in their ability to
quickly navigate across a three-dimensional environment using
cues that are both time- and seasonally variable (Ioalè et al., 2000;
Wiltschko et al., 2000). This paper will discuss some of the major
findings made in understanding the neural substrates of homing
pigeon spatial navigation.

Avian vs. Mammalian Hippocampal
Formation Analogies
While more extensive comparisons between the avian HF and
mammalian Hp exist elsewhere (for instance, Puelles et al., 2007;
Herold et al., 2015), a basic comparison is given here to put the
neurophysiological investigations into context. The avian HF is a
brain structure that has evolved independently in birds, with over
300 million years since there was a common ancestor between
birds and mammals (Striedter and Charvet, 2008). Upon casual
examination, there are striking visual differences between the
avian and mammalian structures (Figure 1). The avian HF is
located on the posterior dorsomedial surface of the brain, while
the mammalian Hp is a more ventral, lateral structure. The avian
HF, even in denser cell layers, is less dense than similar areas
than the mammalian Hp. And the clear boundary between the
mammalian Hp and surrounding structures is much less defined
in the avian HF.

The subdivisions of the avian HF are also much less clearly
defined, outside of the characteristic “V” of the dense ventral
neuron layers seen in cresyl violet stained tissue. But over the

years, scientists have used various anatomical, neurochemical,
and tract tracing methods to develop various theories for how
the HF is divided. Although still being debated, this review will
use the subdivision nomenclature of Atoji and Wild (2006),
which was developed in the homing pigeon and has the most
relevance to the studies described in this review (Figure 1B).
These subdivisions include a dorsolateral subdivision that has
both dorsal and ventral sections (DLd and DLv), a dorsomedial
subdivision (DM), and ventrolateral and ventromedial dense cell
layers (VL and VM). Between the dense cell layers and under DM
is a sparsely populated subdivision labeled ventrocentral (VC)
in older literature but has been replaced by the label Triangular
subdivision (Tr) in newer studies.

Despite the anatomical and developmental differences
explained above, there do appear to be significant homologies
between the avian and mammalian structures. Both the avian
HF and the mammalian Hp are pallial in developmental
origin (Reiner et al., 2004; Jarvis et al., 2005). There is also
significant similarities in how the mammalian and homing
pigeon hippocampal subdivisions communicate with each
other chemically (summarized well in Atoji and Wild, 2006;
Herold et al., 2015). In particular, neuropeptides expressed in
distinct subdivisions of the mammalian Hp such as Substance
P, neuropeptide Y, somatostatin, cholecystokinin, glutamate,
and vasoactive intestinal polypeptide are also found in the avian
HF (Erichsen et al., 1991; Krebs et al., 1991; Riters et al., 1999;
Rosch et al., 2005; Rosinha et al., 2009). In newer studies, using a
combination of tract-tracing and gene expression experiments,
researchers have supported the idea that DM was homologous to
Ammon’s Horn (CA3, CA1) and the dense cell layers VM and
VL were homologous with dentate gyrus (Atoji et al., 2016). This
does overlap with receptor-binding (Herold et al., 2014) and
connectivity studies (Atoji and Wild, 2004; Atoji et al., 2018).
Finally, recent gene expression has found functional similarities
in coordinating spatial organization in chicks (Morandi-Raikova
and Mayer, 2020, 2021).

The connections within the HF of homing pigeons are
similar as well. In early studies, there appeared to be an
feed-forward pathway through the HF that was remarkably
similar to the trisynaptic pathway seen in mammalian Hp
(Hough et al., 2002; Kahn et al., 2003). The avian pathway
is not identical in its molecular components to mammals,
as a later study demonstrated a lack of zinc staining in
the avian HF that is characteristic of the mammalian Hp
mossy fiber tract in pigeons (Tömböl et al., 2000). Studies
have also suggested that information flows from dorsolateral
to dorsomedial structures, passes through the dense ventral
cell layers, then passes back out ventrolaterally as well as
crosses over to the contralateral hippocampus (see Hough
et al., 2002; Atoji and Wild, 2006). Later studies using more
complex methods have found the connection pathways to be
much more diverse (Atoji et al., 2016; Behroozi et al., 2017).
The HF also receives input from a wide variety of sensory
pathways, with particularly large inputs from visual centers
like the Wulst (Atoji et al., 2018; Atoji and Wild, 2019), a
crucial area for spatially mediated associative learning (Budzynski
et al., 2002). Therefore, the exact patterns of information
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FIGURE 1 | Anatomical differences between mammalian (A) and homing pigeon (B) brain anatomy. (A) The mammalian hippocampus (shaded) is located under a
significant amount of neocortex (approximately 3 mm). The simplified flow of information through this structure is as follows: from entorhinal cortex (EC) to Ammon’s
Horn CA3 to Ammon’s Horn CA1 to dentate gyrus (DG) and then back to EC. (B) The pigeon hippocampal formation (shaded) is a dorsomedial structure that
overlies the lateral ventricle on the surface of the brain. The subdivisions in the avian HF include the following areas: dorsal and ventral dorsolateral (DLd and DLv
respectively), dorsomedial (DM), ventrolateral and ventromedial dense cell layers (VL and VM, respectively), and the triangular subdivision (Tr). The area
parahippocampal (APH) is not considered to be part of the avian HF but has substantial connections to it. The location of the overlying central sinus blood vessel is
indicated by the shaded area. Photomicrographs of cresyl violet stained tissue were taken by the author. Pigeon subdivisions are based on Atoji and Wild (2006).

flow through the HF and connected brain areas, and its
comparisons to the mammalian system, is still a matter of much
academic debate but seem to strongly support the homology of
the two structures.

There has been one key anatomical difference between
mammalian and avian hippocampal structures, and that is how
it changes across the lifespan. In older individuals in both groups,
there is a progressive loss of working memory as individuals
get older (Moss et al., 1988; Head et al., 1995; Rasmussen
et al., 1996; Kukolja et al., 2009; Coppola et al., 2014a). But
in contrast to mammals, which show declines in mammalian
Hp neuroanatomy as individuals age (e.g., Bettio et al., 2017),
the homing pigeon HF shows a significant increase in both size
and neuronal density in older birds, but with less activity per
neuron (Coppola et al., 2016; Coppola and Bingman, 2020).
This increase in structural complexity at the cost of good
spatial memory could be due to either runaway neurogenesis,
which continues to incorporate a high number of immature
HF neurons into adulthood (Kahn et al., 2001), or through
decreased neuronal apoptosis to remove unnecessary neurons,
where lower rates were seen in adult food-storing birds (Clayton
and Krebs, 1994). A working hypothesis for this pattern is
that the demand for excellent spatial working memory at an
early age has increased the developmental speed of the HF that

continues throughout the lifespan. Eventually, these runaway
processes adversely affect spatial memory due to either disrupting
pre-existing pathways or the inability to remove pathways to
environmental cues that are no longer relevant (see Coppola et al.,
2016 for more on this issue).

Importance of the Hippocampal
Formation in Spatial Behavior
Early lesion studies showed marked deficits in navigation
following Hp ablation in a host of studies in the 1990s and
beyond. The absence of a functional hippocampus causes a
profound loss of navigational abilities (Bingman and Yates, 1992;
Colombo et al., 2001; Bingman et al., 2005; Coppola et al., 2014b).
In particular, the use of spatial cues is particularly impaired
following HF damage (Coppola et al., 2014b). There are also
marked learning vs. performance differences; impairments are
seen when hippocampus is lesioned before learning, but not when
maps were already acquired (Bingman et al., 1999; Gagliardo
et al., 2004; Coppola et al., 2014b). In the zebra finch, researchers
found evidence that the HF is active during retrieval as well, but
the levels of gene activation were significantly less than during
learning and there was no evidence of activation for a non-
spatial task (Mayer et al., 2010). These results suggest that while
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it plays a role in retrieval, the avian HF is crucial for learning new
spatial information.

While it is clear there are significant homologies in
organization, connectivity, and biomarkers, our understanding
of how HF neurons encode environmental space is restricted
to a relatively small number of studies in the homing pigeon.
Performing neurobehavioral experiments in these birds was a
challenge that has required creative solutions. First, recording
from the avian HF is more difficult due to its location in
the brain. As explained previously, the HF is located on
the posterior dorsomedial surface of the brain (Figure 1B),
compared to the deeper and more lateralized position of the
Hp in mammals (Figure 1A). Electrodes implanted into the
dorsomedial hyperpallium run the risk of damaging the large
central sinus blood vessel, which makes tetrode placement
very difficult, and can damage the hippocampus due to lack
of blood flow and increased mortality during the months of
experimentation. The bifurcation of this large blood vessel
around the cerebellum also makes penetrations into the posterior
hippocampus extremely challenging. In addition, unlike the thick
mammalian skull, the avian skull is thin and lattice-like that
makes securing electrophysiological microdrives a challenge.
As documented in other studies, the neural density of avian
HF is much lower, which prevents researchers from recording
from multiple isolated neurons simultaneously without using
a very large array of microelectrodes. Finally, pigeons have
large scale, bobbing head movements during walking that need
to be eliminated; techniques that rely on rigid electrodes give
significant artifacts, and any tethers need to be small and not
impair movements or trigger fear responses in animals while
being recorded in an experimental space.

While challenging, my colleagues and I have been able to
collect high quality data on the representation of space at
the neural level in pigeons. The custom-built head-mounted
microdrive used three to four bundles of tetrodes created by heat-
annealing flexible polyimide-insulated 12-µm nichrome wire
(Figure 2; Gray et al., 1995). This allowed the implantation of
up to 16 microelectrodes that were resistant to both large- and
small-scale animal movements (Siegel et al., 2002; Hough and
Bingman, 2004, 2008). This microdrive, secured to the skull
using a combination of epoxy-secured stainless-steel screws and
dental cement, used a single drive screw to manually advance
multiple sets of tetrodes (or separate reference and recording
electrode bundles) in 80-µm increments until neurons were
isolated on individual tetrode wires. The connector cable from
the electrophysiology system to the headstage had a single LEDs
mounted on the front (and occasionally on the back as well) that
encoded head position, which was timestamped to the neural
recordings so we could measure the mean rate of neuronal firing
per pixel at a pixel resolution of less than a half-inch square
of arena surface. Head direction was calculated either by the
difference in X/Y position in two-LED trials or inferred by the
change in X/Y pixel position over time in single-LED trials. My
own studies added an additional modification; implanting the
electrodes at a 30-degree angle toward the midline; this allowed
for better sampling of the medial HF subdivisions and avoid
the large central sinus blood vessel (Figure 1B, shaded circle)

FIGURE 2 | Headstage design used in the majority of the studies involving the
Bingman lab. A custom Drive screws were tapped into a Delrin block and
connected to bundles of tetrode microelectrodes such that every full turn of
the drive screw drove the tetrode bundles 320-µm further into the brain. The
wires were soldered into a 16-pot connector connected to the headstage via
threaded rod that also had a ground connection that was secured to the brain
via a separate wire. Once assembled, the headstage was secured to the skull
using stainless steel screws that were covered with dental cement (gray
shading), which also protected the small area of exposed brain. In two studies
(Hough and Bingman, 2004, 2008), the drive was implanted at a 30-degree
angle as pictured, to maximize coverage of the medial HF (dotted lines
indicate representative tetrode trajectories) without damaging the central sinus
on the surface of the brain (gray stippled oval in Figure 1B). The drive was
mounted inside an inverted 35-mm film canister lid, so that the delicate
tetrode connections would be protected by the rest of the canister (black
outline) during and between experimental trials. Further details can be found in
Siegel et al. (2002) and Hough and Bingman (2004).

that ran down the midline (Hough and Bingman, 2004, 2008).
Using this method, the central sinus was rarely damaged, and the
tetrode bundles would remain intact inside a protective inverted
film canister for months at a time. These microdrives allowed
the study of the relationship between spatial exploration and HF
neuron selectivity for several months per research animal.

Comparisons Between Avian
Hippocampal Formation and Mammalian
Hippocampus Neural Responses
In a series of studies performed by the Bingman Lab (Siegel
et al., 2002, 2005; Hough and Bingman, 2004, 2008; Kahn et al.,
2008), approximately two-thirds of isolated, chronically recorded
homing pigeon HF neurons were sensitive to particular aspects
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of the arena. These arenas had different shapes, but generally
were enclosed spaces of approximately 6 feet x 6 feet, with walls
to prevent escape and a series of pathways that ended in food-
containing bowls (either a plus maze in the works by J.J. Siegel,
an open arena with local and distal landmarks in the works by
M.C. Kahn, or an 8-armed radial maze in the works by G.E.
Hough). To encourage exploration, birds were food-deprived
prior to experimentation, and encouraged to explore the arena
with pellets of food that could be continually replaced via outside
tubes once birds had visited and left an arm of the maze. And each
experiment had a pre-arena period where cells were isolated, a
run period of free exploration, and a post-arena period where the
animal was returned to a holding area. These methods allowed a
consistent environment in which to study the responses of single
neurons to various aspects of the exploratory process.

The spatial selectivity of these neurons shared some qualities
with other documented response profiles in rodents and primates
(location/place and head direction responses) but demonstrated
some unique characteristics as well (paths between goals, task
context, and pattern responses). In addition, the neural firing
characteristics of homing pigeon HF neurons shared some
similarities with rodent Hp neurons when analyzed using
information theory qualities, but differed in others (see Skaggs
et al., 1993 for more detail on these characteristics). These
differences and similarities may simply due to the evolutionary
divergence of the two groups of animals and the tissues that gave
arise to the mammalian and avian structures, but also were likely
shaped by the reliance on different spatial navigation strategies.
The spatial profiles of avian HF neurons can be grouped into five
broad categories (four in pigeons, one in other birds) based on
the available research.

The first type of spatially selective HF neuron in the pigeon
is approximately half of all spatially selective neurons, and are
classified as “location cells.” These neurons increased their firing
rates when the animal’s head was in one or more localized
areas in a behavioral arena (Figure 3A). These responses were
relatively stable in location across a 10–20-min recording session.
Similar to the results in rodents (i.e., Muller and Kubie, 1987),
rotating arena cues (such as the colors of lights illuminating food
bowls) causes a similar rotation in the location-specific firing of
Hp neurons (Hough and Bingman, 2008). But unlike rat place
cells, pigeon HF location cells have much more variable fields
of selectivity. There is a wide range of spatial information per
spike, a measurement of how well we can predict an animal’s
location using neuronal firing rate, from a very low 0.30 (Siegel
et al., 2005) to quantities appearing closer to rodent place cells at
0.5 to 1.5 (Hough and Bingman, 2004). Location cells also have
relatively low coherence, which is a measure of the compactness
and circularity of areas of high activity (0.34–0.56), though this is
on par with some rat literature (i.e., Kubie et al., 1990). They also
have relatively low reliability (0.12–0.40), which is the likelihood
that every visit to a pixel had a similarly high response rate
of firing (Siegel et al., 2002, 2005; Hough and Bingman, 2004).
Rodent place cells have relatively higher values in both coherence
(0.36–0.81) and reliability (0.55 and above), suggesting a more
robust and stable response profile (Quirk et al., 1992; Shapiro
et al., 1997; Nitz and McNaughton, 1999).

Location fields in homing pigeons also appear to cluster
near environmentally relevant locations in the local environment
(such as food sources) and are far less numerous in areas between
goal locations (Hough and Bingman, 2004, 2008; Siegel et al.,
2005; Figure 3). And many location-selective neurons exhibited
more than one preferred location (Hough and Bingman, 2004;
Siegel et al., 2005). In these experiments, all food locations
were visually similar and had relatively homogenous amounts of
available food. Perhaps with more significant differences between
goal locations, we would have seen a higher selectivity for a
particular goal location for each cell.

We occasionally found true place cells in pigeons, which
coherently and reliably fired every time the animal passed the
same location (Figure 4), but they were rare as being only 7.5%
of location cells and were found in only two studies (Hough and
Bingman, 2004, 2008). These cells had a high spatial information
per spike (0.95–1.79), which is on par with rodent place cells (Nitz
and McNaughton, 1999). Admittedly, the number of pigeon place
cells may be due to the limited number of recordings made in the
dense ventral cell layers of VM and VL, the most likely homolog
of mammalian dentate gyrus (Hough and Bingman, 2004, 2008;
Siegel et al., 2005), so perhaps pigeon place cells exist in higher
quantities than has been detected to date. Place cells have been
found in higher quantities in the food-storing tufted titmouse
than in the non-storing zebra finch (Payne et al., 2021), which
might indicate that place cells are more numerous in avian species
that must encode large numbers of specific locations.

The second type of spatially selective HF neuron in pigeons,
the “path cell,” is subtly different from other directionally selective
neurons in mammalian Hp and was a novel finding at the time
(Hough and Bingman, 2004). These neurons were 25% of the
spatially selective neurons in the pigeon and had a region of
higher firing that connected goal locations (Figure 3B), and
perhaps serve a functionally similar role as primate spatial view
cells that fire when an animal is looking at a particular location
regardless of the animal’s location (Rolls, 1999), or goal cells that
fire when oriented toward a goal (Sarel et al., 2017). Path cells
significantly increase their firing rates when traveling between
goal locations, regardless of the animal’s head direction, velocity,
or the distance traveled (Hough and Bingman, 2004). The area
of highest firing in these neurons appeared to be long, thin, and
curved toward bowls, which may be responding in a manner like
goal cells found in bats (Sarel et al., 2017). While some path cells
were selective for a single pathway between two locations, most
were selective for multiple paths between different locations. In
all cases, the responses were not based solely on head direction or
velocity, as the cells fired at multiple compass directions and at a
variety of animal speeds.

Path cells also appear to be highly sensitive to disruptions
between local and distant cues. In a light-rotation experiment,
we rotated the colors of lights illuminating food bowls without
changing or rotating any other aspects of the arena. While
location cells rotated their response fields to match the changes
in color, path cell responses broke down into location-sensitive
responses, suggesting that path responses were processing more
globally relevant aspects of the task (Hough and Bingman, 2008).
They also may reflect a greater flexibility in encoding the spatial
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FIGURE 3 | Representative response profiles seen in the homing pigeon hippocampal formation. (A) Path cells have a characteristic high firing rate when the animal
is traversing between goal locations (red boxes) but less response at goal locations (blue boxes). (B) Location cells have their highest firing rates when in a localized
area near food bowls. The pattern pictured corresponded to a place-like cell. (C) Arena-off cells are presumably context-dependent and fire while in the holding area
(in this arena, in the NW corner) but have reduced firing while exploring the arena. (D) Pattern cells have multiple regions of high firing in multiple areas of an open
arena that appear to be clustered around the arena edges. (A–C) Adapted from raw data included in Hough and Bingman (2004); (D) adapted from Figure 6A in
Kahn et al. (2008) with permission from Elsevier.

relationships of objects than present in rodent head-direction
cells (i.e., Bingman et al., 2003). Path cells may also have evolved
to coordinate the overall progress toward a goal location while
in flight, independent from the characteristic proprioceptive
feedback gained from walking in a specific direction (such as the
goal cells of bats; Sarel et al., 2017).

The third type of spatially selective responses found in
pigeons reveals one of the more interesting findings in homing
pigeons; the presence of context-dependent responses in the
hippocampus (Figure 3C). These neurons had high rates of
firing prior to running in the arena (and possibly anticipation
of reward), but significantly slowed down their rates of firing
once active in the arena (Hough and Bingman, 2004; Siegel
et al., 2005). This third type of spatially selective neuron was
labeled the “arena-off cell” and comprises approximately 25% of
spatially selective neurons. The change in firing didn’t appear
to be a loss of isolation- the neuronal profiles (used for cluster
cutting out units from background by sampling various action
potential shape parameters) did not change even as the rate
of firing while exploring the arena decreased to at least a

third of the holding area rate. Context-dependent responses
have been documented in brown-headed cowbirds (Molothrus
bonariensis), which suggests that context is an important aspect
of spatial navigation (Sherry et al., 2017). While the extent
and parameters of context-dependent responses are unknown at
present, they might be responsible for rehearsing a task prior
to performing it, or perhaps reflect the motivational state of the
animal (hungry vs. satiation).

A fourth cell type, “pattern cells,” has multiple patches of
higher activity, apparently clustered around the periphery of an
open-field arena (Figure 3D). These cells were found in DM and
Tr on both sides of the homing pigeon HF (Kahn et al., 2008), and
may suggest a fusion of several well-known mammalian types.
These types are grid cells, which fire in a distance-dependent
pattern across an arena, and boundary cells, responding when
the animal is at the edge of an environmental space (Solstad
et al., 2008). There are a multitude of reasons why this response
category was likely not noted in earlier studies (Siegel et al.,
2002, 2005; Hough and Bingman, 2004, 2008). First, the Tr was
typically not a subdivision that received a lot of recordings due
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FIGURE 4 | Evidence of a pigeon place cell summarized in Figure 3B, broken into 2-min epochs. The cell consistently and reliably fired while in the entrance to the
SW arm of the radial maze (black squares), even though the animal was visiting all four of the baited arms. The holding area portion of the experiment is not included
in this figure (in the N area of the map). In two of the epochs, the bird did not move very much (16–18 and 18–20 min), and the cell only fired as it went from the SE
to the SW arms.

to the relatively sparse neuronal density, and the tendency to
have low firing rates with no obvious patterns; it’s possible they
were recorded but not counted as “spatially modulated” due to
their inherent noisiness. Another is that researchers were simply
not looking for these pattern-like neuronal profiles (grid cells
in rodents were not documented until 2005). So, what is the
purpose of pattern cells? An intriguing possibility for why pigeons
have pattern cells is that they may be a hybrid of grid and
boundary cell, responsible for tracking relative distances between
landmarks in an open arena where there are no clear pathways to
follow.

A potentially fifth type, the “head-direction” cell, is
documented in both rats (Rolls, 1999) as well as several

species of birds outside of homing pigeons. Streaked
shearwater demonstrate strong compass-dependent responses
predominantly to magnetic north, suggesting that migration
is a salient cue for navigation in that species (Takahashi et al.,
2022). In another recent study performed in the Japanese quail,
head-directional tuning was found in about 12% of HF neurons,
with preferred directions spanning all compass directions
(Ben-Yisahay et al., 2021). It is possible this type of response is
found in the homing pigeon as well, as compass navigation in
pigeons requires a functional hippocampus (i.e., Bingman and
Jones, 1994), but has not been documented to date.

Laterality appears to be a common feature of the avian HF
when coordinating global vs. local aspects of spatial behaviors,
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but the exact pattern of left vs. right functionality is conflicting.
In an early study, pigeons were only able to use global cues
to locate food-containing locations (such as cues on the walls)
when the right HF was intact, while animals could use the
differences in local cues such as unique objects between food
bowls to find the same locations when the left HF was intact
(Kahn and Bingman, 2004). In a follow-up neurophysiological
experiment, these researchers found less spatial selectivity in left
HF neurons compared to right HF neurons; the right HF neurons
had fewer arena locations with higher activity, but those neurons
exhibited higher coherence and information per spike, and path-
type responses were seen more frequently in the left HF (Kahn
et al., 2008). In chickens, the global (right HF) and local cue-
relevant (left HF) roles appear to be reversed from what is found
in pigeons (Tommasi and Vallortigara, 2001; Tommasi et al.,
2003) when tested using visual and ablation methods, and more
closely matches the laterality pattern seen in humans (Brederoo
et al., 2020; Gerlach and Poirel, 2020). While outside the scope
of this review, several excellent reviews discuss this and other
aspects of lateralization in the avian brain (Rogers, 2008, 2011;
Morandi-Raikova and Mayer, 2021).

Hippocampus Subdivisions Contain
Multiple Response Profiles
When mapping out the spatial response profiles, several patterns
emerged. For this summary, I am using the framework of Atoji
and Wild (2006) to delineate subdivisions. First, the entorhinal-
like DL area contained neurons that were location-sensitive and
those whose patterns lacked easy identification, in approximately
equal percentages. The DM subdivision contained a mixture of
all responses (location, path, and arena-off) in equal quantities.
The VL/VM region (their close anatomical proximity prevented
easy separation into specific subdivisions) contained most of
the path cells, and a few location cells. The three pigeon place
cells were likely in the VM subdivision due to their being
recorded just prior to electrodes entering the void between
the hemispheres; this subdivision has been suggested to be the
brain area most comparable to the dentate gyrus of mammals
(Herold et al., 2015; Atoji et al., 2016). Pattern cells are found in
both hemispheres in Tr, and perhaps DM as well (Kahn et al.,
2008). Therefore, when attempting to map out response profiles
to subdivisions of the avian HF, while patterns have emerged
with respect to localizing specific aspects of a spatial task to
subdivisions, there is also significant overlap of subdivisions and
response types. This uncertainty as to how the HF operates
as a coherent whole to process spatial cues would be best
answered by researchers using more modern techniques and
multi-array recordings.

DISCUSSION

The differences between avian and mammalian response profiles
suggest that adaptive specialization has pushed the avian HF to
develop responses that fit the navigational style of flying animals.
There appear to be at least five broad categories of responses in
avian HF neurons, four of which are found in homing pigeons:

location cells that encode an animal’s position, path cells that
coordinate travel between goal locations, arena-sensitive cells that
encode context, and pattern cells that might encode distance
traveled. A fifth type found in other birds, the head-direction cell,
might be present but has not been documented in the pigeon.
A bird in flight needs to know where it is, where it wants to
go, what it needs, and how to track its progress to a goal using
the flow of visual information it receives while in transit in the
absence of proprioceptive feedback. By studying these types of
responses in more depth, and with a larger sampling of both
sides of the hippocampus at one time, and more samples for
each subdivision, we can get a clearer picture of how selective
pressures have created a brain area that is fundamentally similar
to mammalian Hp using a much different area of the brain. For
example, it would be interesting to see if there is a difference
in the relative proportion of path cells and head-direction cells
in species that are using the HF to remember salient locations
in the environment such as scatter hoarding birds or homers
(path > head direction) vs. compass orientation to coordinate
seasonal migration (head direction > path). Another question
is whether these responses differ in terrestrial birds vs. flying
species; does the primary locomotive manner correlate with the
relative proportion of these responses in the HF across birds and
mammals?

Since the majority of homing pigeon HF electrophysiology
studies were performed over a decade ago in a handful of studies,
there are more questions than answers. First, we do not know
if the areas of higher responsiveness in the various response
categories are stable across days in the same experimental space,
or whether changing the context of cue locations (such as baiting
different locations across different recording sessions) changes
the response profiles of individual neurons. While most isolated
HF neurons can be successfully recorded for over an hour in
a single recording session, the act of removing a bird from the
tether and reattaching it on a subsequent day tends to move
the electrodes just enough to prevent re-isolation of the same
cells. It is possible that current wireless technology would allow
for the repeated recording of isolated neurons across sessions
without losing them to the headstage movement that occurs when
handling animals to attach the recording cable.

Another question is whether the variability in HF
neuroanatomy that occurs both seasonally and throughout
the lifespan changes the spatial response profiles. The seasonal
variability in HF volume and density is well documented in
food-storing passerines (Smulders et al., 1995, 2000; Sherry and
Hoshooley, 2010). In particular, the avian HF tends to get larger
in warmer months when food storage occurs, and smaller in
cooler months when retrieval happens (Sherry and Hoshooley,
2010), and increases in HF complexity have been correlated
to increases in spatial learning capabilities (Pravosudov and
Clayton, 2002; Hoshooley et al., 2007; Hoshooley and Sherry,
2007). When new neurons are added to or removed from the HF,
there is likely a concomitant change in HF neuron spatial profiles
as well, even though birds with higher spatial memory demands
may not always have significantly larger hippocampal volumes
or neural densities (Pravosudov et al., 2002; Kozlovsky et al.,
2017, but see Volman et al., 1997 where this trend does appear in
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woodpeckers). Another change is age-related; the hippocampal
system appears to get more dense but less selective as animals age
(Coppola et al., 2015, 2016), when there is a significant decline
in spatial working memory in pigeons (Coppola et al., 2014a).
It would be intriguing to see how the different types of spatially
selective neurons change their response profiles throughout the
lifespan, and how these changes underlie the decreased memory
performance seen in older birds.

Another limitation in prior studies has been the use of tethered
animals in small, enclosed arenas. Therefore, we do not know
how the avian HF encodes large-scale spatial characteristics (such
as during homing or migration) at the neural level, or how
spatially sensitive neurons respond to changes in non-visual cues
like magnetic fields or scents, two complimentary senses that
pigeons use to navigate (Vargas et al., 2006; Gagliardo et al.,
2009). Now that wireless technology has advanced to allow for
neuronal recording from untethered animals (Sarel et al., 2017;
Nourizonoz et al., 2020), future experiments should be performed
to see how the avian HF encodes large-scale three-dimensional
spatial information during flight. We do know that bats appear
to have spherical place fields while flying (Duncan and Henson,
1994; Yartsev and Ulanovsky, 2013; Dotson and Yartsev, 2021).

In conclusion, homing pigeons are an attractive novel
organism for understanding how spatial memory demands can
influence the representation of space at the neural level. Using
the advancements in neurophysiological methods over the last
decade, it will be interesting to see how new researchers and
methods further investigate the neural bases of navigation
in homing pigeons. The combination of electrophysiology
and homing experiments will provide us with new avenues

of research in understanding how the hippocampus encodes
environmental space.
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