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In multiple myeloma (MM), the impaired function of several types of immune 
cells favors the tumor’s escape from immune surveillance and, therefore, its 
growth and survival. Tremendous improvements have been made in the treat-
ment of MM over the past decade but cellular immunotherapy using dendritic 
cells, natural killer cells, and genetically engineered T-cells represent a new ther-
apeutic era. The application of these treatments is growing rapidly, based on their 
capacity to eradicate MM. In this review, we summarize recent progress in cellu-
lar immunotherapy for MM and its future prospects.
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INTRODUCTION

Multiple myeloma (MM) is a clonal B-cell malignancy 
that arises consistently from asymptomatic precursor 
conditions, specifically, monoclonal gammopathy of 
undetermined significance and smoldering MM. The 
proliferation of malignant plasma cells in the bone 
marrow and a subsequent overabundance of mono-
clonal paraprotein (M protein) in the serum and/or 
urine, renal dysfunction, anemia, hypercalcemia and 
lytic bone disease are the hallmarks of MM [1,2]. The 
incidence of the disease has increased rapidly in recent 
years, which, at least in Korea, accounts for it being 
one of the hematological malignancies currently in the 
medical and socioeconomic spotlight [3]. Despite sig-

nificant advances in therapeutic strategies, including 
stem cell transplantation, proteasome inhibitors, and 
immunomodulatory drugs (iMiDs), which have led to 
improved responses to treatment and longer overall 
survival, most patients with MM eventually relapse and 
succumb to the disease [4,5]. Thus, there is a clear need 
to develop novel therapeutic options. 

Recently, cellular immunotherapies have been rec-
ognized as an effective therapeutic modality for MM 
[6]. The human immune system has immense diversity 
and specificity that rely on a wide variety of effector 
mechanisms, such as those involving Fas ligands, the 
complement system, perforins, granzymes, and inter-
feron-gamma (IFN-γ) [7]. However, myeloma suppresses 
the immune response as a whole by releasing immune 
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suppressive molecules and cytokines, leading to the 
tumor’s escape from the effector immune response [8]. 
The goal of cancer immunotherapy is to activate, re-
store, and augment cytotoxic effector cells at the tumor 
site to effectively kill the tumor, all of which rely on 
the safe induction of cytotoxic cells that recognize and 
kill tumor cells [9]. An ideal immunotherapy should 
overcome the effects of an immunosuppressive micro-
environment, train and recruit immune cells to elimi-
nate all cancer cells, improve patient outcome without 
affecting healthy cells, and remain active in the event of 
recurrence. Dendritic cell (DC) vaccination and adoptive 
cell immunotherapy with chimeric antigen receptor 
(CAR) T-cells, T-cell receptor (TCR)-engineered T-cells, 
and natural killer (NK) cells are emerging as promising 
forms of cellular immunotherapy in patients with MM 
[10-15]. This review focuses on the efficacy and safety of 
recent preclinical and clinical trials in the development 
of DC vaccines, genetically engineered effector T-cells, 
and NK cell therapies for MM.

DENDRITIC CELL VACCINATION

The most potent antigen-presenting cells are DCs, 
which play a vital role in recognizing, processing, and 
presenting antigens on the cell surface of naïve T-cells, 
and modulating tumor specific immunity [16,17]. In 
MM, the functional ability of DCs is abolished by sev-
eral immunosuppressive cytokines and inhibitory pro-
teins, such as vascular endothelial growth factor, inter-
leukin 10 (IL-10), IL-6, and transforming growth factors 
(e.g., TGF-β), secreted by malignant plasma cells and 
the tumor microenvironment [18]. Thus, the retrieval of 
fully functional DCs against tumor cells is a promising 
therapeutic strategy. Among the factors that need to 
be considered for successful DC vaccination strategies 
are the selection and source of the tumor antigen, the 
potency of the DC vaccine formulation, the mode of 
delivery, adjuvants, and immunomodulation, and the 
treatment schedule. In general, DCs generated ex vivo 
for cancer immunotherapy should be mature, capable 
of migrating in the direction of secondary lymphoid 
organs, and produce type 1 helper (Th1) polarizing cyto-
kines. In a previous study, we reported that functionally 
active DCs generated ex vivo from patients with MM 

exhibited the properties of the strong, mature DCs nec-
essary to induce potent myeloma-specific cytotoxic T 
lymphocytes (CTLs) [13,19].

In early clinical trials of immunoglobulin idiotype 
(Id)-pulsed DCs, features indicative of myeloma- spe-
cific immune responses were observed but the clinical 
responses were unsatisfactory because of the weak 
antigenicity of the Id [20]. Tumor-associated antigens 
(TAAs)-loaded DCs may also induce tumor-specific 
CTL responses for targeting myeloma cells in vitro. Var-
ious TAAs have been identified in MM, such as mucin 
1 (MUC1), New York esophageal squamous cell carcino-
ma 1 (NY-ESO-1), and telomerase reverse transcriptase 
(hTERT). However, although a single TAA may induce 
an antitumor immune response in MM, the myeloma 
cells can escape immune recognition via the down-reg-
ulation of this specific antigen over time. To overcome 
this problem, DCs can be loaded with whole myeloma 
cells to improve the antitumor immune response effec-
tively and avoid tumor cell immune escape [13,19]. This 
alternative approach has been tested using DCs loaded 
with myeloma cell lysates or apoptotic bodies, DCs 
transfected with tumor-derived RNA or heat shock pro-
teins (HSP) gp96, and DC-myeloma fusions. Regardless 
of the specific method, the results showed that multiple 
unknown epitopes were presented by the DCs for major 
histocompatibility complex (MHC) I recognition and 
the subsequent induction of polyclonal T-cell immune 
responses to effectively kill myeloma cells [20]. Our 
group was also able to generate potent DCs loaded with 
dying myeloma cells, which induced myeloma-spe-
cific CTLs with strong Th1 polarization [21-27]. In our 
previous phase I/IIa study of patients with relapsed or 
refractory MM, DC vaccination using cells loaded with 
γ-irradiated dying myeloma cells was well tolerated, did 
not result in any significant adverse effects, and led to 
disease-stabilizing activity in 66.7% of the patients and 
a 77.8% immunological response [28]. Fig. 1 describes 
DCs pulsed or loaded with different sources of myelo-
ma antigens to induce myeloma-specific immune re-
sponses.

Recent attempts to improve the effectiveness of DC 
vaccines have included the use of a cocktail of several 
tumor antigens, genetic engineering and molecular 
biological modifications, and combinations with other 
agents. IMiDs, such as thalidomide, lenalidomide, and 
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pomalidomide, were also shown to be effective in pa-
tients with MM. The immunological mechanism of iM-
iDs involves the down-regulation of regulatory T-cells 
(Tregs) and myeloid-derived suppressor cells (MDSCs) 
in the tumor microenvironment and an enhancement 
of the immune response by activating NK cells and 
T-cells [29]. We previously reported a strong synergistic 
effect of DC vaccination and lenalidomide [30] or poma-
lidomide [31] in the induction of an anti-myeloma effect 
in a murine myeloma model. Another method to im-
prove DC vaccination is to combine checkpoint block-
ades that modulate negative regulation in the tumor 
microenvironment [32]. Our data, obtained in a murine 
myeloma model, indicated a remarkable anti-myeloma 
effect of DC vaccination when combined with an anti- 
programmed cell death 1 (PD-1) antibody and lenalido-

mide, attributable to an augmented immune response 
[33]. These improvements in DC vaccination may give 
rise to a promising cell therapy tool able to induce my-
eloma-specific immune responses, without significant 
adverse effects. A schematic representation of the future 
perspectives of enhanced DC vaccination strategies is 
shown in Fig. 2. 

GENETICALLY ENGINEERED T-CELL THERAPY

Approaches aimed at triggering a tumor-specific T-cell 
response and, thus, immunological memory against the 
tumor cells, include the adoptive transfer of genetically 
engineered T-cells. This is achieved by introducing an-
tibody-like recognition in CARs or by modifying TCR 
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Figure 1. Immune response induced by different modes of tumor antigen-pulsed dendritic cells (DCs). The source of the anti-
gen significantly influences DC function, as evidenced by the activation of tumor-specific T-cells. When DCs are pulsed with 
only a single tumor antigen, in the form of a single peptide, a DNA or RNA fragment encoding a single antigen, or a single 
idiotype (Id) protein, they induce the expansion of active monoclonal cytotoxic T lymphocytes (CTLs) that may exert cytotoxic 
effects on multiple myeloma (MM) cells. However, MM cells can elicit immunosuppressive and inhibitory signals or express 
different tumor antigens, which lead to the escape of the tumor from these monoclonal CTLs. To overcome these limita-
tions, DCs pulsed with whole tumor lysates, multi-peptides, a cocktail of tumor-associated antigens (TAAs), fusion proteins, 
or whole tumor-derived DNA or RNA are used to induce the activation of multiple tumor-antigen-specific polyclonal CTLs 
covering almost all tumor-specific antigen targets. The goal is improved antitumor efficiency and long-term MM control. In 
some cases, DCs are not fully mature or are not fully activated by tumor antigens and are thus unable to induce an immune 
response. TA, tumor antigen. 
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specificity. Both methods should result in the targeting 
of surface antigens that are highly expressed in MM. A 
schematic representation of the treatment of MM with 
genetically engineered T-cells is shown in Fig. 3.

CAR T-cell therapy
CAR T-cells are genetically engineered T-cells that can 
recognize specific antigens expressed on tumor cells 
and then kill the tumor cells [34,35]. A CAR consists of 
three domains: a single chain variable fragment (scFv) 
linked to a transmembrane domain, costimulatory do-
mains, and a T-cell activation domain [36]. First-genera-
tion CAR T-cells contained only a single signaling unit, 
derived from the cluster of differentiation 3ζ (CD3ζ) 
chain or γ chains of the high-affinity IgE receptor 

(FcεRIγ), as an intracellular signaling domain. Howev-
er, due to their restricted cytokine secretion and T-cell 
production, both types showed very weak antitumor 
activity in the killing of tumor cells [37]. Further evolu-
tions of CARs improved their therapeutic safety and ef-
ficacy by adding one or more costimulatory molecules. 
Thus, second-generation CARs had a single costimula-
tory domain derived from either CD28 or TNF receptor 
superfamily member 9 (4-1BB), and third-generation 
CARs had two costimulatory domains, such as CD27 
plus 4-1BB or CD28 plus tumor necrosis factor receptor 
superfamily, member 4 (OX40).  (Fig. 4) [38]. 

The first gene-modified CAR T-cell therapy, formerly 
known as CTL019, yielded a remarkable response in 
patients with relapsed or refractory B-cell acute lym-
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Figure 2. Process of clinical dendritic cell (DC) vaccination in patients with multiple myeloma. The DCs of patients with mul-
tiple myeloma (MM) are functionally impaired because of the tumor microenvironment. DCs cultured ex vivo and used to 
vaccinate MM patients can overcome the immune dysregulation. Monocytes obtained from patients with MM are differenti-
ated into immature DCs during their in vitro culture with interleukin 4 (IL-4) and granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF). Immature DCs are then maturated with various stimuli (cytokines, cluster of differentiation 40 ligand 
[CD40L], survival factors or toll-like receptor [TLR] agonist) and loaded with various tumor-associated antigens using tech-
niques such as the administration of peptides and proteins with immune adjuvants, tumor cell lysates, fusion protein, tumor 
cells manipulated to express cytokines, tumor cell apoptotic bodies, DNA and RNA encoding an antigen, or viral-based vectors 
to express antigen in the context of co-stimulatory molecules. Multiple modalities with adjuvants, immunomodulatory drugs, 
checkpoint blockades, and other therapeutic agents are necessary to enhance the efficacy of DC vaccination and, thus, suppress 
the tumor microenvironment. Numerous variables, such as dose, frequency, and route of DC vaccination also need to be opti-
mized to induce an MM specific immune response effectively in both primary and secondary lymphoid organs. CTL, cytotoxic 
T lymphocyte.
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phoblastic leukemia (B-ALL), resulting in approval of 
this therapeutic approach in the United States [39]. The 
excellent outcome of anti-CD19 CAR T-cell therapy 
against B-ALL motivated the development of myeloma 
cell-specific CAR T-cells. Requirements for the target 
antigen, a crucial factor in CAR development, were 
that it was expressed uniformly and specifically on all 
malignant cells (on-target) but, to avoid toxicity, not by 
normal tissues (off-target). Several antigens have been 
studied as feasible myeloma targets for anti-myeloma 
CAR T-cells, including CD44 variant 6, CD70, CD56, 
CD38, CD138, CD19, immunoglobulin kappa light 
chain, signaling lymphocytic activation molecule F7 
(SLAMF7), and B-cell maturation antigen (BCMA) [40]. 
All have their limitations in terms of their use in MM. 
CD44 variant 6 is equally expressed on activated T-cells 
and monocytes [41], CD70 on activated lymphoid cells 
[42], and CD56 on NK cells, T-cells, and neuronal cells 
[43]. Although CD38 is normally expressed on precursor 
B-cells, plasma cells, T-cells, NK cells, and other tissue 
cells, it is highly expressed on malignant plasma cells, 

which has motivated the development of anti-CD38 
CAR T-cells [44,45]. CD138 is also expressed on plas-
ma cells and several tissue cells but it is nonetheless 
a good candidate target on myeloma cells [46,47]. The 
anti-CD19 CAR T-cells used in B-ALL showed impres-
sive results against myeloma and may deplete myeloma 
stem cells, despite the minimal expression of CD19 on 
myeloma cells [48]. Immunoglobulin kappa light chain 
is expressed by mature B-cells but may be a target for 
the MM stem cell population expressing these surface 
immunoglobulins [49]. SLAMF7 is a promising target 
because of its strong expression on myeloma cells, 
despite its expression on plasma cells, NK cells, CD8+ 
T-cells, monocytes, B-cells, and DCs. Among these anti-
gens, BCMA is currently being tested in several clinical 
trials and the preliminary results have been impressive. 
BCMA is uniformly expressed on all MM cells but not 
on hematopoietic stem cells or other immune cells [36]. 

Currently, four clinical trials of CAR T-cell therapy 
targeting BCMA are ongoing in patients with relapsed 
or refractory MM (Table 1). Raje et al. [50] presented 
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Figure 3. Scheme of genetically engineered T-cell therapy in patients with multiple myeloma (MM). T-cells were isolated from 
the peripheral blood of patients with MM via apheresis and then transfected with the genes containing chimeric antigen recep-
tor (CAR)-based tumor antigen by lentiviral, gammaretroviral or transposon/transposase approaches. Adoptive transfer of in 
vitro generated autologous CAR T-cells was conducted in patients with or without prior lymphodepletion. TCR, T-cell receptor.
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the updated results of a multicenter study of bb2121 
anti-BCMA CAR T-cell therapy in patients with heavily 
pretreated MM. The 43 patients received 50–800 × 106 
CAR T-cells after lymphodepletion with cyclophospha-
mide and fludarabine. A dose-escalation study showed 
that a minimum of 150 × 106 CAR T-cells were needed 
to achieve an optimal outcome. An assessment of the 
overall response rate (ORR) showed that 77% of the 
patients had a complete response (CR), including 44% 
with a stringent CR (sCR), with comparable rates in 
patients with high- and low-BCMA-expressing tumors. 
Median progression-free survival following treatment 
with ≥ 150 × 106 cells was 11.8 months. In addition, 
bb2121 CAR T-cell therapy was relatively well tolerated. 
Cytokine release syndrome (CRS) of any grade devel-
oped in 63% of the patients, but in all cases it was man-
ageable. Safety and efficacy data for BCMA-specific CAR 
T-cells (CART-BCMA) in the treatment of refractory 
MM were also reported [51]. CART-BCMA had activity 

in patients with heavily pre-treated MM, with an ORR 
of 46%, and its activity was not clearly associated with 
baseline BCMA expression or soluble BCMA concentra-
tion. The main non-hematological toxicities associated 
with CART-BCMA were CRS and neurotoxicity. CRS of 
any grade developed in 83% of the patients and ≥ grade 
3 CRS in 29%. Smith et al. [52] presented the results of 
a phase I study of MCARH171 (human scFv-derived 
BCMA-targeted CAR T-cells) in patients with relapsed 
or refractory MM. Six patients who received 0.7–8 × 108 
CAR T-cells after undergoing lymphodepletion with cy-
clophosphamide and fludarabine therapy experienced 
manageable CRS; there was no case of CRS ≥ grade 3. 
In addition, Chinese investigators reported the results 
achieved with LCAR-B38, which targets BCMA [53]. For-
ty pat ients who had received at least three prior lines 
of therapy and whose malignant plasma cells had > 10% 
BCMA expression were included in the study. The ORR 
in 22 evaluable patients was a striking 100%, with 64% 
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of patients achieving sCR. CRS of any grade was seen 
in 85% and CRS ≥ grade 3 in 8.6%. Finally, the results 
of an interesting study of the combined infusion of 
CD19- and BCMA-specific CAR T-cells in patients with 
relapsed or refractory MM were recently reported [54]. A 
deep and long-term remission in patients treated with 
both CD19 CAR T-cells and BCMA CAR T-cells was 
anticipated, because of the association of disease re-
lapse with myeloma stem cells. Nine of the 10 evaluable 
patients achieved a partial response or better. CRS oc-
curred in all patients. Long-term follow-up results are 
needed to determine whether this combined approach 
improves outcomes. 

T-cell receptor-engineered T-cells
TCRs are expressed on the surface of T-cells and recog-
nize both intracellular and extracellular antigens. How-
ever, many tumor cells down-regulate the expression 
of MHC molecules to escape from immune cells. TCRs 
recognize and bind to peptides loaded onto MHCs, 
resulting in the activation of several signaling cascades 
and, in turn, protein phosphorylation. Among the pro-
teins involved in these signaling cascades are nuclear 

factor of activated T-cell (NFAT) proteins and nuclear 
factor Fos. Their activation results in that of T-cells 
and, thus, the release of IFN-γ, granzyme B, and IL-2 
[55]. TCR-modified T-cells are engineered to encode re-
ceptors for the tumor antigen peptide-MHC complex. 
Genetically engineered TCR are established by modify-
ing the specificity of the α and β chains of the TCR to a 
particular tumor antigen for enhanced antigen recog-
nition [47]. 

Currently, engineered TCR therapies mainly focus 
on cancer testis antigens (CTAs), which are highly ex-
pressed by tumors and expressed only by male germ 
cells in the testis and placenta but not in adult normal 
tissues [56]. Thus, engineered TCRs targeting CTAs are 
a promising therapy for cancer [56,57]. TCR-engineered 
T-cells targeting CTAs loaded onto human leukocyte 
antigen (HLA)-A have been employed in the treatment 
of MM. A phase I/II study of NY-ESO-1 targeting en-
gineered TCRs was conducted in 20 patients with 
advanced MM and sarcoma. The results showed a sig-
nificant clinical response and the remarkable safety of 
this approach, as none of the patients experienced CRS 
or other infusion-related toxicities. Recent innovative 

Table 1. Results of clinical trials of CART-BCMA therapy in multiple myeloma 

bb2121 CART-BCMA MCARH171 LCAR-B38

Target antigen BCMA BCMA BCMA BCMA

Co-stimulatory domain 4-1BB 4-1BB 4-1BB 4-1BB

Vector Lentivirus Lentivirus Retrovirus Lentivirus

Enrollment 43 (39 evaluable) 28 (24 evaluable) 6 40 (22 evaluable)

Conditioning Cytoxan/fludarabine Cytoxan 
 (none in first cohort)

Cytoxan/fludarabine Cytoxan

BCMA expression > 50% None > 1% Clear expression

CAR-T dosing schedule Day 0 Day 0, 1, 2 Day 0 Day 0, 2, 6

CAR-T doses 50–800 × 106 dose 1–5 × 108 dose 0.7–8 × 108 dose 1.5–7 × 106/kg

Median prior therapy 7 (3–14) 7 (3–13) 7 (6–10) 3–4 (86%)
≥ 5 (14%) 

Efficacy ORR 77%
≥ CR 44%
≥ VGRR 67%

ORR 46%
≥ CR 8%
≥ VGRR 21%

ORR 50%
VGPR 33%

ORR 100%
sCR 64%
VGPR 18%

Toxicity (CRS) Any grade: 63%
≥ Grade 3: 5%

Any grade: 83%
≥ Grade 3: 29%

Any grade: 50%
≥ Grade 3: 0%

Any grade: 85%
≥ Grade 3: 8.6%

CART-BCMA, BCMA-specific CAR T-cell; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; ORR, overall 
response rate; CR, complete response; VGPR, very good partial response; sCR, stringent complete response; CRS, cytokine re-
lease syndrome. 
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clinical trials to develop engineered TCRs against MM 
have focused on CTAs, neoantigens, and TAAs, such as 
melanoma antigen recognized by T-cells 1 (MART1), 
MAGE family member A3 (MAGE A3), and L antigen 
family member 1 (LAGE-1) [57,58]. 

NATURAL KILLER CELLS 

NK cells are a subset of peripheral blood lymphocytes 
characterized as effector cells of the innate immune 
system, with potent cytotoxic activity toward cancer 
cells or infected cells [59]. Target-cell killing by NK cells 

occurs via perforin/granzymes granule-mediated lysis 
and death receptor interaction. NK cells also lyse target 
cells coated with antibodies to the antigen on the tumor 
cell surface, by antibody-dependent cellular cytotoxic-
ity (ADCC). Target cell recognition is mediated by the 
signals delivered through several activating and inhibi-
tory receptors of NK cells, including natural killer G2D 
(NKG2D), DNAX accessory molecule-1 (DNAM), and 
natural cytotoxicity receptors such as NKp30, NKp44, 
NKp46 as activating receptors, and killer-cell immu-
noglobulin-like receptors (KIRs), heterodimeric C-type 
lectin receptor (NKG2A/CD94), and check point T cell 
immunoreceptor with Ig and ITIM domains (TIGIT) 
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Figure 5. Recent therapeutic approaches to enhance natural killer (NK) cytotoxicity against multiple myeloma (MM). This 
schematic shows how various therapeutic agents modulate NK cell-mediated cytotoxicity to target myeloma cells. Suppressive 
immune cells as well as bone marrow stromal cells (BMSCs) inside the tumor microenvironment are negative regulators of NK 
cell activation. The MM cells themselves develop several strategies to evade NK-cell-mediated killing. New immune modula-
tors, including immunomodulatory drugs (iMiDs), immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-
1)/PD-L1, anti-NKG2A, anti-TIGIT blocking antibodies, and proteasome inhibitors, target and suppress immunosuppressive 
factors in the MM microenvironment and enhance the cytotoxic effect of NK cells to kill MM cells. In addition, the antibodies 
used to treat MM, such as elotuzumab and daratumumab, induce NK cell-mediated antibody-dependent cellular cytotoxicity 
(ADCC). TIGIT, T cell immunoreceptor with Ig and ITIM domains; CD16, cluster of differentiation 16; NKG2A, natural killer 
G2A; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex.
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as inhibitory receptors [60]. The advantage of NK cell 
therapy is that it results in the killing of various target 
cancer cells without prior sensitization. It also does not 
cause graft versus host disease (GVHD) [61]

Myeloma cells evade host immunity through various 
mechanisms, such as the activation of tumor suppres-
sive pathways and suppressive cytokines (i.e., IL-6, IL-
10). Among the involved immune cells are NK cells, 
which become weak or dysfunctional within the MM 
micro-environment. In patients with advanced MM, 
the number of circulating NK cells is reduced and their 
function is suppressed [62]. Advances in the ex vivo acti-
vation and expansion of NK cells to obtain adequate cell 
numbers have been reported, including the demon-
stration of an anti-MM effect of NK cells [63-65]. In at-
tempts to develop NK cell therapies for MM, although 
the clinical safety of autologous ex vivo expanded NK 
cells infusion in patients with MM has been shown, re-
markable clinical outcomes have not been achieved [66]. 
In contrast, allogeneic NK cells [60,61] treated with pro-
teasome inhibitors and other anti-myeloma drugs, such 
as bortezomib or iMiDs, were recently shown to sig-
nificantly induce NK cell effector function by inducing 
the expression of NK activating receptors [6]. A phase I 
trial evaluated the use of cord blood (CB)-derived ex vivo 
expanded NK cells as part of a conditioning regimen 
with high-dose melphalan and lenalidomide before 
autologous stem cell transplantation in 12 patients with 
MM, with high-risk characteristics. Ten of the patients 
achieved, at least, a very good partial response, includ-
ing eight with a CR, without any significant infusion 
toxicities or GVHD. Interestingly, CB-NK cells were 
detected as an activated phenotype (NKG2D+/NKp30+) 
in vivo until day 21 after autologous stem cell trans-
plantation [67]. There are several ongoing trials of NK 
cell therapy aimed at enhancing activity against MM, 
such as the use of NK cells in combination therapy with 
iMiDs including lenalidomide and pomalidomide, 
checkpoint inhibitors [68], and monoclonal antibodies 
to improve clinical efficiency (Fig. 5) [64,68].

Analogous to CAR T-cells, several new NK-based 
approaches, such as the use of NK cell lines (i.e., NK-
92-CS1-CAR cells) [69], other genetic engineering ap-
proaches [60], and the generation CAR NK cells specifi-
cally targeting MM cells [70,71], have been developed. In 
preclinical models, CAR-engineered NK cells specific 

to SLAMF7 showed anti-MM activity [69], and bispecific 
forms redirecting NK cells to tumors have been devel-
oped for other hematological cancers [72]. With the in-
novative techniques in NK cell biology that are contin-
ually being developed, the prospects of novel, effective 
NK cell-based therapies for MM are eagerly anticipated.

CONCLUSIONS

Cellular immunotherapy offers great hope for the treat-
ment of myeloma, given the encouraging results of 
preclinical and clinical trials. Cancer immunotherapy 
using DCs, NK cells, and genetically engineered T-cells 
has shown promise for the treatment of MM. The rap-
idly developing technologies support advanced strat-
egies, including those relying on gene modification 
of effector cells, anti-myeloma drugs, and antibodies. 
These cellular immunotherapies are expected to play 
an important role in improving the outcome of patients 
with MM.
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