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ABSTRACT: The kinetics of a dynamical system comprising two
metastable states is formulated in terms of a finite-time propagator
in phase space (position and velocity) adapted to the underdamped
Langevin equation. Dimensionality reduction to a subspace of
collective variables yields familiar expressions for the propagator,
committor, and steady-state flux. A quadratic expression for the
steady-state flux between the two metastable states can serve as a
robust variational principle to determine an optimal approximate
committor expressed in terms of a set of collective variables. The
theoretical formulation is exploited to clarify the foundation of the
string method with swarms-of-trajectories, which relies on the
mean drift of short trajectories to determine the optimal transition
pathway. It is argued that the conditions for Markovity within a subspace of collective variables may not be satisfied with an arbitrary
short time-step and that proper kinetic behaviors appear only when considering the effective propagator for longer lag times. The
effective propagator with finite lag time is amenable to an eigenvalue-eigenvector spectral analysis, as elaborated previously in the
context of position-based Markov models. The time-correlation functions calculated by swarms-of-trajectories along the string
pathway constitutes a natural extension of these developments. The present formulation provides a powerful theoretical framework
to characterize the optimal pathway between two metastable states of a system.

■ INTRODUCTION
A central problem in computational biophysics is the character-
ization of the long-time kinetic behavior of molecular systems.
Many of the key concepts can be formulated by considering a
prototypical system comprising two dominant metastable states
A and B. In the context of amultistateMarkovmodel, the steady-
state flux from A to B can be expressed as the net sum of
productive transitions across a dividing surface between the two
end states. Further analysis shows that the steady-state
probability of the states under such nonequilibrium conditions
can be expressed as the product of the equilibrium probability of
the states times the probability that a trajectory initiated at the
same position will be reactive and first reach the state B before
ever reaching the state A.1 This “committor” probability, which
can be determined on the basis of the backward dynamical
propagation, then becomes a critical ingredient in efforts to
formulate a theoretical framework seeking to treat such
problems.1,2

This analysis leads to the observation that the principal lines
of a reactive probability current between the states A and B are
largely determined by the equilibrium probability times the local
gradiant of the committor.2 This observation provides a critical

insight in the formulation of the string method,3−5 which seeks
to determine the dominant “reaction tube” that contains most of
the probability current between A and B. Mathematically, the
line of maximum probability flux is a curve in the phase space,
and a calculation of the full committor is practically infeasible.
To reduce the complexity of the problem, Maragliano et al.6

assumed that the committor probability depends predominantly
on a subset of collective variables (CVs), z ≡ {z1, z2, ..., zN}.
These considerations provide the background that led to the
development of the string method with CVs on the potential of
mean force (PMF) surfaceW(z).6 The string method represents
the curvilinear minimum free energy pathway (MFEP) linking
the states A and B as a curve in the space of the collective
variables. Inspired by pioneering work from Pratt7 and Elber and
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Karplus,8 this curve (the string) is constructed iteratively as a
chain of M copies of the system (“images”). In its original
formulation, the information needed for each image is the mean
force and the value of a metric tensor, both of which can be
expressed in terms of conditional averages. This algorithm has
been employed in a variety of applications.9−17

The problem of optimizing the path in a multidimensional
space, nonetheless, remains arduous and computationally
expensive. To circumvent these difficulties, a number of
variations of the original mean force algorithm of Maragliano
et al.6 have been proposed, including the finite temperature
string method,18 the string method with swarms-of-trajecto-
ries,19 and multiscale preconditioning.20 The idea of the string
method with swarms-of-trajectories19 (also called the “drift”
method21) is to rely on the outcome from a large number of
short unbiased trajectories launched from the positions of the
images along the curve to determine the optimal pathway.
Because it relies on a large number of independent trajectories,
the algorithm scales extremely well on large supercomputers,22

and this becomes especially effective with applications to hybrid
quantum mechanical-molecular mechanical (QM/MM) simu-
lations due to the poor scaling displayed by ab initio codes.23

The method has been used to characterize a conformational
transition in very large macromolecular systems, including the
activation of c-Src tyrosine kinase24,25 cholesterol flip-flop in
lipid membranes,26 the movement of the voltage-sensor of K+

channels,27 the alternating-access mechanism in the sarcoplas-
mic reticulum calcium pump (SERCA),28 and the chemo-
mechanical coupling in V-type ATPases.29

It has been shown that the original mean force method of
Maragliano et al.6 and the swarms algorithm19 are essentially
equivalent in the limit of very short trajectories.30 However, the
significance of the swarms algorithm for longer trajectories
remains unclear. Intuitive arguments relying on a physical
picture of overdamped diffusional dynamics suggest that the
mean drifts from the swarms-of-trajectories may have the ability
to more correctly capture the effective behavior of the system
supporting the construction of meaningful transition path-
ways.19,21 But the lack of a rigorous theoretical treatment has
prevented the analysis to go any further.
The goal of the present effort is to return to this unresolved

issue and clarify the fundamental underpinning of the string
method with swarms-of-trajectories. After a brief summary of
the developments leading to the original mean force string
method,6 we begin by formulating the problem of the kinetics of
a dynamical system comprising two metastable states A and B in
terms of a finite-time propagator in phase space (position and
velocity) adapted to the underdamped Langevin equation. This
development is inspired by previous work based on propagators
for position-based Markov models.31−34 From this formulation,
an effective propagator in the space of the CVs is defined, and its
properties are clarified. It is shown that a formulation of the
propagator with a finite lag time helps to clarify the conditions
for Markovity within the subspace of the CVs. On the basis of
this analysis, the significance of thea string method with swarms-
of-trajectories with finite lag time is clarified.

■ ANALYSIS
String Method in Collective Variables. For the sake of

clarity and completeness, we briefly recall the formal develop-
ments leading to the original mean force stringmethod.6We first
consider a system evolving according to the underdamped
Langevin equation
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The forward committor q+
B(x, v) can be also obtained through a

variational formulation by seeking to minimizes I2,6

I qx v x v
1
2

d d ( , )eq
2∫ ρ= | |

(3)

over all trial functions q(x, v) satisfying the constraints for the
state A and B.6

The string method of Maragliano et al.6 represents the
pathway linking A and B as a “chain of state”, that is, a collection
ofM images located at the positions {z1, ..., zM} in a subspace of
collective variables (CVs). Here, z represents a vector-valued
function, z(̃x) = (z1̃(x), ...,zÑ(x)), that maps every configuration
x of the system on a set of values z(̃x). The central asantz to
derive the string method in CVs is to assume a trial committor q̅
that depends only on z.6 Inserting q̅(z) in eq 3, I is reduced as

I q qz z Md ( )( )eq∫ ρ ∇ ∇= ̅ ̅ · · ̅ (4)

with ∇q̅ = (∂q̅/∂z1, ∂q̅/∂z2, ...). The reduced equilibrium
probability ρ̅eq(z) is defined in terms of W(z), the PMF
associated with these variables
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M
m

z
x

z

x

m
z

x

z

x

z z x z
x x

z x z

x x

( ) ( ( ) )
1 ( ) ( )

1
( ( ) )

1 ( ) ( )

i

n

i i i

i

n

i i i z x z

1

3

1

3

( )

∑

∑

δ

δ

= ̃ −
∂ ̃

∂
∂ ̃

∂

⟨ ̃ − ⟩

=
∂ ̃

∂
∂ ̃

∂

αγ
α γ

α γ

=

= ̃ = (6)

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c04110
J. Phys. Chem. A 2021, 125, 7558−7571

7559

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c04110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Having performed a dimensionality reduction leading to eq 4,
one then seeks to minimize I over all functions q̅ subject to the
constraint q̅ = 0 when z ∈ A, and q̅ = 1 when z ∈ B. The Euler−
Lagrange equation for the effective committor q̅(z) is

qM z z(e ( ) ( )) 0W k Tz( )/ B∇ ∇· · ̅ =−
(7)

subject to the constraint q̅(z) = 0 when z∈ A and q̅(z) = 1 when
z ∈ B. The MFEP corresponds to the curve (or line) linking the
states A and B defined such that its tangent follows the direction
of the vector v.

W k Tv M z z M z( ) ( ) ( )B∇ ∇= · + · (8)

The curve can be generated, for example, by starting from a
saddle point in the space z and following the direction v in small
increment or, equivalently, by building up a curve such that the
projection of v in the direction perpendicular to its tangent
vanishes, that is, [v]⊥ = 0. The term ∇·M(z) is often negligible,
and in this case, the MFEP is a curve tangent to the vector
M(z)·∇W(z) in the space of the collective variables that
connects the two states A and B. These results summarize the
mean force string method in collective variables ofMaragliano et
al.6 Conceptually, the developments leading to this theory
represent one formal “route” to achieve a dimensionality
reduction to the subspace of the CVs by inserting q̅(z) in eq 3.
For the sake of argument, let us assume that, by virtue of the

particular system of interest, it is a physically valid approx-
imation to treat z as a set of slow variables. In other words, the
CVs genuinely undergo an overdamped dynamics on the free
energy surface W(z) with a diffusion coefficient Dα γ(z)
according to the Smoluchowski equation. This statement of fact
notwithstanding, both eq 7 for the effective committor q̅(z) and
eq 8 defining the tangent to the curvilinear path underlying the
mean force string method remain unchanged. On the one hand,
the mean force string method based on eqs 5, (6), and (8) is
effectively “blind” to the nature of the microscopic dynamics of
the CVs. On the other hand, since we know with confidence that
the CVs are indeed slow variables, the committor q̅(z) can be
determined from the backward Kolmogorov equation (see eq
2.5 in ref 35)

qD z z(e ( ) ( )) 0W k Tz( )/ B∇ ∇· · ̅ =−
(9)

subject to the constraint q̅(z) = 0 when z∈ A and q̅(z) = 1 when
z ∈ B. Accordingly, the optimal path should be determined by

W k TD z z D z( ) ( ) ( ) 0B ∇[− ·∇ + · ] =⊥
(10)

This treatment treating the CVs as slow variables represents a
different formal “route” to achieve a dimensionality reduction to
the subspace of the CVs. Clearly, a comparison of eqs 7 and (9)
shows that the two routes do not yield the same result.
When the dimensionality is reduced by an insertion of the

asantz q̅(z) in eq 3, the optimal path is determined from the
mean force string method eq 8. In this case, the path is affected
by the PMF and the matrix M. In contrast, when the CVs are
slow and the problem is first reduced to an overdamped
diffusional dynamics, the optimal path is determined from eq 10.
In this case, the path is affected by the potential W and the
diffusion matrixD. While the matricesD andM occupy a similar
place in the equation defining the committor q̅(z), D is
associated with dynamical dissipative effects, whereas M is a
mass-weighted geometric factor reporting the change in the
curvilinear collective variables elicited by a corresponding
change in the Cartesian coordinates. For instance, the matrix

M is simply constant and diagonal if the CVs are Cartesian
variables. Specifically, the matrix M does not incorporate
dynamical dissipative effects, which would be needed to
characterize the CVs as slow variables.
Fundamentally, the discrepancy stems from the transition

from underdamped inertial dynamics to overdamped diffusional
dynamics. Somehow, the analysis that leads to eq 7 does not lead
to eq 9 when the CVs are genuinely slow variables. Traditionally,
the behavior of slow degrees of freedom is revealed through an
analysis of an effective dynamics based on projection
operators.36−38 The expectation is that the slow dissipative
dynamics of the CVs should be reflected in the time evolution of
the system. However, to display the dynamical evolution of the
CVs, the propagation of the system over a finite time is required,
and this information is not available with the operator in the
variational principle expressed by eq 3. An alternative route is
needed to perform this analysis. In the following, we will
reconstruct the steps leading to the committor in a subspace of
CVs in terms of a finite-time propagator for this purpose.

Microscopic Propagator. The underdamped Langevin
dynamics eq 1 is prescribed by the Green’s function propagator.
The theoretical formulation seeking to build up the kinetic
behavior from a finite-time propagator in phase space (positions
and velocities) is inspired by previous developments of Markov
model position-propagators.31−34 Here, this general picture is
expanded to underdamped Langevin dynamics. The probability
density of the system at time t is expressed as ρ(x,v; t), where x
and v represent the set of coordinates xi and velocities vi,
respectively. Using u ≡ (x,v) as a shorthand to represent the
point in phase space, the forward propagation step (u→u′) for
the probability density from the time t to the time t + Δt is

t t t tu u u u u( ; ) d ( ; ) ( ; )∫ρ ρ′ + Δ = ′| Δ
(11)

The elementary propagator for a null time step, u u( ; 0)′| , is
the identity δ(u′− u), and the dynamical propagation, which we
may formally represent as t t( )ρ + Δ = t t( ) ( )ρΔ · , obeys the
Chapman-Kolmogorov equation for arbitrary times. The
implication is that, while Δt is a microscopic time step (e.g., 1
fs), the propagator may be repeatedly applied an arbitrary
number of times as t t n t t t t( ) ( ) ( ) ( ) ( )nρ ρ ρ+ Δ = Δ · ≡ Δ · ,
with

t t t tu u u u u( ) ( ) d ( ; ) ( ; )∫Δ · Δ ≡ ′ ″| ′ Δ ′| Δ
(12)

T h e b a c k w a r d p r o p a g a t i o n s t e p i s
t tu u x v x v( ; ) ( , , ; )| ′ Δ = − | ′ − ′ Δ† . Probability is conserved

by both the forward propagator tu u ud ( ; ) 1∫ ′ ′| Δ = and

backward propagator tu u ud ( ; ) 1∫ | ′ Δ =† , implying that
the unity function is a left eigenvector of these operators with an
eigenvalue equal to 1. The total energy accumulated over the
propagation correspond to the heat transferred from the bath to
the system from the Langevin propagation, Q = H(u′) − H(u).
Because Q is the heat exchanged with the reservoir during the
forward propagation step, it follows that −Q is the heat
exchanged with the reservoir for a propagation along the reverse
step. Noting thatH(x,v) =H(x,−v), and ρeq(u) = ρeq(x,−v), the
forward−backward microscopic detailed balance relation

t tu u u u u u( ; ) ( ) ( ; ) ( )eq eqρ ρ′| Δ = | ′ Δ ′†
(13)
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is satisfied. The momentum reversal requirement for micro-
scopic reversibility is discussed in section 2.2.3 of ref 39. It
follows that the canonical equilibrium distribution is invariant by
propagation
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Thus, t( )eq eqρ ρ= Δ · , showing that ρeq is a right-eigenvector

with an eigenvalue equal to 1.
Committor Probabilities for Two Metastable States.

Assuming two metastable states A and B, the forward committor
q+
B(u) is the sum of the probability over all paths starting at u that
ultimately reach the state B before ever reaching the state A. The
probability of each of these paths is expressed as a product of

discrete propagation steps t t( ) ( )Δ ··· Δ , under the restriction
that the intermediate states resulting from all these steps are∉A,
B. The sum over paths is illustrated schematically in Figure 1. It
follows that q+

B(u) is written explicitly as
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with the constraints of q+
B(u) = 0 if u∈ A and q+

B(u) = 1 if u∈ B.
By construction, 0 ≤ q+

B(u) ≤ 1. This expression may be related
to eq 2 by recognizing that the operator is defined in the limit
of an infinitesimal time step.

q q

t
t

u u u

u u u u

( ) lim d ( )

( ; ) ( )

B

t

B

0

i
k
jjjj
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zzzz
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δ
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Δ
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(17)

A forward committor q+
A(u) can also be defined, satisfying the

constraints q+
A(u) = 1 if u ∈ A and q+

A(u) = 0 if u ∈ B and the
identity q+

A(u) + q+
B(u) = 1. In a similar fashion, a backward

committor probability q−
A(u) can be defined from the backward

propagation as

Figure 1. Schematic illustration of the forward committor q+
B(u) represented as the sum over all possible paths starting at u that ultimately reach the

state B before ever reaching the state A. All paths start at u and end in B without entering the state A. The black path reaches the B region in one step (u
→ u′), the blue path in two steps (u→ u′→ u″), the purple path in three steps (u→ u′→ u″→ u‴), and the green path in four steps (u→ u′→ u″→
u‴→ u‴′). The restriction that the intermediate states resulting from all these steps are ∉ A,B applies to all paths. For example, the longer red path
does not enter the boundary region of state A before reaching the state B in the final destination.
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q q tu u u u u( ) d ( ) ( ; )B B∫= ′ ′ ′| Δ− −
†

(18)

with the constraints of q−
B = 0 if u ∈ A and q−

B = 1 if u ∈ B. A
backward committor q−

A(u) can be defined, satisfying the
identity q−

A(u) + q−
B(u) = 1. Furthermore, it can be verified that

q−
A(u) = q+

A(x,−v) and q−
B(u) = q+

B(x,−v).
While the equations for the committor probabilities involve

only the elementary propagator tu u( ; )′| Δ for the short time
Δt, the fundamental validity of these equations is predicated
upon the necessity to satisfy the Markovity of the dynamics as
expressed by the Chapman-Kolmogorov equation

n t t( ) ( )nΔ ≡ Δ .
Steady-State Flux between Two States. This section

largely follows the development previously laid out by
Berezhkovskii, Hummer, and Szabo40 for continuous-time
discrete-state Markov models. A number of established relations
are briefly recapped for the sake of completeness. To elicit a net
nonequilibrium flux from a metastable state A to metastable
state B, we construct steady-state conditions as40

tu u u u u( ) d ( ; ) ( )ss ss∫ρ ρ′ = ′| Δ
(19)

with ρss(u) = ρeq(u) if u∈A and ρss(u) = 0 if u∈ B. The states A
and B are defined by the user via indicator functions in the space
of the CVs. The steady-state density can be written as

qu u u( ) ( ) ( )A
ss eqρ ρ= − (20)

where q−
A(u) is the backward committor probability defined with

the constraints qA = 1 if u∈ A and qA = 0 if u∈ B. This is verified
by a direct substitution in the steady-state equation
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The steady-state flux from A to B can be expressed as the net
transitions across a dividing surface separating the two sides
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(22)

where the integral over u and u′ are restricted to be on two
different sides A′ and B′ of a separating surface between the two
end states A and B, though the steady-state flux does not depend
on the position of this dividing surface. Equivalently, this
expression can also be obtained by combining the probability
that a transition occurring from u to u′ along a reactive trajectory

from A to B at equilibrium,q t qu u u u u( ) ( ; ) ( ) ( )B
eq

Aρ′ ′| Δ+ − , and

the corresponding probability for the opposite transition from u′
to u, to express the net steady-state flux.

Collective Variables and Dimensionality Reduction.
Following Maragliano et al.,6 we introduce an approximation to
the exact committor function in phase space u to achieve a
dimensionality reduction to the subspace of the CVs z. We use
the asantz q̅(z′) ≈ q+

B(u′) and q̅(z) ≈ q−
B(u) in eq 22 to express

the steady-state flux JAB and then integrate out the orthogonal
degrees of freedom
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(23)

where the effective reduced propagator is defined as

t

t
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(24)

The effective propagator obeys the detailed balance relation

t tz z z z z z( ; ) ( ) ( ; ) ( )eq eqρ ρ̅ ′| Δ ̅ = ̅ | ′ Δ ̅ ′ (25)

as shown by integration of eq 13. Because the steady-state flux
JAB in eq 23 does not depend on the position of the dividing
surface defining the A′ and B′ regions, it is convenient to choose
a dividing surface corresponding to an isocommittor surface of
q̅(z) at some arbitrary value q*. The flux from A to B can then be
written as transitions from the point zwith committor q̅(z) < q*,
to the point z′ with committor q̅(z′) > q*.
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However, one can also write

J q J qd ( )AB

0

1
AB∫= * *

(27)

because the steady-state flux JAB(q*) does not actually depend
on the specific value of q*, which can be demonstrated by
showing that there is no accumulation of probability in the
region between the states A and B.41 Performing the integration
in the expression above affects only the term

q q q q q

q q q q

z z

z z z z

d ( ( ) ) ( ( ))

( ( ) ( )) ( ( ) ( ))
0

1
∫ θ θ

θ
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= ̅ ′ − ̅ ̅ ′ − ̅ (28)

yield the quadratic expression
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(the factor of 2 is needed when the restriction q̅(z′) > q̅(z) is
removed). An integration of the step functions analogous to eq
28 was previously used by Krivov in a different situation.42 A
similar steady-state flux expression, quadratic in the committor
difference, has also appeared in the context of discrete-state
Markov models.43 A transformation of the steady-state flux in
the phase space eq 22 through steps equivalent to eqs 26−(29)
could not be found by this author. eq 29 can be used as a
variational principle. The minimization of JAB with respect to the
trial function q̅(z) subject to the constraint q̅(z) = 0 when z ∈ A
and q̅(z) = 1 when z ∈ B yields

q q tz z z z z( ) d ( ) ( ; )∫̅ = ′ ̅ ′ ̅ ′| Δ
(30)

The relation to the mean force string method via the committor
defined by eqs 4−(7) can be established by assuming that the
time stepΔt is extremely short and noting that q̅(z′) = q̅(z) +∇
q̅(z)·(z′ − z) + ..., with (z′ − z) = z(̃x + vΔt) − z(̃x). Following
through with eq 29 yields
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The components of the matrix M(z), previously introduced in
eq 6, are recovered from the conditional average

M vv
z

x

z

x
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x x
( )

( ) ( )

ij
i j

i j
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∑=
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∂
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∂αγ
α γ

̃ = (32)

with ⟨vi vj⟩z = δijkBT/mi. The minimization of eq 31 with respect
to all possible functions q̅(z) recovers eq 7, which leads to the
mean force string method eq 8 of Maragliano et al.6 The
equivalence is based on the requirement that the time step Δt is
extremely short.
The consequence of the dimensionality reduction to the

subspace of the CVs is perhaps revealed most transparently with
the following observations. The function q̅(z) is determined by
the effective propagator tz z( ; )̅ ′| Δ through eq 30. The
effective propagator tz z( ; )̅ ′| Δ , according to eq 24, corre-
sponds to a Boltzmann-weighted average of the microscopic
propagator tu u( ; )′| Δ for a single step Δt with respect to the
initial conditions u constrained by z and a simple sum over all
states constrained z′. Recalling eq 7 from the analysis of the
conditions for optimal dimensionality reduction of multistate
Markov state models by Hummer and Szabo,44 eq 24 is plainly

recognized as a short-time local equilibrium approximation to a
dimensionality reduction of the transition matrix between
microstates to an effective transition matrix between macro-
states. While a number of factors may be taken into
consideration in attempting an optimal dimensionality reduc-
tion of a multistate Markov model,44,45 it is likely that this
effective propagator may not be valid at a long time within the
subspace of the CVs. It is legitimate to ask if the propagation
within the subspace of the CVs is Markovian in the sense that

t n t( )ρ ̅ + Δ t t( ) ( )n? ρ= ̅ Δ · ̅ . If the effective propagator is not
Markovian, then eq 30 does not yield a genuine committor that
represents the total probability as a sum over all possible paths
starting at z that reach the state B before reaching the state A. For
example, the forward committor defined by eq 16 implicitly
assumes that a valid sum over paths can be performed as
expressed by eq 15. The Markovity of the effective dynamical
propagator within the reduced subspace is a necessary condition
for eq 30 to yield a meaningful committor q̅(z).

Markovity of the Effective Propagator. Let us consider
the effective propagator within the subspace of the CVs for a lag
time τ.

z z
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eq
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̅

′ ̃ ′ − ′

′| ̃ − (33)

TheMarkovity of the effective propagator within the subspace of
the CVs implies that the Chapman-Kolmogorov equation is
satisfied, t m t( ) ( ) ( )mρ ρτ τ̅ + = ̅ · ̅ . Only then, the dimension-
ality reduction to the subspace of CVs will yield a self-consistent
representation of the dynamics of the system within this
subspace (closure of the dynamical propagation). An important
framework to examine this issue is to rely on a spectral
decomposition of the effective dynamical propagator.31,32 The
right-eigenvectors ψR

i(z) of the effective operator with lag time τ
are defined as

z z z z z( ) d ( ; ) ( )i i i
R R∫λ ψ τ ψ′ = ̅ ′|

(34)

The eigenvector ψ1
R(i) with eigenvalue λ1 = 1 corresponds to an

invariant state and is equal to the equilibrium vector ρ̅eq(z).
There is also a set of associated orthogonal left-eigenvectors

z z z z z( ) d ( ) ( ; )i i i
L L∫λ ψ ψ τ= ′ ′ ̅ ′|

(35)

with

z z zd ( ) ( )kl i l
L R∫δ ψ ψ=

(36)

and ψi
L(z) = ψi

R(z) ρ̅eq(z)
−1. The first right-eigenvector is

actually the equilibrium distribution ψ1
R(z) = ρ̅eq(z).

In the context of the underlying microscopic dynamics, the
validity of the effective propagator is revealed by examining the
matrix element for an arbitrary time nτ

n nu u z x u u z x( ) d d ( ( )) ( ; ) ( ( ))ij i j
L R∫ ∫τ ψ τ ψ= ′ ″ ̃ ′ ′| ̃

(37)

in the context of the microscopic propagator. One can write
formally the microscopic propagator as

n eu u u u( ; ) ( ) ( )
k

k
n

k
R Lk∑τ′| = Ψ ′ Ψω τ

(38)
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where Ψk
R(u) and Ψk

L(u) are the genuine right- and left-
eigenvector of the microscopic propagator, withΨi

L(u) =Ψi
R(u)

ρeq(u)
−1. As the underlying microscopic dynamics is generated

from the underdamped Langevin eq 1, a spectral decomposition
of the microscopic propagator nu u( ; )τ′| is expected to be
extremely complex, reaching far beyond the scope of the present
analysis. To sketch the main features of the spectral
decomposition of the microscopic propagator, it is helpful to
draw from a treatment of Langevin modes in macromolecules.46

Such an analysis indicates that the eigenvalues ωk of the
microscopic propagator can be real or complex. Complex
eigenvalues come by pairs with their complex conjugate ωk*.
The real part of these eigenvalues is negative, implying that all
modes are ultimately decaying. Furthermore, a formal spectral
decomposition of the Kramers-Fokker−Planck propagator
indicates that its largest eigenvalues, controlling the long-time
behavior, are real.47 One can imagine that complex eigenvalues
are associated with high-frequency underdamped oscillatory
motions, whereas real negative eigenvalues are associated with
slow transitions and diffusive motions. There is also the
existence of a time-independent stable equilibrium distribution,
corresponding to a right-eigenvector with an eigenvalue of 0.

n n

e

u u z x u u z x( ) d d ( ( )) ( ; ) ( ( ))
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ij i j
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= ′ ″ ̃ ′ ′| ̃

= ·Ψ Ψ ·ω τ

(39)

where(ψi
L·Ψk

R) = ∫ du′ ψi
L(z(̃x′)) Ψk

R(u′), and (Ψk
L·ψj

R) = ∫ du
Ψk

L(u) ψi
R(z(̃x)). With an assumption of the existence of some

cutoff ω*, it is hoped that the slowest modes of the effective
propagator with ∥ ωk∥ ≤ ω* will correspond accurately to the
slowest modes of the microscopic propagator. It follows that
(Ψk

R·ψi
L) ≈ δki and (Ψk

L·ψj
R) ≈ δjk, with the matrix elements

n n( ) ( )iij ijτ δ λ τ= , and the eigenvalues of the slow modes are
consistent with the inherent time scales of the microscopic
propagator λi(nτ) = e

ωi nτ. In this case, the effective propagator ̅
obeys the Chapman-Kolmogorov equation, and the propagation
is Markovian within the subspace supported by this set of
eigenvectors. The remaining eigenvectors correspond to faster
motions with eigenvalues above the threshold, ∥ωk∥ > ω*.
While those modes were determined as eigenvectors of the
effective propagator with a lag time of τ, they may not accurately
represent the true eigenvectors of the underlying microscopic
propagator . These imperfect eigenvectors are expected to
overlap with multiple fast modes of the microscopic propagator
according to eq 38. As a result, a propagation within the
subspace supported by those faster modes does not satisfy the
Chapman-Kolmogorov equation and is not Markovian.
One solution to ensure Markovity is to project out the

contribution from those modes and reconstruct the effective
propagator only from the subspace of the slowest modes. This
can be achieved by probing the microscopic propagator in eq 33
with a longer lag time τ, ensuring that the amplitude of the
undesired contributions has sufficiently decayed away. Fur-
thermore, as the density of fast modes is expected to be very
high, a propagation for a relatively short time would rapidly
cause a destructive dephasing of these contributions. In practice,
one seeks to determine the smallest possible lag time that
achieves Markovity for the effective propagator. The implication
of this analysis is that we may have to consider a reduced
propagator for a time τ longer than themicroscopic time stepΔt.

This further clarifies the origin of the apparent discrepancy
between the string in CVs defined by eq 8 and the string for slow
CVs defined by eq 10. The mean force string method eq 8 is
derived by starting from the variational principle of eq 3
expressed in terms of the operator associated with an
infinitesimal time step in the limit ofΔt→ 0, as shown in eq 17.
As displayed through eqs 31 and (32), this makes it impossible
to subsequently consider the dynamical propagation of the
system over a finite lag time, which is required to reveal the
conditions required to achieve Markovity in the case of slow
CVs.
Once the smallest possible τ that ensures Markovity of the

effective propagator has been determined, we can correctly
define the forward committor for the effective dynamics within
the subspace z

q qz z z z z( ) d ( ) ( ; )∫ τ̅ = ′ ̅ ′ ̅ ′|
(40)

with the constraints q̅ = 0 when z ∈ A and q̅ = 1 when z ∈ B.
While the expression has the same form as eq 30, a critical
difference is that the solution of eq 40 yields the genuine forward
committor, because the effective propagator z z( ; )τ̅ ′| is
Markovian. This also yields the steady-state flux from A to B.

J q q

q q

z z z z z z z
1

2
d d ( ( ) ( )) ( ; ) ( )

1
2

( ( ) (0))

AB 2
eq

2

∫ ∫τ
τ ρ

τ
τ

= ′ ̅ ′ − ̅ ̅ ′| ̅

= ⟨ ̅ − ̅ ⟩

(41)

A similar expression has been derived by Krivov and co-
workers.48,49

It is interesting to note that the steady-state flux JAB expressed
as an equilibrium time-correlation function is related to the
mean square deviation of the committor. Because the steady-
state flux JAB must be independent of the lag time τ, the form of
eq 41 also indicates that the time-correlation function ⟨(q̅(τ) −
q̅(0))2⟩ must increase linearly with τ. However, while this
expression is reminiscent of the familiar expression defining the
diffusion coefficient, it does not imply that the time-dependent
dynamics along q̅ is neither diffusive nor Markovian.
Importantly, eq 41 can be used to construct a robust variational
principle for the determination of the forward committor.
Assuming a “trial” function r(z), the correct committor q̅(z) as
defined by eq 40 can be found by finding the minimum of JAB

under the constraints of r = 0 when z ∈ A and r = 1 when z ∈ B.
This offers a powerful route to determine optimal approx-
imations for the committor. Eqs 33, (40), and (41) are the
central results of the present dynamical propagator formulation
of the transition kinetics from state A to state B.

String Method with Swarms-of-Trajectories. In the
implementation of the string method based on swarms-of-
trajectories,19 one launches an ensemble of short trajectories
from a specific position z corresponding to each image m and
then calculates the mean drift of those trajectories relative to
their initial starting point, ⟨Δz(τ) ⟩z. The present analysis
clarifies the significance of this procedure. By definition, the
mean drift starting from z for a trajectory of length τ is
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(42)

It was shown previously that, in the limit of τ → Δt, the mean
drifts ⟨Δz(Δt) ⟩z is equal to 1/2Δt2 (−M·∇W + kBT∇·M).30 It
follows that the string optimized by using the mean drifts
calculated with swarms-of-trajectories of length Δt is equivalent
to the original mean force formulation of the string method with
CVs.6 However, as discussed above, there can be issues of non-
Markovity with short trajectories in the limit of τ →Δt.
Intuitively, there are reasons to believe that the mean drifts from
trajectories of finite time τmay better capture dissipative factors
that affect the optimal pathway.19,21 The following analysis
further clarifies this matter.
As an illustration of the consequence of a longer lag time, let

us consider a case where the dynamics within the subspace of
collective variables follows an overdamped Langevin equation.
Presumably, the development should take the familiar form of
the Smoluchowski equation. Assuming that z′ is close to z, we
write q̅(z′) ≈ q̅(z) + ∇ q̅(z)·Δz′(τ) with Δz′(τ) = z′(τ) − z.
Following through with this expansion yields
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(43)

The components of the diffusion matrix D(z) are obtained by
retaining only contributions to first order in τ in the conditional
average
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The last term is of order τ2 because the mean drift is linear in τ
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1
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B

i
k
jjjjj

y
{
zzzzzτ τ∇ ∇⟨Δ ⟩ = − · + ·

(45)

The expansion in a small displacement also defines the forward
committor for the effective dynamics within the subspace z,
recovering the backward Smoluchowski equation previously
introduced in eq 9.41,50 In the context of the swarms-of-
trajectories, the optimized string can be determined by linking
the states A and B such that the projection of the mean drifts
perpendicular to the tangent of the curve vanishes.

z( ) 0zτ[⟨Δ ⟩ ] =⊥
(46)

The purpose of this analysis is to display the possible
relationship of a formulation based on a dynamical propagator
with lag time τ to the familiar form of the Smoluchowski

diffusion equation. However, it must be emphasized that a
reliance on the assumption that the CVs undergo slow
diffusional dynamics is not necessary to utilize the dynamical
propagator formulation embodied in eqs 33, (41), and (40).
For specific systems, it may be that the dynamics of the system

within the subspace of the CVs is truly underdamped and well-
characterized by an effective propagator based on a short-time
approximation, while for other systems, it may be that the
dynamics of the system within the subspace of the CVs is
adequately represented as slow variables undergoing over-
damped diffusional dynamics. The adequate dynamical regime is
controlled by the underlying physics andmust be ascertained for
each specific system. More generally, the framework of a
Markovian effective propagator with a finite lag time τ shall
reflect faithfully the underlying dynamics of the system within
the subspace of the CVs. In practice, the lag time τ must be
chosen to represent the dynamics of the system within the
subspace of the CVs as accurately as possible. The string method
with swarms-of-trajectories offers a natural framework to capture
the underlying dynamics with a finite lag time. A general
approach to characterize the kinetics is from the perspective of a
spectral analysis of the dynamical propagator u u( ; )τ′| .

Variational Principle and String. A variational principle
can be formulated either in terms of the left- or right-
eigenvectors of the dynamical propagator z z( ; )τ̅ ′| with the
lag time τ.31,32 Assuming that we order the eigenvalues as λ1 > λ2
>···>λk, we consider the trial left-eigenvector v(i) constructed to
be orthogonal to the first (n−1)th left-eigenvector

v v
v v

( ) (0)
(0) (0) n
τ

λ
⟨ ⟩
⟨ ⟩

≤

where ⟨v(τ)v(0)⟩ is an equilibrium time-correlation function.
This shows that we can systematically find the nth eigenvector
and eigenvalue, by trying to maximize the normalized time-
correlation function with respect to a trial function that is
orthogonal to the first (n − 1)th vectors. This defined the
variational principle to solve the eigenvalue and eigenvector
problem of the dynamical propagation operator. The
formulation of the variational principle from left-eigenvector is
particularly useful because the trial function is weighted by the
equilibrium distribution before the propagation step, yielding
directly an equilibrium time-correlation function of the trial left-
eigenvector.
Let us consider the trial left-eigenvector v(z), orthogonal to

the equilibrium vector and expressed as a linear combination of
basis functions

v b zz( ) ∑ δ=
α

α α
(47)

where δzα = (zα − ⟨zα⟩). The orthogonality of this trial left-
eigenvector to the first right-eigenvector, ∫ dz v(z) ψR

1(z) = 0, is
satisfied by construction. Such a linear combination of CVs is
one element of the time-lagged independent component
analysis (TICA),51,52 which was proposed to highlight kineti-
cally relevant information in high-dimensional data. Solving for
the normalized left-eigenvector corresponds to the max-
imization of

v v
v v
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αγ α γ αγ

αγ α γ αγ (48)

where the equilibrium time-correlation functions are
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C z z( ) ( ) (0)τ δ τ δ= ⟨ ⟩αγ α γ (49)

Taking the first derivative with respect to the coefficient bα yields

C b C b( ) (0)k k kτ λ= (50)

which is a generalized eigenvalue problem yielding the kth left-
eigenvector with the associated eigenvalue λk.
In the context of the string method with swarms-of-

trajectories,19 the integral over z weighted by the equilibrium
distribution ρ̅eq(z) can be converted into a discrete sum over the
images weighted by the probability p̅eq(m). The equilibrium
time correlation function may be expressed as
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(51)

where ⟨Δzα(τ)⟩(m) represents the mean drift calculated from the
swarms-of-trajectories of length τ initiated at the mth image
along the string. This suggests that the dominant dynamical
behavior that determines the optimal choice of lag time is likely
to arise from these terms.
Illustrative Calculations. The relationship between the

mean drifts and the correlation function is illustrated with a
simple one-dimensional system with two stable states separated
by a free energy barrier as shown in Figure 2A. In one dimension,
the trial left-eigenvector v(z) defined by eq 47 is simply δ z = (z
− ⟨z⟩). In this simple case
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z z
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δ δ
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⟨ ⟩ ̅
= (52)

In this development, it is assumed that the equilibrium
distribution of the images p̅eq(m) has been determined.
Generally, this can be done efficiently using biased sampling
methods.53,54 Eq 52 clarifies the significance of the mean drifts
⟨Δz(τ)⟩(m) in the string method with swarms-of-trajectories.
The behavior of the swarms is depicted in Figure 2B. With the

quantity [C(τ)/C(0)] = λ2 to monitor the slowest eigenvalue,
Markovity should mean that the implicit relaxation rate equal to
−ln λ2/τ is independent of the lag time τ. However, the simple
functional form δz is not a perfect trial eigenvector, and, as
illustrated in Figure 2C, this condition is only met for a lag time
larger than 10 reduced time units, which reflects mainly the
relaxation of the two-state system. This is still much shorter than
the slowest relaxation time of the double-well system, which is
on the order of 1200 reduced time units. Nevertheless, this
example shows that it is possible to calculate an equilibrium
time-correlation function from controlled starting configura-
tions.
The slow convergence suggests that it is important to go

beyond a description that relies mainly on a linear combination
of CVs to represent the dynamics along the string. In a more
realistic multidimensional system, it is possible that the optimal
string could be established for a shorter lag time using a richer
basis set that relies on the images along the string pathway. For
example, the images along the string can be used to define “one-
hot” indicator functions in the subspace of the CVs, leading to

Figure 2. Simple one-dimensional system to illustrate the dynamics and
the mean drift from swarms-of-trajectories. (A) Potential energy for the
one-dimensional model. The energy surface is given by W(z) =
kBT(0.002 0968z

4 − 0.209 68z2) in units of kBT. (B) Swarms of 20
short Brownian dynamics trajectories initiated at specific positions
along the z axis (diffusion coefficient is equal to 1). (C) Correlation
function calculated from eq 52 (blue line) and compared with a simple
average from a very long unbiased trajectory of the same system (black
line). Method: The potentialW(z) is expressed in units of kBT; time is
expressed in reduced time units; the diffusion coefficientD is expressed
in reduced length units squared per reduced time units. The correlation
function was calculated using 201 images (one every 0.1 from from−12
to +12 in reduced units) from a swarms of 200 trajectories of 2500 steps
each with a time step of 0.005. The reference correlation function was
calculated from a single long unbiased trajectory of 20million steps with
a time step of 0.005.
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the traditional Markov State (MSM) formulation.55 Likewise,
the images along the string can be used to support a Voronoi
tessellation in the context of a milestoning algorithm.56−58 A
future application should exploit the position of the individual
images as kernels to construct the basis set using nonlinear
functions.
This exceedingly simple one-dimensional model serves to

illustrate the relationship between the mean drifts and the
correlation function reflecting the inherent time scales within
the system. However, the directionality of the path is one critical
feature cannot be captured in one dimension. This can be
illustrated with the simple two-dimensional (2D) system with
two stable states separated by a free energy barrier shown in
Figure 3. The same model was previously used by Berezhkovskii

and Szabo to examine the effect of anisotropic diffusion59 and
also by Tiwary and Berne to illustrate the spectral gap
optimization of order parameters (SGOOP) method for
predicting reaction coordinates.60 The magnitude of the
anisotropy is characterized in terms of the parameter δ = Dy/
Dx, whereDx andDy are the diffusion coefficients along the x and
y axes, respectively. The dash lines in Figure 3 represent the
direction of the dominant reactive mode for three different
values of δ. The MFEP corresponds to the dominant reactive
path (θ = 32°) only when the diffusion is isotropic (δ = 1).59 To
capture the directionality of the path through the saddle point,
we model the committor in the space of the CVs by the simple
function

q z
e z z
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É
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(53)

with z ≡ (x,y) in two dimensions. The normal to the
isocommittor surface is given by the unit vector e; the width

of the separatrix region (q = 0.5) located at zm is given by the
parameter σ. By construction, this form starts with q = 0 in the
reactant region A and reaches q = 1 in the product region B. eq
53 can be derived from a quadratic barrier (see Appendix). Since
we are only interested in the direction of the path here, we used
the knowledge that the top of the barrier is located at zm = (0,0)
for the sake of simplicity. In two dimensions, the unit vector e
can be characterized via the angle θ with the x-axis.59,60 Similar
functional forms were previously used by Peters and Trout to
optimize reaction coordinates via likelihood maximization.61,62

On the basis of the model committor based on eq 53, we
determine the direction of the optimal path by seeking to
minimize the time-correlation function ⟨[q(τ) − q(0)]2⟩ as a
function of the angle θ. Following previously work,59,60 we
compare three cases with δ = 1 (Dx = 1.0 and Dy = 1.0), δ = 10
(Dx = 0.1 and Dy = 1.0), and δ = 0.1 (Dx = 1.0 and Dy = 0.1).
Upon examination, the optimal value of the width parameter σ
was found to vary only slightly between 0.8 and 1.0; it was kept
equal to 1.0 in all cases for the sake of simplicity. The results are
shown in Figure 4. In all cases, the minimum of ⟨[q(τ)− q(0)]2⟩
yields the correct direction of the reactive paths previously
identified (Figure 4A).59,60 It is noteworthy that this formal
treatment based on the minimization of the time-correlation
function ⟨[q(τ) − q(0)]2⟩ does not require any assumptions
regarding the Markovity of the dynamics along the committor
itself. This contrasts with other methods assuming that the
dynamics along the putative optimal path is Markovian.60−62

While the present formulation requires that the effective
propagator ̅ within the subspace of the CVs be Markovian
(see above), this is not generally true of the dynamics projected
long the one-dimensional committor coordinate.41

Of particular interest is the dependence of the reactive path
direction as a function of the lag time τ. As shown in Figure 4B,
clearly all three reactive paths appears to converge to the
isotropic case (δ = 1 and θ = 32°) when the lag time is extremely
short. The small discrepancy between the three cases at τ ≈ 0 is
due to the magnitude of the dissipation;it vanishes if Dx and Dy

are increased while keeping δ constant. In the isotropic case, the
reactive path captured by the short-time propagation corre-
sponds to the MFEP. This path is equivalent to the mean-force
string method as prescribed by eqs 5, (6), (8), (31), and
(32).6,30 The short-time propagator is effectively “blind” to the
true dissipative nature of the microscopic dynamics of the CVs
(Figure 4B). The optimal directionality of the path only emerges
as the lag time is increased to 0.5 reduced time units. As
prescribed by the minimization of the time-correlation function
⟨[q(τ) − q(0)]2⟩, the correct path follows the true slow reactive
mode, which is dominated by the smallest diffusion coefficient; if
Dx < Dy the path follows the x-axis (θ is close to 0°), and if Dx >
Dy the path follows the y-axis (θ is close to 90°).
This analysis suggests a potentially practical “staging” strategy

for characterizing the direction of the reactive paths in a
multidimensional systems with a single dominant barrier.
Operationally, the path is prescribed by minimizing the
equilibrium time-correlation function ⟨[q(τ) − q(0)]2⟩. In
effect, minimizing this quantity is associated with discovering the
region in the subspace of the CVs where the fluctuations over q
over a lag time τ are as infrequent as possible. Motivated by this
perspective, we consider the harmonic restraining potential
um(z) = 1/2k(z− zm)

2 and rewrite the time-correlation function
for the reactive flux as

Figure 3. PotentialW(x,y) of the 2D system was taken from eqs (14a)
and (14b) of Berezhkovskii and A. Szabo.59 The energy surface is in
units of kBT, and the levels are at−4.0,−3.0,−2.0,−1.0, 0.005, 1.0, 2.0,
3.0, 4.0, 5.0, 6.0, and 7.0. The dash lines represent the direction of the
dominant reactive mode for the different conditions: θ = 32° for δ = 1, θ
= 72° for δ = 0.1, and θ = 10° for δ = 10.
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where ⟨···⟩(um) indicates a conditional average initially weighted
by the restraining potential um, and Gm = −kBT ln⟨exp[−um(z)/
kBT]⟩ is the free energy for introducing the restraining potential
um.

63 For example, similar restraining potentials are applied on
theM images in the string method with swarms-of-trajectories.19

In a staging strategy to minimize the reactive flux time-
correlation function, one should first seek to locate the position
zm that yields the largest Gm and then determine the optimal
direction of the reactive path from the conditional time-
correlation function ⟨eum(z(0))/kBT[q(τ) − q(0)]2⟩(um) for a
functional model of q such as that given by eq 53. Even though
the biasing factor exp[um(z)/kBT] in eq 54 increases the weight
of the configuration at large distances from the top of the barrier,
the conditional average is expected to converge locally because
the quantity [q(τ) − q(0)]2, which goes as ∇q·D·∇q in the
diffusive limit according to eq 43, is nonzero only in the region
where the committor varies abruptly. Correspondingly, the
contribution from regions away from the barrier top where the
committor is nearly constant are expected to be negligible. A
framework akin to Chandler’s reactive flux formalism is
essentially recovered in the limit where the model committor
varies abruptly as a Heaviside step-function.64

Simple tests with the 2D potential surface of Figure 3 indicate
that the staging strategy can work. Using the restraining
potential um = 3kBT(x

2 + y2) to prepare initial conditions near
the barrier top, followed by a swarms of 10 000 unbiased short
trajectories of 0.5 time units (500 steps) show that the staging
method can yield correct results for the direction of the reactive
paths, with angles of θ = 32° for δ = 1, θ = 68° for δ = 0.1, and θ =
18° for δ = 10. While these results on a simple model are
encouraging, more work is needed to further develop the staging
strategy into a fully practical and reliable method.

■ CONCLUSION
We have formulated the problem of the kinetics of a dynamical
system comprising two metastable states A and B in terms of a
finite-time propagator in phase space (position and velocity)
adapted to the underdamped Langevin equation. The present
development expands on a previous formulation based on
propagators for position-based Markov models.31−34 Starting
from the full phase space representation with positions and
velocities, the central ansatz assumes that the committor
depends only on the variables of the selected collective variables.
The dimensionality reduction to the subspace of CVs yields
familiar expressions for the propagator, committor, and steady-
state flux, as embodied in eqs 33, (41), and (40), respectively.
These are the central results of the development. Importantly, eq
40 is a quadratic expression for the steady-state flux JAB between
the metastable states A and B that can serve as a robust
variational principle to determine the optimal committor. These
expressions can be exploited in the context of the string method,
in which the dominant pathway between A and B is represented
by a curve in the space of the CVs, to calculate dynamical
correlation.
The analysis based on the effective dynamical propagator in

the reduced space of the CVs, z z( ; )τ̅ ′| , clarifies the theoretical
foundation of the string method with swarms-of-trajectories to

Figure 4. Results from using the reactive flux correlation function from
eq 41 with the committor based on eq 53. (A) Dependence of the time-
correlation reactive flux function ⟨[q(τ)− q(0)]2⟩ on the angle θ for the
direction of the path. The maximum of the curve occurring around θ =
130° (orthogonal to the axis linking the two wells) is not shown for
clarity. The time-correlation function is shown for a fixed lag time τ =
0.5. The black circle indicates the position of the minimum in the
curves: θ = 32° for δ = 1, θ = 72° for δ = 0.1, and θ = 10° for δ = 10. (B)
Dependence of the time-correlation reactive flux function ⟨[q(τ) −
q(0)]2⟩ on the lag time τ (the optimal angle θ is used for each case). The
width parameter σ is equal to 1.0 in all cases. Method: The time-
correlation functions were calculated from a Langevin dynamics
trajectory of 10 million steps generated via eq 1, with γx =Dx/kBT and γy
=Dy/kBT, forDx andDy taking values of 1.0 and 0.1 corresponding to an
anisotropy δ =Dy/Dx of 0.1, 1.0, and 10.0. Themass was chosen to yield
relaxation times γ/m of 0.08 and 0.008 reduced time unit, for diffusion
coefficients of 1.0 and 0.1, respectively.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c04110
J. Phys. Chem. A 2021, 125, 7558−7571

7568

https://pubs.acs.org/doi/10.1021/acs.jpca.1c04110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04110?fig=fig4&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c04110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


determine optimal transition pathways.19 Most importantly, the
analysis revealed the fundamental significance of the lag time to
calculate the mean drift during short unbiased trajectories.19,21

The lag time τ must be chosen so to satisfy the conditions of
Markovity the effective propagator z z( ; )τ̅ ′| within the
subspace of the CVs. In practice, τ should be as short as
possible but sufficiently large to ensure that z z( ; )τ̅ ′| is
Markovian. The string method with swarms-of-trajectories
offers a natural framework to capture the underlying dynamics
within the subspace of the CVs. If this dynamics experiences very
little dissipative coupling and is near-inertial, then it is possible
that Markovity is attained with a very short lag time (short
swarms-of-trajectories). In this case, the mean drifts from the
swarms-of-trajectories is essentially equivalent to the original
mean force stringmethod.6,30 However, if the effective dynamics
within the subspace of the CVs experiences complex dissipative
effects, then a longer lag time is needed to guaranty the
Markovity of the effective propagatora necessary condition to
determine the genuine forward committor z( )̅ . Without
Markovity, the solution q̅(z) of eq 30 based on the effective
short-time propagator tz z( ; )̅ ′| Δ is not the forward committor
in the subspace of the CVs. In both cases, themean drift from the
swarms-of-trajectories correctly captures the effective dynamical
behavior of the system within the subspace of the CVs,
supporting the construction of a meaningful transition path-
way.19,21 The formulation of the propagator with a finite lag time
makes it possible to determine the necessary conditions for
Markovity and the progression of the committor along the path.
Furthermore, it circumvents the need to rely on the rank
ordering of the different images along the string to define a one-
dimensional effective reaction coordinate.65,66 Interestingly,
alternate methods built upon an optimized pathway, such as
Milestoning56,67 or MSM,55 also offer the possibility to directly
examine the natural unbiased dynamics within the subspace of
the CVs. Furthermore, the effective propagator tz z( ; )̅ ′| Δ with
finite lag time τ is amenable to an eigenvalue-eigenvector
spectral analysis as elaborated previously in the context of
position-based Markov models.31−34 The time-correlation
functions calculated by swarms-of-trajectories along the string
constitutes a natural extension of these developments. The
present analysis is also related to a recent dynamical Galerkin
approximation (DGA) formulated to predict the long-time scale
behavior from short-trajectory.68,69

The present formulation strengthens the theoretical frame-
work to determine the optimal pathway between the states A
and B, that is, the proverbial “reaction coordinate”, and to
characterize the long-time kinetics of the system. Identifying the
most relevant subspace of CVs and then determining the most
representative reaction coordinates in this subspace remains the
greatest challenge. In this endeavor, other related ideas may be
brought to bear, including a dynamical self-consistency,70

memory reduction,71,72 multidimensional spectral gap optimi-
zation of order parameters (SGOOP),73,74 and maximally
predictive one-dimensional projection.33 Of particular interest
are the ideas of Krivov, who proposed a nonparametric
variational optimization of reaction coordinates.75 Future work
will further explore these ideas.

■ APPENDIX: COMMITTOR AND QUADRATIC
BARRIER

Following Berezhkovskii and Szabo,41 we assume that the top of
the barrier at z = 0 is a multidimensional quadratic form, βW =

ztVz/2 and that the committor can be written as q(z)≈ q(e·z) in
the neighborhood of the saddle point (we drop the overline on q
to simplify the notation). At this point, e is an unknown unit
vector that has yet to be determined. The gradient Laplacians of
q are ∇q(z) = eq′(e·z) and ∇2q(z) = q″(e·z), respectively.
Starting from the backward Kolmogorov eq 9,41,50 in the case of
a constant (independent of position) anisotropic diffusion
matrix D, we have
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where s = z·e. To close this equation with respect to s, we require
that the vector e be chosen to satisfy the condition
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with σ2 = 2D/λ. This functional form is similar to eq 3.8 from
Berezhkovskii and Szabo that was obtained following a different
route.41
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