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Abstract: T cell non-Hodgkin lymphoma (T-NHL) is a rare and heterogeneous group of neoplasms
of the lymphoid system. With the exception of a few relatively indolent entities, T-NHL is
typically aggressive, treatment resistant, and associated with poor prognosis. Relatively few
options with proven clinical benefit are available for patients with relapsed or refractory disease.
Immunotherapy has emerged as a promising treatment for the management of patients with
hematological malignancies. The identification of tumor antigens has provided a large number
of potential targets. Therefore, several monoclonal antibodies (alemtuzumab, SGN-30, brentuximab
vedotin, and mogamulizumab), directed against tumor antigens, have been investigated in different
subtypes of T-NHL. In addition to targeting antigens involved in cancer cell physiology, antibodies
can stimulate immune effector functions or counteract immunosuppressive mechanisms. Chimeric
antigen receptor (CAR)-T cells directed against CD30 and immune checkpoint inhibitors are currently
being investigated in clinical trials. In this review, we summarize the currently available clinical
evidence for immunotherapy in T-NHL, focusing on the results of clinical trials using first generation
monoclonal antibodies, new immunotherapeutic agents, immune checkpoint inhibitors, and CAR-T
cell therapies.

Keywords: brentuximab vedotin; chimeric antigen receptor (CAR)-T cell; checkpoint inhibitors;
monoclonal antibodies; T cell non-Hodgkin lymphoma (T-NHL)

1. Introduction

Non-Hodgkin lymphoma (NHL) encompasses a heterogeneous group of malignant neoplasms
of the lymphoid system accounting for about 4% of all cancers in the United States. For 2018,
the American Cancer Society estimates that about 74,680 people will be diagnosed with NHL,
and around 19,910 people will die from this disease [1]. NHL malignancies arise from clonal expansion
of B-, T-, or natural killer (NK) cells. B-NHL occurs more frequent than T cell origin subtypes,
which account for 10–15% of all NHL.

The 2016 World Health Organizations updated the classification of lymphoid neoplasms to
include 26 mature T cell neoplasms [2]. Among these, the most common subgroup is peripheral T cell
lymphoma-not otherwise specified (PTCL-NOS; 26%), followed by angioimmunoblastic lymphoma
(18%). Anaplastic large-cell lymphoma (ALCL) accounts for 12% of T-NHL cases, of which 6.5%
are anaplastic lymphoma kinase (ALK) positive and 5.5% are ALK negative. Natural killer/T cell
lymphoma (NKTCL) and adult T cell leukemia/lymphoma (ATL) represent 12% and 10% of cases,
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respectively [3]. Among the mature T cell neoplasms, the primary cutaneous lymphomas represent
a heterogeneous group of extranodal NHL confined to the skin. Approximately 71% of these are
cutaneous T cell lymphomas (CTCL) and they comprise mycosis fungoides (MF), Sézary syndrome (SS),
and cutaneous CD30+ lymphoproliferative disorder [4,5]. The incidence of T-NHL is higher in men and
the median age at diagnosis is 62 years. However, the median age differs among subtypes. For instance,
ALKpos ALCL primarily affects children and young adults with a median age of 33 years [6].

Standard first-line treatment for NHL malignancies includes anthracycline-based chemotherapy,
such as cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens.
Traditionally, T-NHL has been treated according to chemotherapy schedules established for aggressive
B cell lymphomas. However, the five-year overall survival (OS) and the event-free survival (EFS) rates
for PTCL patients are significantly lower compared to B cell lymphoma patients, with an OS of 41%
versus 53% and EFS of 33% versus 42%, respectively. Specifically, the complete response (CR) rates
associated with standard treatment in NKTCL, AITL, ATL, and ALCL patients are 58%, 42%, 25%,
and 66%, respectively [7,8]. The reported five-year OS in patients with ALCL is higher (56%) compared
to NKTCL (42%), AITL (32%), and ATL (14%) patients [3]. Almost one-third of patients with PTCL
experience progressive disease during primary therapy, and the median OS after relapse is 5.5 months.
In a relapsed setting, the median OS increased to 6.5 months in patients that received chemotherapy,
with a median OS in PTCL-NOS, AITL, and ALCL patients of 6.5 months, 7.7 months, and 3 months,
respectively [9].

While exhibiting cytotoxic effects, most chemotherapeutic agents, due to their lack of specificity,
negatively affect different types of normal cells as well, leading to adverse side effects in multiple organ
systems [10]. The most common non-hematological short-term adverse effects of chemotherapy include
fatigue, alopecia, nausea, vomiting, malaise, diarrhea, mucositis, and rashes [11]. The most frequent
hematological adverse events (AEs) of chemotherapeutic agents are leukocytopenia, neutropenia,
anemia, and thrombocytopenia, resulting in increased susceptibility to infections and an elevated
risk of bleeding [12,13]. In recent years, several studies have reported an elevated risk of secondary
malignancies after preceding curative therapy for aggressive NHL as well as late non-neoplastic
events. Most studies reported a higher incidence of myelodysplastic syndrome/acute myeloid
leukemia (MDS/AML); several solid tumors, including cancers of the bladder, lungs, gastrointestinal
(GI) tract, head and neck, thyroid, and central nervous system (CNS); and sarcoma, breast cancer,
and mesothelioma [14–20]. In a retrospective study conducted by the European Organization for
Research and Treatment of Cancer (EORTC), late non-neoplastic events were observed in 46% of
757 patients consistently treated with doxorubicin-based chemotherapy since 1980 (median follow-up
of 9.4 years). The most common late complications were cardiac disease and female infertility, and the
15-year cumulative incidence rates were 20% and 29%, respectively. Other late events included male
infertility, disabling neuropathy, renal insufficiency, gastrointestinal (GI) toxicity, and lung fibrosis [21].

The generally poor outcome observed in T-NHL patients, due to unresponsiveness to standard
chemotherapy, relapses after treatment, and toxicity-related events, highlights the urgent need for
alternative treatment strategies.

NHL malignancies occur in immune-rich lymphoid tissues, expressing co-stimulatory molecules
as well as unique tumor antigens, which render them attractive targets for immunotherapy.
This therapeutic approach stems from immunosurveillance theory, which describes the ability of
the immune system to detect and prevent tumor development. Immunosurveillance is carried out by
the humoral and cellular components of the innate and adaptive immune system. The process of T cell
activation during the adaptive immune response requires two signals delivered by antigen-presenting
cells (APCs). The first signal is the antigen presentation by the major histocompatibility complex (MHC)
molecules on APCs to the corresponding T cell receptor (TCR) on naive T cells. The second signal is
the co-stimulatory signal provided by molecules on APCs, which engage with specific co-stimulatory
receptors on T cells. The best-characterized T cell co-stimulatory pathway involves the CD28 receptor
on T cells, which binds to two co-stimulatory molecules, B7-1 (CD80) and B7-2 (CD86), on APCs.
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The process of T cell activation is tightly regulated by the balance of co-stimulatory and co-inhibitory
signals, which maintain self-tolerance and prevent autoimmunity [22]. One mechanism through
which tumors escape immune surveillance is by overexpressing immunosuppressive surface ligands
that interact with T cell molecules, such as cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4)
or programmed cell death protein (PD-1), leading to a dysfunctional T cells state known as T cell
exhaustion. These recent discoveries led to the development of immune checkpoint inhibitors—specific
antibodies that antagonize the immunosuppressive interactions between the tumor cell and T cells [23].
In recent years, several clinical trials have confirmed the efficacy of immune checkpoint inhibitors
blocking the CTLA-4 and PD-1 pathways in different cancer entities, thus enabling approval of these
immunotherapies for the treatment of melanoma, renal cell carcinoma, and non-small cell lung cancer.

In classical Hodgkin Lymphoma (cHL) genomic amplification of the chromosomal locus 9p24.1,
containing the genes encoding the inhibitory immune-checkpoint proteins programmed cell death
ligand-1 (PD-L1) and PD-L2, which results in increased PD-L1 expression by Hodgkin Reed Stenberg
(HRS) cells, have been reported. Accordingly, a very high response rate to PD-1 blockade has been
observed in relapsed/refractory (R/R) cHL using nivolumab or pembrolixumab, with high overall
response rates (ORR) (65–87%) and complete response (CR) rates (16–17%) [24,25].

Based on these results, in 2016, the U.S. Food and Drug Administration (FDA) granted accelerated
approval to nivolumab for the treatment of patients with cHL.

Another emerging approach to boost and activate T cell response against tumor cells is chimeric
antigen receptor (CAR)-T cell immunotherapy. CAR-T cells are autologous T-lymphocytes genetically
modified to express CAR constructs targeting a specific antigen on the tumor cells. The constructs
are composed of a single chain variable (scFv) of a monoclonal antibody joined to the intracellular
T cell signaling domain of the TCR CD3-ζ chain. Co-stimulatory molecules, such as CD28 and 4-1
BB, have been engineered to the signal transduction region in second and third generation CARs [26].
CAR-T cell therapies allow for the redirection and activation of effector T cells toward a specific
tumor-associated antigen and are independent of major histocompatibility complex (MHC) restriction.

Data from clinical trials using anti-CD19 CAR-T cells have produced strong results in the treatment
of B cell malignancies [27,28]. Several recently published studies showed that treatment of pediatric
patients with R/R acute lymphoblastic leukemia achieved a complete response (CR) rate of 70–90%
after infusions of T cells transduced with an anti-CD19 CAR [29,30].

In 2017, the FDA granted breakthrough designation to two different CAR-T cell therapies, CTL019
(tisagenlecleucel) for the treatment of R/R pediatric and young adult patients with B cell acute
lymphoblastic leukemia (ALL), as well as Yescarta (axicabtagene ciloleucel). Yescarta has been
approved for the treatment of adult patients with R/R large B cell lymphoma after two or more
lines of systemic therapy, including diffuse large B cell lymphoma (DLBCL) not otherwise specified,
primary mediastinal large B cell lymphoma (PMBCL), high grade B cell lymphoma, and DLBCL arising
from follicular lymphoma.

The promising results of checkpoint inhibitors and CAR-T cell therapies in HL and B cell
lymphoma are prompting an increased number of clinical trials aimed at evaluating the effects
in specific NHL subtypes. In this review, we aim to summarize the current clinical data on
immunotherapy for relapsed and/or refractory T-NHL. Specifically, we provide an overview of
the first generation monoclonal antibodies, new immunotherapeutic agents, checkpoint inhibitors, and
CAR-T cells, and we discuss the available clinical evidence of these agents in T-NHL.

2. Monoclonal Antibodies

2.1. Alemtuzumab (Anti-CD52 Monoclonal Antibody)

Alemtuzumab is a humanized IgG1 kappa monoclonal antibody directed against the CD52
antigen, which is mostly expressed by B- and T-lymphocytes. Clinical activity of alemtuzumab as
a monotherapy has been evaluated in mycoses fungoides (MF), Sézary syndrome (SS), and R/R
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peripheral T cell lymphoma (PTCL) [31,32]. The ORR in SS and MF patients was 55%, with CR in 32%
of patients (Table 1) [31]. Treatment with alemtuzumab was associated with acceptable hematological
toxicities and infection complications. Overall, 18% of patients experienced grade 4 neutropenia and
cytomegalovirus (CMV) reactivation was reported in four (18%) patients.

Table 1. Prospective trials of monoclonal antibodies in T cell non-Hodgkin lymphoma (T-NHL).

Agent Combination Phase Lymphoma
Subtypes

No. of
Patients Clinical Setting ORR

(%)
CR/PR

Rate (%) Location Ref.

Alemtuzumab - II MF; SS 22 R/R 55 32/23 Europe [31]
- II PTCL 14 R/R 36 21/14 Europe [32]
- II MF; SS 39 R/R 51 18/33 Europe [33]
- II PTCL; MF 10 R/R 60 20/40 Europe [34]

DHAP II PTCL 24 R/R 50 21/29 South Korea [35]
CHOP-21 II PTCL 20 newly diagnosed 80 65/15 South Korea [36]
CHOP-28 II PTCL 24 newly diagnosed 75 71/4 Europe [37]
CHOP-14 II PTCL 20 newly diagnosed 90 60/50 Europe [38]

SGN-30 - II C-ALCL;
LyP; MF 23 R/R 70 43/26 USA [39]

- II ALCL 41 R/R 17 5/12 USA [40]

Brentuximab
vedotin - II ALCL 58 R/R 86 57/27 Worldwide [41,42]

- II MF SS 32 R/R 70 3/67 USA [43]

- I PTCL;
AITL 35 R/R 41 23/18 USA [44]

CHOP-21
(sequential) I ALCL 13 newly diagnosed 85 62/23 Worldwide [45]

CHP-21
(combination) I

ALCL;
PTCL-NOS;
ATL; AITL

26 newly diagnosed 100 88/12 Worldwide [45,46]

- III pcALCL;
MF 66 R/R 67 16/51 Worldwide [47]

Mogamulizumab - II ATL 27 R/R 50 30/NR Japan [48]
- I/II MF; SS 38 R/R 37 8/29 USA [49]

- II PTCL;
CTCL 37 R/R 35 14/21 Japan [50]

- III MF 105 R/R 21 NR Europe [51]
- III SS 81 R/R 37 NR Europe [51]

Note: ALCL, anaplastic large cell lymphoma; AITL, angioimmunoblastic T cell lymphoma; ATL, adult T
cell leukemia/lymphoma; C-ALCL, cutaneous ALCL; CHOP, cyclophosphamide, doxorubicin, vincristine and
prednisone; CR, complete response; CTCL, cutaneous T cell lymphoma; DHAP, dexamethasone high-dose cytarabine
cisplatin; LyP, lymphomatoid papulosis; MF, mycosis fungoides; NR, not reported; ORR, overall response rate;
pcALCL, primary cutaneous ALCL; PR, partial response; PTCL-NOS, peripheral T cell lymphoma-not otherwise
specified; R/R, relapsed/refractory; SS, Sézary syndrome.

In patients with PTCL, the ORR was 36%, with 21% achieving CR [32]. Pancytopenia and
cytomegalovirus (CMV) reactivation were the most commonly reported adverse AEs. Another study
showed long-lasting remission in SS, with an ORR of 70%, but limited efficacy in MF, with an ORR
of 25% [33]. A grade 3 or higher infectious AE was reported in 62% of patients and 26% of patients
experienced hematological toxicity. In a phase II study of alemtuzumab in 10 patients with PTCL
and MF, an ORR of 60% (two complete responses and four partial responses) was reported [34].
Alemtuzumab has been combined with different forms and schedules of CHOP for the treatment of
R/R [35] or newly diagnosed PTCL patients [36–38]. The combination of CHOP-14 [38], CHOP-21 [36],
and CHOP-28 [37] with alemtuzumab showed high CR rates (60–71%), but was associated with high
relapse rates and infection-related AEs. Among these studies, neutropenia was the most frequent
hematologic toxicity. Due to heterogeneous patient populations, different doses of alemtuzumab,
and variable chemotherapy protocols, comparison of the different phase II studies is intricate.

In November 2014, the FDA approved Lemtrada (alemtuzumab) for the treatment of patients
with the relapsing form of multiple sclerosis (MS).

2.2. Brentuximab Vedotin (Antibody-Drug Conjugate Directed against CD30)

CD30 (Ki-1) is highly expressed in malignant lymphoid cells, including B and T cell leukemia
cells, Reed-Sternberg cells of Hodgkin lymphoma, and some NHL, both at diagnosis and relapse of
disease [52–56]. Therefore, CD30 represents an attractive and validated target for immunotherapy in
T-NHL. Monoclonal antibodies that target CD30, like SGN-30, showed an acceptable safety profile but
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only modest clinical activity, which has been observed in patients with primary cutaneous ALCL (43%
CR rate) and in ALCL patients (17% ORR) (Table 1) [39,40].

To enhance the antitumor activity of SGN-30, the microtubule-disrupting agent
mono-methylauristatin E (MMAE) was linked to the anti-CD30 monoclonal antibody, producing the
anti-CD30 antibody-drug conjugate brentuximab vedotin (SGN-35). Binding of MMAE to tubulin
disrupts the microtubule network, induces cell-cycle arrest, and results in apoptotic death of the
CD30-expressing tumor cells [57]. In a phase II study, 58 patients with R/R ALCL treated with
single agent brentuximab vedotin (1.8 mg/kg) showed an ORR of 86%, including a CR in 57% of
patients [41]. Neutropenia (21%), thrombocytopenia (14%), and peripheral neuropathy (41%) were the
most common AEs. However, resolution or improvement of peripheral neuropathy symptoms was
reported in 91% of patients. The results from the five-year follow-up demonstrated that brentuximab
vedotin may be a curative option for R/R ALCL patients [42]. ALCL is characterized by high
CD30 expression, [55] whereas other PTCL have variable CD30 expression [58]. In a phase II study,
32 patients with MF and SS were treated with brentuximab vedotin every three weeks for a maximum
of 16 doses [43]. ORR was observed in 21 patients (70%), with one CR, and seven patients (23%)
showing skin improvement. Peripheral neuropathy was the most common AE occurring in 66% of
patients. Additionally, a correlation between CD30 expression and response was reported in this study.
Patients with a CD30 expression lower than 5% had a decreased probability of response compared to
patients with a CD30 expression higher than 5%. In another prospective phase II study, 35 patients
with PTCL, specifically angioimmunoblastic T cell lymphoma (AITL = 13) and PTCL-NOS (n = 22),
were included [44]. The ORR was 54% in AITL and 33% in PTCL-NOS, with CR rates of 38% and 14%,
respectively. Consistent with previous data, the most frequent AEs reported were neutropenia (14%)
and peripheral neuropathy (9%).

In a phase I study, 39 patients with PTCL were included [45]. Six patients had ALKpos ALCL,
26 patients had ALKneg ALCL, and seven patients had other CD30+ PTCL. This study evaluated
the activity of a sequential treatment approach (two cycles), followed by CHOP (six cycles), or a
combined treatment approach of brentuximab vedotin plus CHP (CHOP without vincristine, six cycles).
After sequential treatment, 11 of 13 patients achieved an objective response (CR 62%) and 23 of
26 patients treated with the combined approach achieved CR (88%). Peripheral neuropathy was
experienced by 77% of patients after sequential treatment and by 69% of patients after the combined
approach. The most common AEs of grade 3/4, observed in both treatment approaches, were febrile
neutropenia (15–31%), neutropenia (15–23%), and anemia (15%). The five-year follow-up demonstrated
a durable remission in 50% of patients treated with the combined approach [46]. Moreover,
a multicenter phase III clinical trial (ECHELON-2, NCT01777152), comparing the efficacy and safety
of brentuximab vedotin and CHP versus CHOP, was completed and results are expected in the
near future.

A phase III, randomized, open-label, multicenter clinical trial (ALCANZA, NCT01578499) was
designed to evaluate single-agent brentuximab vedotin versus a control arm of the investigator’s
choice of standard therapies, methotrexate or bexarotene, in patients with CD30-expressing primary
cutaneous ALCL or MF [47]. ALCANZA demonstrated an improvement in the rate of objective
response, lasting at least four months (ORR4) in the brentuximab vedotin arm (ORR4 of 56%) compared
to the investigator’s choice arm (ORR4 of 12%). The rate of CR was also superior in the brentuximab
vedotin arm at 16%, compared to 2% in the investigator’s choice arm. The median PFS was 15.8 months
in the brentuximab vedotin arm versus 3.6 months in the physician’s choice arm. Treatment-related
AEs were similar between the two groups and occurred in 29% of patients. Peripheral neuropathy was
reported in 67% of patients in the brentuximab vedotin group and in 6% of patients in the physician’s
choice arm. At the last follow-up (median 22.9 months), improvement or resolution of peripheral
neuropathy was observed in 82% of patients in the brentuximab vedotin group.
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Based on the results of the phase III ALCANZA clinical trial, in November 2017, the FDA granted
regular approval to brentuximab vedotin for the treatment of adult patients with primary cutaneous
ALCL or CD30-expressing MF who have received prior systemic therapy.

2.3. Mogamulizumab (Anti-CCR4 Monoclonal Antibody)

Mogamulizumab is a humanized monoclonal antibody directed against CC chemokine receptor 4
(CCR4), which is expressed in regulatory T cells (Treg) and T helper cells. CCR4 is also expressed in
approximately 90% of patients with ATL [59] and 40% of patients with CTCL [60] and PTCL [61,62].
A phase II study of the agent was conducted in 27 patients with relapsed, aggressive CCR4-positive
ATL (Table 1) [48]. ORR was observed in 50% of the 26 evaluable patients, including eight CR.
The median PFS and OS were 5.2 and 13.7 months, respectively. The most commonly reported AEs
were infusion reactions (89%) and skin rashes (63%).

A phase I/II study with mogamulizumab was performed in 41 pretreated patients with CTCL [49].
The ORR in the 38 evaluable patients was 37%, 47.1% in SS (n = 17), and 28.6% in MF (n = 21). Nausea
(31.0%), chills (23.8%), and infusion-related reaction (21.4%) were reported as the most common AEs
in this study.

A multicenter phase II study was performed on patients with relapsed CCR4-positive PTCL
(n = 29) and CTCL (n = 8) [50]. Mogamulizumab (1 mg/kg) was administered intravenously once
per week for eight weeks. An ORR of 35% was observed, including five patients (14%) with CR and
a median PFS of three months. The most frequent AEs of grade 3/4 were lymphocytopenia (73%),
leukocytopenia (43%), and neutropenia (19%).

A phase III randomized, open-label, multinational clinical trial—MAVORIC [NCT01728805]—to
compare mogamulizumab to vorinostat in previously treated CTCL, is ongoing [51]. The trial included
372 patients with MF or SS. In the first report of the clinical trial, significant improvement in ORR was
found with mogamulizumab versus vorinostat in patients with both MF (21.0% vs. 7.1%, respectively)
and SS (37.0% vs. 2.3%, respectively). The most common AEs in the mogamulizumab versus vorinostat
included infusion related reaction (33.2% vs. 0.5%, respectively) and skin eruptions due to drug (23.9%
vs. 0.5%, respectively). Mogamulizumab was first approved in 2012 in Japan for ATL and in 2014 for
CTCL. In 2017, the FDA granted breakthrough therapy priority review status to mogamulizumab for
the treatment of MF and SS in patients who have received at least one prior systemic therapy.

3. Immune Checkpoint Inhibitors

A paradigm shift in immune-oncology occurred over the past few years with the approval of
monoclonal antibodies that do not target the tumor cells directly, but that enhance the anti-tumor
response of the immune system by targeting immune regulatory pathways. PD-1 and its ligands
are aberrantly expressed in cancer cells and in the tumor microenvironment. In T-NHL, the tumor
microenvironment plays a special role and sometimes defines the tumor itself (AITL) [63]. Many T-NHL
subtypes retain strong tissue tropism, gene expression profiles, and cytokine secretion patterns after
transformation, which all impact the cellular composition and structure of the lymphoma. PD-L1
expression was found in different T-NHL subtypes, including PTCL (15% of cases), CTCL (27%),
NKTCL (67%), ATL (25%), ALKpos ALCL, and ALKneg ALCL (50% and 67%, respectively) [64–68].
In NKTCL, an association between strong PD-L1 expression and Epstein-Barr virus infection was
reported [69]. Specifically, EBV latent membrane protein 1 (LMP1) upregulation of PD-L1 through the
MAPK/NF-kB pathway was reported. High PD-L1 expression and increased post-treatment serum
PD-L1 levels have been proposed as biomarkers for poor prognosis in two independent studies [69,70].
However, in another study, increased OS in EBV+ NKTCL patients with high PD-L1 was observed [71].
Therefore, the prognostic value of PD-L1 in NKTCL requires further investigation. In ATL, aberrant
PD-L1 expression upon 3′-untraslated region (3’-UTR) truncation and PD-L1 transcripts stabilization
was reported, suggesting PD-L1 3’-UTR disruption as a potential genetic marker [67]. Transcriptional
regulation of PD-L1 through STAT3 was observed in ATL and ALKpos ALCL [72,73]. Furthermore,
MYC and STAT3 have been identified as transcriptional regulators of PD-L1 in ALKneg ALCL [68].
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Aberrant expression of immune checkpoint receptors involved in T cell inhibitory and exhaustion
mechanisms have been observed in PTCL and NKTCL patients [74]. Precisely, overexpression of PD-1
and CTLA-4 was found in NKTCL patients, whereas upregulation of LAG-3, TIM-3, and TIGIT was
observed in PTCL patients.

The expression of inhibitory ligands on tumor cells indicates a suppression of host immunity
through interaction of PD-L1 with PD-1 on activated cytotoxic T cells. However, the tumor
microenvironment includes heterogeneous cell populations, including dendritic cells (DC), NK, Treg,
myeloid-derived T cells, and tumor associated macrophages (TAM), which might further contribute
to the suppression of host immunity [75]. PD-L1 expression on tumor infiltrating monocyte-derived
cells was observed in 73% of CTCL and 39% of PTCL cases [64]. Moreover, the expression of PD-L1 on
immature DC led to inhibition of T cell proliferation and induction of FoxP3+ Treg. Immunostaining
of ATL patient samples showed expression of PD-L1 on infiltrating TAM. Furthermore, STAT3 has
been identified as a transcriptional regulator of PD-L1 expression on TAM [76].

Recent findings reported the role of PD-1 as a haploinsufficient tumor suppressor in T cell
lymphomagenesis [77]. In vivo genetic deletion of PD-1 led to the development of a highly aggressive
lymphoma in a PTCL mouse model. Moreover, genomic alterations of PD-1 have been identified in
36% of PTCL cases. These findings suggest that immunotherapy targeting of PD-1 in certain T-NHL
subtypes might cause expansion of malignant clones with oncogenic activation of the TCR pathways.
Therefore, evaluation of the tumor microenvironment, PD-1 genetic deletions, and TCR oncogenic
alterations prior to immune checkpoint blockade need to be considered in T-NHL.

Nivolumab and pembrolizumab are the two immune checkpoint inhibitors, both targeting PD1,
in the most advanced stages of clinical development in hematological malignancies. Pembrolizumab
is a humanized IgG4 monoclonal antibody that binds to the PD-1 receptor, preventing its interaction
with PD-L1 and PD-L2. In T-NHL, pembrolizumab has shown clinical activity in a multicenter phase
II study in 24 patients with advanced stage R/R MF and SS (Table 2) [78].

Table 2. Prospective trials of immune checkpoint agents and anti-CD30 chimeric antigen receptor
(CAR)-T cell in T-NHL.

Agent Phase Lymphoma
Subtypes

No. of
Patients

Clinical
Setting ORR% Clinical Response n Location Ref.

CR PR SD

Pembrolizumab II SS 15 R/R 27 1 3 7 USA [78]
MF 9 R/R 56 - 5 2

II NKTCL 7 R/R - 3 2 - Asia [79]

Nivolumab I MF 13 R/R 15 - 2 9 USA [80]
PTCL 5 R/R 40 - 2 -

SS 3 R/R - - - -
non CTCL 2 R/R - - - 1

Anti-CD30 CAR-T I HL 17 R/R - - 6 6 China [81]
C-ALCL 1 R/R - - 1 (3 mo) -

I HL 7 R/R - 2 3 - USA [82]
C-ALKneg

ALCL 1 R/R - - - -

ALKpos

ALCL 1 R/R - 1 (9mo) - -

Note: ALCL, anaplastic large cell lymphoma; ALKpos ALCL, anaplastic lymphoma kinase positive ALCL; C ALCL,
cutaneous ALCL; CAR, chimeric antigen receptor; CR, complete response; CTCL, cutaneous T cell lymphoma; HL,
Hodgkin lymphoma; MF, mycosis fungoides; mo, month; NKTCL, natural killer/T cell lymphoma; ORR, overall
response rate; PR, partial response; PTCL, peripheral T cell lymphoma; R/R, relapsed/refractory; SD, stable disease;
SS, Sézary syndrome.

Nine patients with MF and 15 patients with SS were enrolled; 90% or greater improvement in
skin disease was observed in six patients. The ORR was 38%, with one patient with SS achieving CR
and eight patients (MF = 5 and SS = 3) achieving a PR. The treatment was well tolerated with a toxicity
profile consistent with prior pembrolizumab studies, with the exception of immune-mediated skin flare
reactions in 40% of patients with SS. Two patients experienced immune mediated treatment-related



Cancers 2018, 10, 339 8 of 17

serious AEs (pneumonitis and duodenitis). A phase II trial of pembrolizumab in combination with
interferon-gamma is ongoing in previously treated MF and SS patients.

One report demonstrated high response rates to pembrolizumab in R/R NK/T cell lymphomas
failing L-asparaginase regimens [79]. A median of seven cycles of pembrolizumab (2 mg/kg) every
three weeks were administered to seven patients. Three patients achieved CR and two patients
achieved PR. The only reported AE was a grade 2 skin graft-versus-host disease in one patient with
previous allogeneic HSCT.

Nivolumab is a human IgG4 monoclonal antibody that targets the PD-1 receptor. In a phase I
study, 81 patients with R/R B cell lymphoma, T cell lymphoma, and multiple myeloma were treated
with nivolumab (1–3 mg/kg) every two weeks [80]. Among the 23 T-NHL patients included, 13 patients
had MF, 5 had PCTL, 2 had SS, and 3 had other non-CTCL. The ORR observed were 15% and 40%
in MF and PTCL, respectively, with two PR in each group and one SD in the non-CTCL patients.
Drug-related AEs of any grade were reported in 74% of T-NHL patients, whereas 22% of AEs were of
grade 3/4.

In R/R ALCL, three cases were published about response to anti-PD1 therapy. In the first
reported case, a 35-year old patient with ALKneg ALCL treated with pembrolizumab achieved CR after
allogeneic HSCT without AEs [83]. In another report, a 19-year old patient diagnosed with ALKpos

ALCL was refractory to chemotherapy and targeted agents (brentuximab vedotin and crizotinib) and
relapsed after HSTC. After nivolumab treatment, the patient achieved a CR without graft-versus-host
disease (GvHD) [84]. The third documented case described a 17-year old patient with ALKpos ALCL
refractory to chemotherapy and ALK inhibitors (crizotinib). Treatment with nivolumab, as a third line
therapy, was followed by CR for 18 months [85].

Multiple studies of immune checkpoint blockade, as monotherapy or in combination, are ongoing
in several subtypes of T-NHL (Table 3), and will provide more insight on the efficacy of these treatments.

Table 3. Open clinical trials of immune checkpoint agents in T-NHL.

Clinical Trial
Identifier

Immune Checkpoint
Inhibitor Combination Phase Lymphoma

Subtypes Clinical Setting No. of
Patients Location

NCT03063632 Pembrolizumab Interferon
Gamma-1b II MF SS R/R 36 USA

NCT03240211 Pralatrexate and
Decitabine I PTCL CTCL R/R 42 Worldwide

NCT03385226 Radiotherapy II CTCL MF SS R/R 46 Europe

NCT03278782 Romidepsin I/II PTCL CTCL R/R 39 USA

NCT02362997 - II PTCL R/R- ASCT 60 USA

NCT03021057 - II NKTCL R/R 33 China

NCT03107962 - II NKTCL R/R 20 China

NCT03075553 Nivolumab - II PTCL R/R 39 USA

NCT02581631 Brentuximab
vedotin I/II PTCL CTCL R/R 146 Worldwide

NCT02556463 Durvalumab MEDI9197
(TLR7/8 agonist) I CTCL R/R 135 Worldwide

NCT03235869 Radiotherapy I CTCL untreated or R/R 19 USA

NCT03011814 Lenalidomide I/II PTCL CTCL R/R 62 USA

NCT03054532 Lenalidomide II NKTCL R/R 22 Singapore

NCT03161223
Pralatrexate,
Romidepsin,
5-Azacitidine

I/II PTCL R/R 148 Worldwide

NCT03046953 Avelumab - II PTCL R/R 35 Europe

NCT03439501 - III/IV ENKTL R/R 33 South
Korea

Note: Information derived from www.clinicaltrials.gov database on 28 February 2018. ASCT, autologous stem cell
transplantation; CTCL, cutaneous T cell lymphoma; ENKTL, extranodal natural killer/T cell lymphoma; MF, mycosis
fungoides; NKTCL, natural killer/T cell lymphoma; PTCL, peripheral T cell lymphoma; R/R, relapsed/refractory;
SS, Sézary syndrome.

www.clinicaltrials.gov
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4. CAR-T Cell Therapies

CD30 represents an attractive and validated target for antibody-based therapies, and engineered
CAR-T cells targeting CD30 have shown potent anti-lymphoma activity in preclinical studies in various
tumor models [86–89]. In a phase I study of anti-CD30 CAR-T cell therapy, 18 patients (17 with HL and
one with cutaneous ALCL) were enrolled (Table 2) [81]. CAR-T cell infusion was tolerated without
toxicity and seven patients achieved PR and six achieved SD. Conditioning chemotherapy was reported
to enhance the engraftment of transferred T cells and improve the objective response [90–93]. Notably,
the patients diagnosed with relapsed primary cutaneous ALCL achieved a three-month PR after the
first CAR-T cell infusion without conditioning chemotherapy.

In another phase I study of anti-CD30 CAR-T cells, nine patients with relapsed refractory CD30+
HL and NHL (seven with HL and two with CD30+ anaplastic large cell lymphoma) were enrolled [82].
Of note, seven of these patients had either relapsed or progressive disease after treatment with
brentuximab vedotin. CAR-T cell infusions were well tolerated and produced no AEs attributable
to the therapy. Three patients achieved CR and three patients remained in SD. Specifically, of the
two patients with ALCL, one patient with ALKpos ALCL had a dramatic response after the first
anti-CD30 CAR-T cell infusion, and after the fourth infusion, achieved a CR that was maintained for
nine months. These studies demonstrate the tolerability, safety, and potential clinical benefit of CD30
CAR-T cell therapy. Ongoing clinical trials will further elucidate the efficacy of this approach in CD30+
malignancies (Table 4).

Table 4. Open clinical trials of anti-CD30 CAR-T cell therapies in T-NHL.

Clinical Trial
Identifier Agent Trial Title Phase Lymphoma

Subtypes
Clinical
Setting

No. of
Patients Location

NCT02917083 anti-CD30
CAR-T cells

Phase I study of relapsed
CD30 expressing lymphomas

treated with CD30 CAR-T
cells (RELY-30)

I CD30+ HL
and NHL R/R 18

Houston Methodist
Hospital, Texas

Children’s Hospital,
Houston, Texas,

United States

NCT03383965 anti-CD30
CAR-T cells

A clinical study of CD30
targeted CAR-T in treating

CD30-expressing lymphomas
I CD30+ HL

and NHL R/R 20
Weifang People’s
Hospital, Weifang,
Shandong, China

NCT03049449 anti-CD30
CAR-T cells

T Cells expressing a
fully-human anti-CD30

chimeric antigen receptor for
treating CD30-expressing

lymphomas

I CD30+ HL
and NHL R/R 76

National Institutes of
Health Clinical Center,
Bethesda, Maryland,

United States

NCT02663297 anti-CD30
CAR-T cells

Phase I study of the
administration of T

lymphocytes expressing the
CD30 chimeric antigen

receptor (CAR) for
prevention of relapse of
CD30+ lymphomas after
high dose therapy and

autologous stem
transplantation (ATLAS)

I CD30+ HL
and NHL R/R 18

Lineberger
Comprehensive Cancer
Center at University of
North Carolina, Chapel

Hill, United States

NCT02259556 anti-CD30
CAR-T cells

CD30-directed chimeric
antigen receptor T (CART30)

therapy in relapsed and
refractory CD30 positive

lymphomas

I/II CD30+ HL
and NHL R/R 30 Chinese PLA General

Hospital, Beijing, China

NCT02690545 anti-CD30
CAR-T cells

Phase Ib/II study of the
administration of T

lymphocytes expressing the
CD30 CAR for

relapsed/refractory CD30+
Hodgkin’s Lymphoma and

CD30+ Non-Hodgkin’s
Lymphoma

I/II CD30+ HL
and NHL R/R 31

Lineberger
Comprehensive Cancer
Center at University of
North Carolina, Chapel

Hill, United States

NCT02958410 anti-CD30
CAR-T cells

Clinical research of
CD30-targeted CAR-T in
lymphocyte malignancies

I/II CD30+ HL
and NHL R/R 45

Southwest Hospital of
Third Military Medical

University,
Chongqing, China

Note: Information derived from www.clinicaltrials.gov database on 28 February 2018. CAR, chimeric antigen
receptor; HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma; R/R, relapsed/refractory.

www.clinicaltrials.gov
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New strategies are under investigation in order to overcome several challenges that are
still limiting the therapeutic effectiveness of CAR-T cell therapies. One potential issue is the
immunogenicity of CAR, which is due to the use of scFv derived from murine antibodies. Thus,
humanized or “fully human” scFv regions have been developed [94], and fully human anti-CD30
CAR-T cells are under investigation in CD30+ NHL patients (Table 4, NCT03049449).

A major limitation of CAR-T cells in the treatment of T cell malignancies is the shared expression
of target antigens between normal and malignant T cells leading to CAR-T cells fratricide or profound
immunodeficiency. In preclinical models, gene editing approaches, such as CRISPR/Cas9-mediated
editing and transcription activator-like effector nucleases (TALENs), have been employed to target
novel antigens and increase the effectiveness of CAR-T cells [95,96]. CD7 is transmembrane protein
expressed in T cell leukemia and lymphomas, and in a subset of PTCL [97,98]. CRISPR/Cas9-mediated
editing has been reported to enable disruption of the CD7 gene in T cells prior to transduction with
a CD7-specific CAR [99]. This modification prevents fratricide without precluding T cell expansion
and antitumor activity. Furthermore, genome editing has been adapted to overcome the limitation
of harvesting a sufficient number of functional T cells without contamination by malignant cells.
Indeed, genome editing of the target gene in malignant T cells would result in the generation of
resistant clones. Double disruption of CD7 and TCR alpha chain (TRAC) using CRISPR/Cas9 in T
cells results in loss of alloreactivity and GvHD potential in vivo, thus suggesting the use of allogenic
T cells as a source of CAR-T cells [100]. Moreover, suicide switch systems are under investigation
to enable therapy interruption, thus preventing permanent T cell aplasia and cytotoxicity mediated
by CAR-T cells. Instead of targeting a pan T cell antigen, an approach where CAR-T cells target one
constant region of the TCR beta chain (TRBC) has been evaluated [101]. This approach allows the
eradication of malignant cells while preserving intact a substantial proportion of the T cell compartment.
Two genes, TRBC1 and TRBC2, encode the TCR beta constant region and are expressed in a mutually
exclusive manner. Therefore, the normal T cell compartment contains cells expressing TRBC1 or
TRBC2. The identification of TRBC1 monoclonality in different T cell malignancies has led to the
development of anti-TRBC1 CAR-T cells, which recognize and kill TRBC1+ normal and malignant T
cells in vitro and in a xenograft mouse model, while preserving a sufficient portion of T cells (TRBC2+).
A better evaluation of adverse events, such as off-target and cytokine-mediated toxicity, following
infusion of CAR-T cells, requires applications of these approaches in clinical trials. Advances in T cell
ex-vivo growth, genetic engineering of other T-lineage antigens, investigation of CAR immune biology,
and further optimization of CAR design will enable the preclinical evaluation of the efficacy and safety
of CAR-T cells in a broad range of T-NHL.

5. Conclusions

Current patient outcomes highlight the need for additional therapies and novel regimens in
relapsed and refractory T-NHL. Immunotherapy with monoclonal antibodies and CAR-T cells is
revolutionizing oncology, and hematological malignancies offer a particularly fertile ground to evaluate
this approach. The improving understanding of interplay between malignant cells and the tumor
microenvironment, as well as evasion of host immune response, will provide information regarding
the dynamic nature of anti-tumor immunity and lead to optimization of immunotherapy. Evidence
from preclinical data and clinical trials investigating immune checkpoint inhibitors and CAR-T cell
immunotherapy in T-NHL is emerging, and was summarized in this article. Major issues such as
timing and sequencing, treatment duration, CAR design, and synergistic combinatory approaches are
still under investigation. Results of ongoing and future trials will lead to better awareness regarding
treatment safety and efficacy.
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