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Autoimmune diseases (ADs) are a broad range of diseases in which the immune
response to self-antigens causes damage or disorder of tissues, and the genetic
susceptibility is regarded as the key etiology of ADs. Accumulating evidence has
suggested that there are certain commonalities among different ADs. However, the
theoretical research about similarity between ADs is still limited. In this work, we first
computed the genetic similarity between 26 ADs based on three measurements:
network similarity (NetSim), functional similarity (FunSim), and semantic similarity
(SemSim), and systematically identified three significant pairs of similar ADs:
rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), myasthenia gravis
(MG) and autoimmune thyroiditis (AIT), and autoimmune polyendocrinopathies (AP) and
uveomeningoencephalitic syndrome (Vogt-Koyanagi-Harada syndrome, VKH). Then we
investigated the gene ontology terms and pathways enriched by the three significant AD
pairs through functional analysis. By the cluster analysis on the similarity matrix of 26
ADs, we embedded the three significant AD pairs in three different disease clusters
respectively, and the ADs of each disease cluster might have high genetic similarity. We
also detected the risk genes in common among the ADs which belonged to the same
disease cluster. Overall, our findings will provide significant insight in the commonalities of
different ADs in genetics, and contribute to the discovery of novel biomarkers and the
development of new therapeutic methods for ADs.
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INTRODUCTION

Autoimmune diseases (ADs) are characterized by causing abnormal immune response which can
damage human tissues as a result of the loss of immune tolerance to self-antigens (Margo and
Harman, 2016). ADs affect more than 5% of the global population, the incidence and mortality of
which have also increased markedly (Ji et al., 2016). Possible causes contain genetic, environmental,
hormonal, and immunological factors (Stojanovich and Marisavljevich, 2008). However, neither the
inner mechanism action nor the etiology of ADs is clear and there is still no effective cure for these
diseases (Rosenblum et al., 2012; Li et al., 2017).
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ADs share several clinical signs and symptoms,
physiopathological mechanisms, and environmental and
genetic factors, and this fact indicates that they have a
common origin, which has been called the autoimmune
tautology. A growing body of evidence has indicated the
existence of the autoimmune tautology among various ADs: 1)
Different ADs exhibit the same phenotypic characteristics
(Anaya, 2017). These diseases, whether organ-specific or
systematic, show tissue and organ damage and inflammatory
pathological features (Place and Kanneganti, 2020). 2) Different
ADs exhibit the same clinical characteristics. Clinically, the
results from serological examinations of patients often overlap.
And the same patient may suffer from two or more ADs
simultaneously, which has been called the polyautoimmunity
(PolyA) (Anaya, 2014). In addition, there is a tendency for
ADs to cluster within families (Cardenas-Roldan et al., 2013).
3) Different ADs exhibit the same genetic characteristics. ADs are
caused by the mutation of multiple loci in the human genome and
share the same main genetic loci (Anaya et al., 2006). For
example, a previous study indicated that the human leukocyte
antigen (HLA) is a susceptibility gene shared by multiple ADs
(Cruz-Tapias et al., 2012). And Ueda et al. (2003) found that a
molecule encoded by CTLA4 was vital for negative regulation of
the immune system and could enhance the risk of several ADs,
such as Graves disease, autoimmune hypothyroidism, and type 1
diabetes mellitus (T1D), which indicated that ADs might share
similar pathogenic mechanisms. Li et al. (2015) proved that
different pediatric ADs shared the same genetic variation.
They analyzed the clinical cases of ten different ADs and
found many of these diseases were familial and the patients
often suffered from several ADs at the same time. In this
study, 27 significant risk genetic loci were identified, of which
22 were shared by at least two ADs and 19 loci were shared by at
least three ADs. Thus, identification of risk genes shared by
multiple ADs may help to explain the development of PolyA.
4) In addition, different ADs also exhibit the same epigenetic
characteristics. Epigenetic researches found that ADs shared
similar epigenetic mechanisms. For instance, the DNA
promoter region in the target cells of systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA) showed
low methylation (Quintero-Ronderos and Montoya-Ortiz,
2012). The strong similarity among ADs provides us with a
deeper understanding of the common underlying mechanisms
of ADs, and also prompts researchers to classify ADs. Therefore,
the studies on the genetic similarity of ADs can help us to dissect
AD pathogenesis, and contribute to the discovery of novel
biomarkers and the development of new therapeutic methods
for ADs, which is extremely important in clinical research.

In this study, we utilized three measurements, including
network similarity, functional similarity, and semantic
similarity, to analyze genetic similarity between 26 ADs (the
workflow diagram is shown in Figure 1). We identified three
significant pairs of similar ADs by multi-step computational
approaches. Besides, based on the similarity matrix of 26 ADs,
we found some other ADs which were similar to significant
pairs of similar ADs by cluster analysis. And the risk genes
shared by the ADs which belonged to the same disease cluster

could be promising biomarkers for ADs. Our findings
provided a novel perspective to understand the
commonalities of different ADs in genetics and would
facilitate AD mechanism research.

MATERIALS AND METHODS

Collection of AD Terms and AD-Related
Genes
The AD terms (category C20.111), including 68 diseases, were
acquired from the Medical Subject Headings (MeSH, https://
www.nlm.nih.gov/mesh/meshhome.html). After removing the
complications of ADs, we extracted human disease-related genes
from the Genetic Association Database (GAD, https://
geneticassociationdb.nih.gov/) (Becker et al., 2004) and mapped
these genes to the AD terms for integration. The disease gene sets
consisted of 267 related genes of 26ADs (Supplementary Table S1).

Calculation of Network Similarity
Between ADs
Wedownloaded the information on protein-protein interactions of
human genes from the Human Protein Reference Database
(HPRD, http://www.hprd.org/) (Peri et al., 2003) and used
Cytoscape software (v3.8.2) (Shannon et al., 2003) to construct
a human protein-protein interaction network. The topological
properties of AD-related genes in this network were computed
(Hidalgo et al., 2009; Chavali et al., 2010). The gene set of disease d
was defined as G � {g1, g2, g3, . . . , gi, . . . , gk}. In order to assessed
the network similarity between ADs, we first calculated the average
topological properties of each AD in the network as follows:

R �
∑

1≤ i≤ k
ri

k
, C �
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1≤ i≤ k

ci

k
, B �
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1≤ i≤ k
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k
, S �
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si

k
, and

H �
∑

1≤ i≤ k
hi

k
(1-5)

where k represents the number of genes inG, gi is the ith gene ofG,
ri is the degree of gi, ci is the clustering coefficient of gi, bi is the
betweenness centrality of gi, si is the average shortest path length of
gi, hi is the neighborhood connectivity of gi, R is the degree of d, C is
the clustering coefficient of d, B is the betweenness centrality of d, S
is the average shortest path length of d, andH is the neighborhood
connectivity of d. As shown in Figure 1, d1 and d2 are two ADs
from MeSH, and G1 and G2 are gene sets related to d1 and d2. The
average topological properties of d1 and d2 were defined as vector
T1 � {R1, C1, B1, S1, H1} and vector T2 � {R2, C2, B2, S2, H2},
respectively. We defined the network similarity (NetSim) score
between d1 and d2 as the Pearson correlation coefficient (PCC)
calculated with T1 and T2. The formula that was used as follows:

ρT1 ,T2
� cov(T1, T2)

σT1, σT2

(6)

where cov(T1,T2) is the covariance of variables T1 and T2, σT1 and
σT2 are the standard deviations for T1 and T2.
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Calculation of Functional Similarity
Between ADs
The data on the functional interactions of genes was downloaded
from HumanNet, which is a human gene functional interaction
network based on Gene Ontology annotation (Lee et al., 2011).
Each interaction in HumanNet has a log likelihood score (LLS)
that measures the probability of a functional association between
genes (Cheng et al., 2014).

We downloaded LLSs between human genes from HumanNet
and normalized the LLSs as follows:

LLSN(gi, gj) � LLS(gi, gj) − LLSmin

LLSmax − LLSmin
(7)

where gi and gj are the ith and jth gene respectively. LLSN(gi, gj)
indicates LLS between gi and gj after normalization. LLS(gi, gj)
indicates LLS between gi and gj. LLSmin and LLSmax are the
minimum LLS and the maximum LLS of HumanNet
respectively.

The functional similarity (FunSim) score between a pair of
genes was defined as follows:

FunSim(gi, gj) � ⎧⎪⎨⎪⎩
1
LLSN
0

i � j
i≠ j
i≠ j

and
and

e(i, j) ∈ E(HumanNet)
e(i, j) ∉ E(HumanNet)

(8)

where e(i, j) represents the interaction edge between gi and gj.
E(HumanNet) is a set including all the edges of HumanNet.

Next, we defined the functional association between a gene g
and a gene set G � {g1, g2, g3, . . . , gi, . . . , gk} as follows:

FG(g) � max
1≤i≤k

(FunSim(g, gi)), gi ∈ G (9)

where k represents the number of genes in G, gi is the ith
gene of G.

G1 � {g11, g12, . . . , g1i, . . . , g1m} and G2 � {g21, g22, . . . , g2j, . . . ,
g2n} are gene sets related to d1 and d2 respectively. m is the
number of genes in G1, and n is the number of genes in G2. We
defined FunSim score of d1 and d2 as follows:

FunSim(d1, d2) �
∑1≤ i≤mFG2(g1i) +∑1≤ j≤ nFG1(g2j)

m + n
, g1i ∈ G1, g2j ∈ G2

(10)

FIGURE 1 | The workflow diagram for this study.
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Calculation of Semantic Similarity
Between ADs
Semantic similarity is a method to measure the closeness between
two terms, according to a given ontology (Zhang and Lai, 2015;
Zhang and Lai, 2016; Del Prete et al., 2018). The Resnik method was
applied to our study. The human disease terms were obtained from
the Human Disease Ontology (DO, http://www.disease-ontology.
org) (Schriml et al., 2019). TheDO includes the breadth of common
and rare diseases, organized as a directed acyclic graph in which a
term represents a DO term and an edge represents an “IS_A”
relationship between diseases. The information content (IC) of each
DO term could be calculated as follows:

IC(d) � −log( n
N
) (11)

where d is a disease term of DO, n is the number of genes related to
d, and N is the total number of genes related to DO. As shown in
Figure 1, d1 and d2 are two AD terms of DO, and dMICA is the most
informative common ancestor (MICA) of d1 and d2. The MICA
means the ancestor that has the maximum IC among all the
common ancestors between terms of ontology. And we defined
the semantic similarity (SemSim) score of d1 and d2 as follows:

SemSim(d1, d2) � IC(dMICA) (12)

Calculation of Integrated Similarity
Between ADs
To identify more reliable pairs of similar ADs, we integrated
above three kinds of similarity (NetSim, FunSim, and SemSim)
scores to comprehensively determine the levels of similarity
between ADs as follows:

IntegratedSim(d1, d2) �










































NetSim(d1, d2) · FunSim(d1, d2) · SemSim(d1, d2)3

√
(13)

where d1 and d2 are two AD terms of MeSH.

Functional Analysis of Related Genes of
Similar ADs
Functional enrichment analysis of Gene Ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG) for related genes of
similar ADs was performed to infer potential biological processes
and pathways using the DAVID Bioinformatics Tool (http://david.
abcc.ncifcrf.gov/, version 6.7) (HuangDa et al., 2009). The p-values
for the biological processes and pathways were adjusted for false
discovery rate (FDR) by the Benjamini-Hochberg method. The
biological processes and pathways with FDR less than 0.05 were
considered statistically significant functional categories.

Cluster Analysis for ADs Based on Three
Kinds of Similarity
To determine whether multiple ADs had high genetic similarity,
hierarchical clustering was performed on the integrated similarity
scores between 26 ADs based on the Euclidean distance. The d1

and d2 are two diseases of 26 ADs. We defined the Euclidean
distance between d1 and d2 as follows:

E(d1, d2) �














∑
1≤ i≤ 26

(x1i − x2i)2
√

(14)

where x1i is the integrated similarity score between d1 and ith
disease of 26 ADs, x2i is the integrated similarity score between d2
and ith disease of 26 ADs. The 26 ADs were clustered based on
the Euclidean distances between diseases and there were shorter
Euclidean distances between ADs belonging to the same disease
cluster.

RESULTS

Identification of Potential Pairs of
Similar ADs
To identify pairs of similar diseases in genetics, we calculated
similarity between 26 ADs based on three measurements. All of
AD pairs were sorted in descending according to their scores of
NetSim, FunSim, and SemSim. To enhance the reliability of the
study, we selected ten AD pairs from intersection of top 50 AD
pairs with the highest NetSim score, top 50 AD pairs with the
highest FunSim score, and top 50 AD pairs with the highest
SemSim score for further analysis (Figure 2 and Supplementary
Tables S2–4), which were considered as potential pairs of
similar ADs.

Further, a network was generated on the ten AD pairs and
their related genes, including 14 ADs and 247 genes (Figure 3).
The topological properties of the network were investigated. We
extracted 35 genes each of whose degree was greater than or equal
to three from the network as the possible AD relevant genes. The
top five genes regarding degree were HLA-DRB1, HLA-DQB1,
CTLA4, HLA-DQA1, and TNF, indicating that these genes were
critical in multiple ADs. Previous researches have demonstrated
that these genes are associated with many ADs and exert various
functions in human autoimmune disorders. Besides, we
ascertained that RA and multiple sclerosis (MS) involved more
similarity relationships than other AD in this network, implying
that the pathogenesis of RA and MS might exist in most of ADs
from the network. What’s more, a pair of diseases with higher
number of shared genes, suggesting they likely have higher
genetic similarity. Thus, the ten potential pairs of similar ADs
were ranked by their number of shared genes and shown in
Table 1. And the top-rank disease pair is RA and SLE, followed by
T1D and RA, and RA and MS.

Functional Implication of the Genes Related
to Multiple ADs
To explore common genetic mechanisms of a variety of ADs, we
performed functional enrichment analysis of GO and KEGG for
the 35 AD relevant genes (Figure 4A). The cutoff criterion was a
FDR less than 0.05. The top ten significant GO terms in the BP
were mainly associated with immune response, antigen
processing and presentation, and interferon gamma (IFNγ)-
related functions (Figure 4B). Notably, IFNG was involved in
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the top three GO terms and was defined as a hub gene. IFNG can
encode IFNγ that is a cytokine that is critical for innate and
adaptive immunity against viral, bacterial, and protozoan
infections. And aberrant IFNγ expression is associated with a
number of ADs, such as RA and SLE (Hu and Ivashkiv, 2009;
Barrat et al., 2019). The top ten significant KEGG pathways
contained four AD-correlated pathways, such as “inflammatory
bowel disease (IBD),” “autoimmune thyroid disease,” “type 1
diabetes mellitus,” and “rheumatoid arthritis,” which illustrated
that the 35 genes might induce the initiation and development
of multiple ADs (Figure 4C). HLA-DQB1, HLA-DRB1, HLA-
DPB1, HLA-DQA1 were involved in all of the top ten KEGG
pathways and were defined as hub genes. The four genes
belonged to HLA class II alleles which were suggested to
contribute to the susceptibility and resistance to ADs
(Wieber et al., 2021).

Identification of Significant Pairs of
Similar ADs
To identify more reliable pairs of similar ADs, we integrated the
three measurements to compute integrated similarity scores
between 26 ADs (see Materials and Methods). All of AD pairs
were sorted in descending according to their integrated
similarity scores. And the top ten AD pairs were extracted
for further analysis (Table 2). We found that the ten AD pairs
contained three potential pairs of similar ADs consisting of RA
and SLE, myasthenia gravis (MG) and autoimmune thyroiditis
(AIT), and autoimmune polyendocrinopathies (AP) and
uveomeningoencephalitic syndrome (Vogt-Koyanagi-Harada
syndrome, VKH) which were defined as the significant pairs
of similar ADs.

Functional Analysis of Related Genes of
Significant Pairs of Similar ADs
To reveal the underlying mechanisms shared by two similar
ADs, we performed functional enrichment analysis of related
genes of RA and SLE, MG and AIT, and AP and VKH. The
cutoff criterion was a FDR less than 0.05. The related genes of
RA and SLE were significantly enriched in GO terms mainly
involved in immune response, inflammatory response, and
IFNγ. The significant enriched pathways including RA,
inflammatory bowel disease (IBD), tuberculosis, etc
(Figures 5A,B). The related genes of MG and AIT were
mainly related to immune response (GO), antigen
processing and presentation (GO), autoimmune thyroid
disease (AITD) (KEGG), and allograft rejection (KEGG)
(Figures 5C,D). Moreover, the related genes of AP and
VKH were mainly associated with the antigen processing
and presentation in GO and some pathways such as viral
myocarditis, Staphylococcus aureus infection, AITD,
intestinal immune network for IgA production, etc
(Figures 5E,F).

Hierarchical Clustering Result of 26 ADs
Based on Three Similarity Measurements
To determine whether there was high genetic similarity
among multiple ADs, we applied hierarchical clustering to
the integrated similarity matrix of 26 ADs. The disease
clusters consisting of AD pairs with integrated similarity
scores greater than 0.3 were considered to be significant.
As shown in Figure 6A, three significant disease groups
were identified from the 26 ADs, and the ADs of each
disease group might have high genetic similarity. We found
that the three significant pairs of similar ADs were located in
three different clusters, respectively. In the cluster one,
bullous pemphigoid might be similar to AP and VKH. The
ADs of cluster one are involved in endocrine autoimmunity.
For instance, bullous pemphigoid has been proved to be
related to immunodysregulation polyendocrinopathy
enteropathy X-linked syndrome (Mcginness et al., 2006). In
the cluster two, pemphigus, Graves disease, Sjogren’s
syndrome, Addison Disease, and autoimmune hepatitis
might be similar to MG and AIT. The ADs of cluster two
contain the main AITDs (AIT and Graves disease) and
frequent ADs involved in PolyA (AIT, Graves disease, and
Sjogren’s syndrome) (Amador-Patarroyo et al., 2012; Botello
et al., 2020). In the cluster three, T1D and MS might be
similar to RA and SLE. The ADs of cluster three are all
chronic inflammatory ADs and share multiple genetic
susceptibility loci (Richard-Miceli and Criswell, 2012).
Then, we performed pathway enrichment analysis of the
related genes of ADs of three significant clusters. The
related genes of ADs of three disease clusters were
significantly enriched in pathways of T1D and IBD
(Figures 6B–D). Therefore, we infer that T1D and IBD can
participate in PolyA in various AD patients.

Next, we detected the causal genes in common among the ADs
which belonged to the same significant disease cluster, and these

FIGURE 2 | Venn diagram analysis of three groups of AD pairs ranked by
NetSim, FunSim, and SemSim respectively.
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genes could be used for PolyA research. As shown in Table 3, the
ADs of cluster one shared one gene (HLA-DQA1); the ADs of
cluster two shared two genes (HLA-DQB1 and HLA-DRB1); the
ADs of cluster three shared eight genes (TNF, HLA-DRB1,
PDCD1, PTPN22, CCR5, IL6, HLA-DQB1, and CTLA4).
Identification of these genes will contribute to the discovery of
novel prognostic, diagnostic, and therapeutic markers and
justification of drug repurposing for ADs.

DISCUSSION

During the past years, numerous studies have confirmed that
different ADs are similar in various aspects. Nevertheless,
these studies just focused on several ADs, and lacking a
comprehensive analysis on similarity between ADs from
the perspective of genetics. To date, various disease
similarity methods have been developed (Dozmorov, 2019).

FIGURE 3 | Network on potential pairs of similar ADs and AD-gene relationships. The blue nodes represent genes, and the size of these nodes corresponds to the
node degree. The green nodes represent ADs. The gray edges represent disease-gene relationships, and the orange edges represent potential AD similarity
relationships.
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In this study, we calculated the similarity scores between 26
ADs by means of three similarity measurements. To ensure
the accuracy of the subsequent analysis, we combined the
results of NetSim, FunSim, and SemSim to evaluate all the AD
pairs. We found ten potential pairs of similar ADs that were
utilized to form a network containing an overall insight of the

information about AD-AD relationships and AD-gene
relationships, which provided essential clues to understand
the mechanisms shared by multiple ADs. Based on the AD
pairs in this network, we detected three significant pairs of
similar ADs (RA and SLE, MG and AIT, and AP and VKH),
and then investigated the shared functional terms for each

TABLE 1 | The ten potential pairs of similar ADs ranked by number of shared genes.

Rank Autoimmune disease Autoimmune disease Number
of shared gene

1 Arthritis, Rheumatoid Lupus Erythematosus, Systemic 40
2 Diabetes Mellitus, Type 1 Arthritis, Rheumatoid 28
3 Arthritis, Rheumatoid Multiple Sclerosis 23
4 Lupus Erythematosus, Systemic Multiple Sclerosis 20
5 Multiple Sclerosis Sjogren’s Syndrome 9
6 Myasthenia Gravis Thyroiditis, Autoimmune 7
7 Addison Disease Graves Disease 6
8 Hepatitis, Autoimmune Sjogren’s Syndrome 3
9 Polyendocrinopathies, Autoimmune Uveomeningoencephalitic Syndrome 2
10 Purpura, Thrombocytopenic, Idiopathic Still’s Disease, Adult-Onset 1

FIGURE 4 | Identification and functional enrichment analysis of AD relevant genes. (A) The genes correlated with at least three ADs derived from the AD similarity
network, which are ranked by the number of related diseases. (B) Circos plot of top ten significant GO terms in the BP. (C) Circos plot of top ten significant KEGG
pathways. The genes are displayed on the left half of the circos plots. The right half represents different GO terms or KEGGpathwayswith different colors. A gene is linked
to a certain GO term or KEGG pathway by the colored bands.
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TABLE 2 | Top ten pairs of ADs ranked by integrated similarity scores.

Rank Autoimmune disease Autoimmune disease Integrated similarity score

1 Polyendocrinopathies, Autoimmune Uveomeningoencephalitic Syndrome 0.704362256
2 Thyroiditis, Autoimmune Graves Disease 0.605323256
3 Myasthenia Gravis Thyroiditis, Autoimmune 0.540495323
4 Addison Disease Hepatitis, Autoimmune 0.53677382
5 Uveomeningoencephalitic Syndrome Addison Disease 0.534304723
6 Arthritis, Rheumatoid Lupus Erythematosus, Systemic 0.527496589
7 Pemphigoid, Bullous Polyendocrinopathies, Autoimmune 0.52566119
8 Hepatitis, Autoimmune Myasthenia Gravis 0.507462033
9 Anemia, Hemolytic, Autoimmune Purpura, Thrombocytopenic, Idiopathic 0.499501
10 Guillain-Barre Syndrome Still’s Disease, Adult-Onset 0.499448795

FIGURE 5 | Functional enrichment analysis of related genes of RA and SLE (A-B), MG and AIT (C-D), and AP and VKH (E-F). Enriched functional terms are sorted
in descending order according to their–log10 (FDR), and the top ten significant GO terms in the BP and KEGG pathways of each significant pair of similar ADs are used for
further analysis.
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significant AD pair. We also employed cluster analysis on the
integrated similarity matrix of 26 ADs to acquire some other
ADs which were similar to significant AD pairs in genetics,
and identified the risk genes which belonged to the same
disease cluster. These results still need to be verified by more
studies, but we hope that our observations can help
researchers to dissect the complex pathogenesis of ADs.

By the functional enrichment analysis of 35 AD relevant genes,
we mainly focused on GO terms involved in immune response,
antigen processing and presentation, and IFNγ. The immune
response is how the immune system defends against foreign

invaders, such as bacteria or viruses (Chaplin, 2010). ADs are
triggered by aberrant immune response which damages healthy
body part and is influenced by a large number of genes (Hill et al.,
2008; Gregersen and Olsson, 2009). We concluded that the 35 genes
might trigger a variety of ADs. On the other hand, the dysfunction of
antigen processing and presentation might influence the emergence
of ADs (Ritz and Seliger, 2001). In human bodies, antigens are
processed into peptides of a certain length in association with major
histocompatibility complex (MHC) molecules. T cells are capable of
recognizing these fragmented peptides bound to theMHC to initiate
immune responses (Purcell et al., 2016; Kelly and Trowsdale, 2019;

FIGURE 6 |Cluster analysis for 26 ADs and pathway enrichment analysis for ADs of each significant cluster. (A) The clustering heatmap illustrating the classification
of 26 ADs based on Euclidean distances and integrated similarity scores between 26 ADs. The similarity values, which are greater than 0.3, are marked in the matrix. (B)
The top ten significant KEGG pathways of related genes of ADs of cluster one ranked by–log10 (FDR). (C) The top ten significant KEGG pathways of related genes of ADs
of cluster two ranked by–log10 (FDR). (D) The top ten significant KEGG pathways of related genes of ADs of cluster three ranked by–log10 (FDR).
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Kotsias et al., 2019). As different ADs share the characteristic that
risk is conferred by genes encoded within the MHC locus, antigen
presentation generally seems to be crucial in ADs (Riedhammer and
Weissert, 2015). For example, processing and presentation of self-
antigens by different antigen presenting cells may result in MS
(Stoeckle and Tolosa, 2010). Ultimately, IFNγ is a pleiotropic
cytokine secreted by immune cells and plays a critical role in
innate and adaptive immunity (Tau and Rothman, 1999;
Schoenborn and Wilson, 2007). Abnormal IFNγ expression is
correlated with considerable number of ADs. Although IFNγ can
mediate clearance of pathogenic insults, chronic exposure to IFNγ is
thought to causemanyADs, such as RA and SLE (Nielen et al., 2004;
Lu et al., 2016). And the complex role of IFNγ in ADs also has
important therapeutic implications. Above evidences demonstrate
that the three function aspects play important roles in AD-related
mechanisms.

With regard to the three significant pairs of similar ADs, several
studies have confirmed these similarity relationships. For example,
(Wang et al., 2020) found that familial RA, SLE, and primary
Sjögren’s syndrome shared common genetic characteristics, and
the genetic variations in T cell receptor signaling pathway genes
which might become novel molecular targets for therapeutic
interventions for the three ADs. (Liu et al., 2019) found that
T cell receptor could become a promising diagnostic marker for
RA and SLE. In addition, previous studies have confirmed that MG
and AIT are similar in many aspects (Marino et al., 1997; Lopomo
and Berrih-Aknin, 2017), and AIT frequently accompanies MG
(Mao et al., 2011; Kubiszewska et al., 2016). The two diseases are
both organ-specific ADs with a clear pathogenic effect of antibodies.
Meanwhile,MG andAIT share the same predisposing genes (such as
PTPN22, CTLA4, and HLA) and pathological mechanisms (such as
T-cell immune-mediated mechanisms). Thus, we infer that AD
genetic similarity research can help to explain the similar
phenotypic and clinical features between ADs. These reports are
consistent with our current results. Experimental studies on these
AD pairs are desperately needed to provide important information
to understand their intrinsic mechanisms. And further validation of
these disease relationships in clinical trials will be a better option to
turn them into clinical practice. Besides, the results of pathway
enrichment analysis of related genes of significant pairs of similar
ADs exposed possible PolyA. For example, the related genes of RA
and SLE were enriched in pathways of IBD, T1D, and AITD. It was
reported that AIT frequently coexisted with RA and SLE (Ordonez-
Canizares et al., 2020). Another study showed that AITD, RA, SLE,
and IBD were observed in Sjögren’s syndrome patients with PolyA
(Amador-Patarroyo et al., 2012). And the related genes of MG and

AITwere enriched in pathways of T1D, IBD, andRA. Previous study
found that the latent and overt PolyA in patients with AITD were
associated with gastrointestinal, endocrinological, rheumatological,
dermatological, and neurological ADs (Botello et al., 2020). The
PolyA is not uncommon and multiple ADs that coexist in a single
patient may share the same etiopathogenesis. Some genetic studies
on ADs ignored the coexistence of other autoimmune conditions by
implementing anachronistic nomenclature (i.e., primary or
secondary ADs) (Rojas-Villarraga et al., 2012). We hope that
researchers can take in account PolyA and concern whether or
not patients have latent or overt PolyA in AD study.

With regard to the result of cluster analysis on 26 ADs, hitherto,
a lot of reports have confirmed our viewpoint. For example, for the
disease cluster two, a recent study found that chemokines were
associated with the early phases of the autoimmune response in
AIT, Graves disease, and Addison disease (Fallahi et al., 2020). For
the disease cluster three, another study found major common gene
expression changes at the target tissues of T1D, MS, RA, and SLE
(Szymczak et al., 2021).

This study predicted AD pairs and clusters with high genetic
similarity, as well as potential risk genes, biological processes, and
pathways involved in multiple types of ADs. Despite the two
diseases of a certain AD pair with high similarity score have
different phenotypic or clinical features, they are likely to have
similar or the same ways to elicit autoimmune responses in the
human body. Consequently, we reason that similar ADs in
genetics can be treated with similar therapeutics and drugs.
We hope that these findings can aid in elucidating AD
mechanisms, and provide more references for researchers.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YD designed the study, analyzed the data, and drafted the
manuscript. MC, JQ, and CW collected the data. QS, HR, and
LL helped in analyzing the data, and calibrating the parameters of the
algorithm. FZ and RZ provided ideas and revised the manuscript.

FUNDING

This work was supported by the Natural Science Foundation of
Heilongjiang Province (Grant No. LH 2019C043).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.758041/
full#supplementary-material
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Disease
cluster

Shared gene
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Cluster three TNF, HLA-DRB1, PDCD1, PTPN22, CCR5, IL6, HLA-DQB1,

CTLA4

Italics refers to gene symbols (gene names).
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