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The human body is thoroughly colonized by a wide variety of microorganisms, termed
microbiota. Pancreatic cancer, one of the most aggressive forms of cancer, is no
exception. The microbiota of pancreatic cancer largely influences and even dominates
the occurrence, development and outcome of pancreatic cancer in many ways. Studies
have shown that microbiota could change the malignant phenotype and prognosis of
pancreatic cancer by stimulating persistent inflammation, regulating the antitumor immune
system, changing the tumor microenvironment and affecting cellular metabolism. This is
why the association of the microbiota with pancreatic cancer is an emerging area of
research that warrants further exploration. Herein, we investigated the potential microbial
markers of pancreatic cancer, related research models, the mechanism of action of
microbiota in pancreatic cancer, and pancreatic cancer-microbiota-related treatment.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most malignant tumors of the digestive tract and the third most
deadly cancer globally (1). The onset of PC is insidious, and most patients are already at an
advanced stage at the time of diagnosis, often accompanied by distant metastases. In recent years,
the survival time of patients with PC has improved to a certain extent. Nevertheless, the outcome
remains unsatisfactory, with the 5-year survival rate of patients being lower than 10% (1). At
present, radical surrgery is still the mainstay treatment strategy for PC. Unfortunately, less than 20%
of PC patients are suitable for resection (2). In addition, patients with PC have a relatively high
recurrence rate after surgery, and most patients will eventually succumb due to metastasis (3). The
available treatment options for other advanced PC patients are very limited. However, if the primary
tumor is less than 2cm in diameter and is confined to the pancreas upon early detection, the 5-year
survival rate of patients can reach up to 46% after surgical treatment (4, 5). Therefore, the early
detection of PC lesions and the improvement of late treatment are very critical. It is generally
believed that changes in the genome of various cancers can effectively and accurately predict patient
survival time and response to chemotherapy drugs (6). However, among PC patients with the same
tumor grade, investigators have found no significant genomic differences between patients with
long- and short term overall survival (7). To date, the factors contributing to the different survival
outcomes are still complex and elusive. Innovative approaches for early screening, prevention, and
treatment of PC are thus urgently needed.
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Any part of the human body connected to the outside world
can become a custom home for millions of microbiota, with the
digestive tract being the preferred site for colonization (8),
housing roughly 1013~1014 gut microbiota, including bacteria,
archaea, fungi, protists, and viruses, with bacteria being the
primary inhabitants, consisting of at least 100 times as many
genes as the human genome (8). Under physiological conditions,
many colonies maintain a dynamic balance of mutual benefits
with the human body. For example, the human body provides
the nutrients required by the microbiota and a suitable living
environment, and in return, the microbiota synthesizes and
provides the essential amino acids and vitamins that our
bodies need as well as processes other indigestible components
of our diet, such as plant polysaccharides (9). As a new emerging
research field, the human microbiota plays an important role in
various gastrointestinal cancers, such as esophageal cancer, with
reports suggesting that 16% of malignant diseases are associated
with microbial infections; and this percentage is even higher in
digestive tract-related malignancies such as liver and gastric
cancers, being as high as 80% (1). In these malignancies, the
gut microbiota is in direct contact with high-risk organs. This
article reviews the potential microbial markers of PC, related
research models, the mechanism of action of microbiota in PC,
and pancreatic cancer-microbiota-related treatment.
MICROBIOTA COLONIZATION PATHWAYS
IN PANCREAS

The pancreas, previously considered sterile, has been increasingly
shown to be colonized by several microorganisms, a finding that is
independent to the state of the pancreas (normal or pathological)
(10, 11). For instance, Geller et al. detected bacteria in 113
pancreatic ductal adenocarcinoma (PDAC) samples using the
16S ribosomal RNA (16S rRNA) gene sequencing method and
found that 86 (76%) of them were positive for bacterial presence,
among the 20 normal pancreas controls, only 3 (15%) contained
bacterial DNA (P <0.005) (12). The presence of microbiota in PC
has been recognized and accepted bymany scholars, but it remains
unclear how bacteria colonize the pancreas. Throughout the
history of research on PC and microbiota, the pathways by
which microbiota colonize PC tissue can be summarized as
follows (Figure 1). Firstly, the pancreas is connected to the oral
cavity, esophagus, and stomach upwards through the pancreatic
duct, downwards to the duodenum, and adjacent to the common
bile duct. These features confer the possibility of bacterial reflux
through the pancreatic duct and eventually into the pancreatic
parenchyma through the large/little papilla (13). In a study by
Pushalkar et al., wild-type mice were administered CFSE-labeled
E. faecalis (2.5×108 CFU) via oral gavage, after which the mouse
pancreatic tissue was extracted after 0.5h, and the presence of
CFSE-labeled E. faecalis was detected. The same results were
observed for GFP-labeled E. coli (2.5×108 CFU) administered
via oral gavage in mouse pancreatic tissue (14). Similarly, Aykut
et al. administered GFP-labeled Saccharomyces cerevisiae to
control or tumor-bearing mice via oral gavage, and fungi were
Frontiers in Immunology | www.frontiersin.org 2
detected in pancreatic tissue within 30 minutes (15). The author
hypothesized that it might be due to the reflux phenomenon
allowing bacteria to enter via the pancreatic duct (16). However, in
another mouse model, GF 129SvEv mice were orally gavaged with
Campylobacter jejuni, and pancreatic tissue was collected after 1, 2,
4, and 8 weeks of housing, and no evidence of pancreatic
colonization by the microbiota was detected (10), the reason
might be that the acquisition of pancreatic bacteria is not a
physiological process, but a pathological process (10).
Regardless, the above anatomical features of the pancreatic duct
create ideal condition for bacterial colonization of the pancreas.
Secondly, it seems reasonable that the microbiota of the upper
gastrointestinal tract could enter the pancreas by reflux through
the large/little papilla, while microbiota situated further, such as in
the colon, may migrate to the pancreas through other pathways. In
antibiotic-treated mouse model experiments, Diehl et al.
uncovered that non-invasive Salmonella was carried into the
mesenteric lymph node (MLN) by the CX3CR1+ cell (one of the
CD11c+ mononuclear phagocytes, the other being CD103+ cell)
(17). To confirm this conclusion, they sorted CX3CR1+ and
CD103+ cells from the MLN of infected antibiotic-treated mice
and assayed for cells containing colony-forming units; bacteria
were detected only in CX3CR1+ cells but not in CD103+ cells. In
addition, CX3CR1+ cells have the ability to migrate from the small
intestine to the MLN. However, at a steady-state, the transport of
symbiotic bacteria and pathogenic bacteria from the lumen to the
MLN is restricted, and MLN is a key immune induction site (18).
Using a mouse model infected with S. enterica serovar
Typhimurium (STM), Bravo-Blas et al. detected dendritic cells
(DCs) in lymphocytes collected from mouse thoracic ducts,
including CX3CR1int and CX3CR1lo, which is contrary to the
experimental results of Diehl et al. In addition, STM is not only
transported by DCs but also autonomously. After reaching the
MLN, STM can be taken up by macrophages, DCs and some B
cells (19). Whether the migration of intestinal flora is associated
with intestinal permeability remains debatable (10). When the
digestive tract flora is dysfunctional, opportunistic pathogenic
bacteria can invade the MLN to be captured by DCs. DCs
containing opportunistic pathogens might become a good
vehicle for the systemic dissemination of pathogenic bacteria.
This implies that the gut microbiota may colonize pancreatic
tissue via the lymphatic system pathway. Lastly, in a feline model
of acute pancreatitis, Widdison et al. demonstrated that E. coli
could spread to the pancreas through the bloodstream, the colon
wall, and enter the pancreatic duct through reflux (20). Studies
also show that a high-fat diet could induce the transfer of bacteria
from the intestine to human blood (21). Sato et al. analyzed the
fecal and blood flora of 50 patients with type 2 diabetes compared
to healthy subjects and discovered the presence of intestinal flora
dysbiosis and transfer of bacteria from the intestine to the
bloodstream in patients with type 2 diabetes (22). Factors such
as a change in eating habits, the use of antibiotics, or the flora’s
metabolites could also change the intestinal permeability and/or
destroy the intestinal barrier function, creating an opportunistic
environment for gut flora to enter the circulation (23–27). In
addition, a growing number of research have pointed to the fact
March 2022 | Volume 13 | Article 844401
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that specific microbiota is also detected in healthy human blood
(28). Since studies have shown that microbiota is already present
in placental tissue and cord blood, microbiota migration to
pancreatic tissues may occur at an even earlier stage (29–32).
POTENTIAL MICROBIAL MARKERS IN PC

Oral Microbiota and PC
Based on the possible pathways that we have mentioned above,
the microbiota from different sites could colonize the pancreatic
tissue and directly or indirectly play a role in the development
and progression of PC. Specimens obtained from different parts
of our bodies, such as oral saliva, serum, feces and pancreatic
tumor tissues, are shown in Figure 2. More than 700 different
species of bacteria colonize the human mouth (33), playing an
important role in the immune response, metabolism of
carcinogens and digestion of nutrients (34, 35). Michaud et al.
measured antibodies against 25 oral bacteria in pre-diagnostic
blood samples from 405 PC cases and 416 matched controls,
Frontiers in Immunology | www.frontiersin.org 3
with the results revealing that individuals with high levels of
antibodies against Porphyromonas gingivalis ATTC 53978 were
twice as likely to develop PC compared to individuals with lower
levels of these antibodies (OR, 2.14; 95% CI, 1.05-4.36) (36). In a
10-year prospective randomized controlled study, Fan et al.
utilized 16S rRNA gene sequencing to comprehensively screen
oral microbiome in 361 PC cases and 371 matched control oral
wash samples (10 ml scope mouthwash). They demonstrated
that the presence of P. gingivalis and A. actinomycetemcomitans,
and decreased relative abundance of phylum Fusobacteria and its
genus Leptotrichia were related to subsequent increased risk of
PC (37). The result of a meta-analysis shown that high levels of
antibodies to Porphyromonas gingivalis are associated with a
three-fold increased risk of digestive cancers, including PC (38).
Subsequent studies have shown that the intracapsular pancreatic
microbiome contains symbiotic bacteria known to inhabit the
human oral cavity (39). It is still unclear whether the observed
microbiome features precede and contribute to carcinogenesis or
whether they develop following cancer development. In addition,
other PC etiological factors such as smoking and alcohol
FIGURE 1 | The pathways the microbiota migrates to the pancreatic tissue. Transduodenal papillary reflux pathway: The pancreas is connected to the oral cavity,
esophagus, and stomach upward through the pancreatic duct, downward to the duodenum, and adjacent to the common bile duct. These features suggest the
possibility of microbiota reflux into the pancreatic duct and then into the pancreatic parenchyma through the large/little papillae. Translymphatic circulation pathway:
The microbiota distant from the pancreas (such as in the colon) enters the MLN by chance and is phagocytized by mononuclear phagocytes (e.g. CX3CR1+ cells)
or DCs, and instead of being lysed, these opportunistic pathogens are fortunately transferred to the pancreatic tissue for reproduction via the lymphatic system.
Transcirculatory pathway: The microbiota far away from the pancreas (such as in the colon) enters the blood under pathological conditions (such as damage to the
intestinal barrier caused by colitis), and colonizes other organs, including pancreatic tissue, along with the blood circulation.
March 2022 | Volume 13 | Article 844401
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consumption could affect the structure of the oral microbial
community (37). For example, more dangerous pathogenic
bacteria P. gingivalis and A. actinomycetemcomitans reside in
the mouths of PC patients who smoke or drink alcohol (37).

Gut Microbiota and PC
The relationship between Helicobacter pylori and PC is still
controversial. Risch et al. provided evidence for the association
between Helicobacter pylori seropositivity and increased PC risk
using enzyme-linked immunosorbent assay (ELISA). Besides,
this study also confirmed the association between PC and non-O
blood types and shown that the impact of Helicobacter pylori
seropositivity is particularly pronounced in non-O individuals.
This was even more pronounced in individuals who were CagA-
negative and H pylori seropositive (OR: 2.78, 95% CI: 1.49 -5.20,
P =0.0014) (40). However, some reports also found no
association between Helicobacter pylori infection and PC risk
in western European populations (41). Discussion of the
association between Helicobacter pylori and PC using serum
Helicobacter pylori DNA levels seems less convincing than
direct detection of Helicobacter pylori in PC tissue. Using a
Frontiers in Immunology | www.frontiersin.org 4
Helicobacter-specific PCR assay, Helicobacter pylori was
previously detected in PC tissues and/or adjacent tissues in
75% of patients with exocrine PC, while all samples from other
benign pancreatic diseases and normal pancreas were negative
(42). Presently, the increased risk of PC due toHelicobacter pylori
is more widely accepted by scholars.

Pushalkar et al. analyzed bacterial membership and structure
in stool samples from pancreatic ductal adenocarcinoma (PDA;
n=32) versus matched healthy individuals (n=31). At the phylum
level, Firmicutes and Bacteroidetes were predominant in the feces
of PDA patients and healthy controls. However, Proteobacteria,
Synergistetes, and Euryarchaeota were significantly more
abundant in PDA patients compared with healthy subjects. 16S
rRNA gene sequencing of PDA tumors from 12 of 32 patients
with PDA shown that Proteobacteria (45%), Bacteroidetes (31%)
and Firmicutes (22%) were the most prevalent in all samples (14).
By amplifying the ITS1 region of the 18S rRNA gene, Aykut et al.
tested the feces and tumor fungal communities of PDA patients
and found that Ascomycota and Basidiomycota were the most
common phyla in the intestine and tumor tissues, and compared
with the intestine, Malassezia was more common in tumor
FIGURE 2 | Potential microbial markers associated with PC. Oral microbial markers: Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans;
Gastric microbial markers: Helicobacter pylori; Duodenal microbiota markers: Acinetobacter, Aquabacterium, Oceanobacillus, Rahnella, Massilia, Delftia, Deinococcus
and Sphingobium; Common bile duct microbial markers: Enterococcus, Streptococcus, Shigella, Veroella and Enterobacter; Colonic microbial markers:
Proteobacteria, Synergistetes, Euryarchaeota, Ascomycota and Basidiomycota; Pancreatic microbial markers: Helicobacter pylori, Proteobacteria, Bacteroidetes,
Firmicutes, Ascomycota, Basidiomycota and Malassezia.
March 2022 | Volume 13 | Article 844401
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tissues (15). The five most important genera in bile are
Enterococcus, Streptococcus, Shigella, Veroella, and Enterobacter
(43). Acinetobacter, Aquabacterium, Oceanobacillus, Rahnella,
Massilia, Delftia, Deinococcus, and Sphingobium are more
abundant in the duodenal mucosa of patients with PC (43).
The above microbiota are closely related to the occurrence and
development of PC and may be used as biomarkers for the non-
invasive diagnosis of PC.

Microbiota in Pancreatic Tumor
Using an aseptic technique, Thomas et al. obtained normal
pancreatic tissue (n=7), pancreatitis tissue (n=4) or PDAC
(n=16). They found that microbiota was found in all, but no
differences in flora were detected in these tissue samples. In
subsequent in vivo experimental colony transplantation
experiment, the author failed to find evidence of pancreatic
colony transplantation of the orally administered microbiota
(Campylobacter jejuni) (10). The microbiota is not only different
in benign and malignant tumors but also dependent on the use of
neoadjuvant treatment or not, whether the tumor has recurred, the
length of patient survival, and ratio of tumor parenchyma to
mesenchyme (44–48). Riquelme et al. tried to assess the difference
in the average relativeabundanceofmicrobial speciesbetween long-
term survivors (LTS) and short-term survivors (STS), found that
Pseudoxanthomonas, Streptomyces, Saccharopolyspora andBacillus
clausii were significantly enriched in LTS cohort, which may
contribute to predicting survival time after PC surgery and be
potential to be prognostic biomarkers (48). Studies have shown that
the microbiota might induce the development of PC. Intraductal
papillary mucinous neoplasm (IPMN) is most common among
pancreatic cystic neoplasms (PCN) (49) and could develop into
invasive carcinoma (50). Compared with low-grade dysplasia
IPMN, high-grade dysplasia IPMN tissue is colonized with more
Frontiers in Immunology | www.frontiersin.org 5
bacteria and is more diverse with sample dominated by either
Firmicutes or Proteobacteria at the phylum level (39). However, a
proportion of PC patients with preoperative biliary obstruction
requireERCP, implantationof aballistic stent anduseof antibiotics,
which could cause artificial reflux infections and inevitable
pancreatic tissue microbiota transplantation in the short term,
affecting the results of the microbiota identification in collected
specimens (39, 47). In addition, only some pathogenic bacteria can
be traced due to the large variety of microbiota and temporal and
spatial variations. Microbiota on PC is summaried in Table 1.
POTENTIAL PATHOGENIC MECHANISMS
OF MICROBIOTA IN PC

Cytotoxicity and Pro-Inflammatory Effects
of Microbiota
Based on the above, bacterial colonization of the pancreatic tissue
can occur through multiple pathways. The acceptance of the
microbiota as a foreign body by the pancreatic tissue depends on
the biological effects produced by the microbiota (Figure 3). As
we all know, the proliferation of bacteria is much faster than the
proliferation of human cells, producing more metabolites, some
of which are beneficial to the human body, while others are
harmful. The nutrient supply in pancreatic tissue is not like in the
intestines, which provides most of the nutrients through oral
food. In the case of food insufficiency, the microbiota may prey
on pancreatic tissue cells to obtain nutrients. For example,
Helicobacter pylori can bind to gastric epithelial cells through
the adhesin HopQ and carcinoembryonic antigen-related cell
adhesion molecules (CEACAM) and the virulence factor CagA is
directly injected into epithelial cells through type 4 secretion
system (T4SS). CagA could ultimately activate the Wnt/b-
TABLE 1 | Studies on the association between microbiota and pancreatic cancer.

Study author, year
of publication

Sample size (Tumor
group vs non-tumor

group)

Microbiome
specimen

Microbial alterations (increases) Microbial
alterations
(decreases)

Significance

Fan et al., 2018 (37) 361, 371 Oral wash
samples

P. Gingivalis, A. actinomycetemcomitans Fusobacteria,
Leptotrichia

Increased risk of PC

Risch et al., 2010 (40) 373, 690 Serum H pylori Increased risk of PC
Pushalkar et al., 2018 (14) 32, 31 Fecal and

PDA
Proteobacteria, Synergistetes, Euryarchaeota,
Bacteroidetes, Firmicutes

Increased risk of PC

Aykut et al., 2019 (15) 13, 5 Fecal and
PDA

Ascomycota, Basidiomycota, Malassezia Increased risk of PC and
promoted tumor
progression

Mei et al., 2018 (43) 14, 14 Bile Enterococcus, Streptococcus, Shigella, Veroella,
Enterobacter

Increased risk of PC

Mei et al., 2018 (43) 14, 14 Duodenal
mucosa

Acinetobacter, Aquabacterium, Oceanobacillus,
Rahnella, Massilia, Delftia, Deinococcus,
Sphingobium

Increased risk of PC

Gaiser et al., 2019 (39) 14, 8 IPMN Firmicutes, Proteobacteria Increased risk of PC and
promoted tumor
progression

Geller et al., 2017 (12) 113, 20 PDAC Enterobacteriaceae, Pseudomonadaceae Increased drug resistance
Riquelme et al., 2019 (48) 22, 21 PDAC Pseudoxanthomonas, Streptomyces,

Saccharopolyspora, Bacillus clausii
Predicted long-term
survivor
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catenin pathway, leading to cell turnover and apoptosis (51).
Pathogenic Escherichia coli has a complete set of virulence factors
and toxins related to pathogenicity, including secretory genetic
poison colibactin. Once in the host cell, colibactin induces cross-
links between DNA strands and double-strand DNA breaks (51).
Pancreatic tissue could counter this malignant effect induced by
the microbiota through an inflammatory response. In addition,
the injured pancreatic alveolar cells can release endogenous
digestive enzymes that further aggravate cellular damage (52, 53).
In human and animalmodels, the dysbiosis of the gutmicrobiota is
related to the severity of acute pancreatitis (AP) (11). This seems to
depend on the activation of NOD-like receptor protein 3 (NLRP3),
an intracellular pattern recognitionmolecule that detectsmicrobial
and hazard-related molecular patterns (54, 55). Moreover, the
recruitment of neutrophils (56), macrophages (57) and pro-
inflammatory mediators such as IL-6 (58) also play a key role.
Although most AP episodes are mild and self-limiting, some can
progress to chronicpancreatitis (59), especially thosewith recurrent
AP. In the past two decades, PC has been considered to be an
inflammation-driven cancer, and patients with chronic pancreatitis
have a higher risk of PC (60, 61). Chronic pancreatitis and its
mechanism in causing PC are still unclear. At present, the
research on microbiota and chronic pancreatitis in immunity has
made great progress. For instance, the microbial component
Frontiers in Immunology | www.frontiersin.org 6
lipopolysaccharide (LPS) can effectively activate the host’s innate
immune system (62). In chronic pancreatitis, T cells and
macrophages are the main immune infiltrating cells (63, 64),
thereby impairing the regeneration of pancreatic cells and
promoting the dedifferentiation of the pancreatic epithelium (57,
65), and conferring the potential for pancreatic epithelial cells to
progress to cancer cells (66). The reason for this is that microbiota
can induce a sustained inflammatory response, in which oxidative
stress and the generation of reactive oxygen species (ROS), reactive
nitrogen species (RNS), immune cells and other stromal
components, such as endothelial cells and pancreatic stellate cell
(PSC) play key roles (67). On the one hand, ROS/RNS lead toDNA
fragmentation, membrane disassembly and protein misfolding
through modification of key substrates, such as nucleic acids,
lipids and preproteins. On the other hand, inflammatory
cytokines and chemokines produced by immune cells and other
stromal components work together with ROS/RNS to aggravate
epithelial cell damage and increase proliferation (67). In addition,
Inflammatorymediators, such asCyclooxygenase-2 (Cox2),NF-kB
and STAT3, might promote the development of chronic
inflammation and preneoplastic lesions (68, 69). However, the
above experiments in animal models of chronic pancreatitis
transforming into PC result from a combination of activation of
oncogenic Kras and loss of the tumor suppressor barrier and tissue
FIGURE 3 | Cytotoxicity and pro-inflammatory effects of microbiota. Bacteria can act directly on host cells and produce toxic effects. For example, Helicobacter
pylori binds to gastric epithelial cells through the adhesin HopQ and CEACAM, and the virulence factor CagA is directly injected into epithelial cells through T4SS.
Colibactin secreted by Pathogenic Escherichia coli in the host cellinduces cross-links between DNA strands and double-strand DNA breaks. Host cells secrete
chemokines and recruit immune cells, such as neutrophils, macrophage and T cells. These immune cells are activated by LPS to produce ROS/RNS, inflammatory
cytokines and chemokines, increase damage to host cells. Damaged host cells may be transformed, self-limiting, apoptosis or necrosis, while necrotic pancreatic
cells release endogenous digestive enzymes, further damaging other pancreatic cells.
March 2022 | Volume 13 | Article 844401
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damage produced by the inflammatory response. In other words,
the most fundamental cause of PC is the change in the expression
level of cellular oncogenes. Furthermore, the microbiota can cause
DNA fragmentation and protein misfolding, resulting in an
increase in the level of oncogenes and the malignant phenotype of
tumor cells.

Microbiota Metabolites in PC
The important influence of the microbiota on the human body is
mainly reflected in themetabolism of ingested sugar, fat, and protein
and the synthesisof vitaminsandothernutrients (70). Inaddition, the
microbiota and their metabolites participate in physiological and
pathological processes in the body, including cell proliferation,
differentiation, apoptosis, tumor development and aggressiveness
(71, 72). For example, themicrobiota can cause changes in the body’s
metabolism, leading to variousmetabolic diseases suchas obesity and
diabetes. Obesity and diabetes are also important risk factors for the
developmentofPC(73). Inparticular, ahigh-fat andhigh-energydiet
promotes the absorption of harmful metabolites of the microbiota,
such as bacterial LPS, into the circulation (74). This may be because
the microbiota can affect the metabolism of carbohydrates and the
production of short-chain fatty acids (SCFAs), damaging the tight
junctions of the intestinal mucosal epithelium and promoting
bacterial endotoxins to enter the bloodstream (75). Clinical results
also show that there were more LPS-producing bacteria in the
intestine of PC patients (76). In addition, in PC tissues, the main
bacterial groups detected, such as Proteobacteria and Bacteroidete,
belong to gram-negative bacteria containing LPS (14). More
importantly, many LPS-containing bacteria exist in the
microenvironment of PC tumors (12). It is currently believed that
LPS is a specific agonist that triggers the Toll-like receptor 4 (TLR4)
signaling pathway in immune cells (77). Studies have shown that
TLR4 is also highly expressed in various cancer cells, including PC
cells, andmay promote the proliferation and invasion of PC through
the up-regulation of HIF-1a and is closely related to prognosis (78).
Recent experimental results showthat thedestructionof the intestinal
barrier induces high circulating LPS and increases LPS deposition in
tumor tissues. In the early stage, LPS can significantly infiltrate CD3+

and CD8+ T cells, inhibiting tumor growth, while long-term
induction leads to depletion of T cells. Additionally, LPS
upregulates programmed cell death ligand 1 (PD-L1) through the
TLR4/MyD88/AKT/NF-kB signaling pathway and induces the
depletion and apoptosis of tumor-infiltrating lymphocytes (TILs),
thereby promoting cancer immune evasion (79). In addition, the
activation of TLRs can inactivate a variety of tumor suppressor
proteins (such as p16, p21, p27, p53, pRb, PTEN and MAP2K4),
inducing STAT3 activation, promoting epithelial-mesenchymal
transition (EMT), PC cell migration and oncogene-induced
senescence (80, 81), which are shown in Figure 4.

Microbiota and Tumor Micro-Immune
System
Immune cells, including T cells, natural killer (NK) cells,
macrophages, and DCs, play an important role in inhibiting
tumor initiation and progression. NK cells are a type of effector
cells that act in the early stageof tumor andare thebody’sfirst lineof
Frontiers in Immunology | www.frontiersin.org 7
defense against tumors. But NK cells are mostly located in
circulation. In solid tumor tissues, infiltrating NK cells are rarely
seen (82). NK cellsmonitor tumor cells in the blood circulation and
prevent themetastasis of tumor cells.WhenNKcells are depletedor
inhibited, tumor growth and escapemight result (83, 84). The entry
of the microbiota into the circulation and the release of
inflammatory factors may cause the consequences mentioned
above, especially in patients with advanced PC or cachexia. It
remains debatable whether NK cells can facilitate solid tumor
infiltration because they inhibit CD8+ T cell responses during
chronic infections (85). Indeed, activation of NK cells enhances
immune pathology and promotes chronic infection by limiting
CD8+ T cell immunity (85). T cell response is the most important
host response that controls tumor growth and development, and it
is also an important immune cell. In non-lymphatic tissues, the
tumor endothelial barrier composed of resting endothelial cells in
capillaries and venules makes it hard for immune cells to enter the
tissue. When an infection occurs, endothelial cells, parenchymal
cells and epithelial cells produce chemokines, which together with
proteolytic fragments attract a subpopulation of immune cells. For
example, once a few T cells infiltrate the tumor and express
chemokines, they attract a large influx of specific and non-specific
T cells (86). CD4+ andCD8+T cells play different roles in the tumor
microenvironment (TME). For example, helper T cell (Th cell),
including the Th2, Treg or Th17 lineages, differentiated by CD4+ T
cells, play a tumor-promoting role in tumors (87, 88). After
activation, CD8+ T cells differentiate into CTLs, which have
antitumor effects. Mouse model experiments proved that PC mice
enriched with CD8+ T cells survived longer (89). In PC patients,
tissues infiltrated byCD8+T cells shown a longer survival time (90).
However, themicrobiotadominates and regulates the ratio ofCD4+

to CD8+ T cells in the PC TME. In mouse model experiments,
Pushalkar et al. proved that the ratio of CD8+: CD4+ T cells in PC
tissues increased after microbial ablation. Not only that, but
microbial ablation also enhanced the Th1 polarization and
cytotoxicity of CD4+ T cells and CD8+ T cells phenotype
acquisition (14). In the more malignant basal-like tumor tissue,
more memory B cells were found. This result may be attributed to
the pathogen’s excessive immune response and inflammation (91).
B cells play a role in supporting thegrowthofPCcells (92).Myeloid-
derived suppressor cells (MDSCs) are immature bonemarrow cells,
a heterogeneous population of immature bone marrow cells
containing common precursors from DCs, macrophages, and
granulocytes, which are increased in the circulation, bone
marrow, and spleen of tumor-bearing mice and tumor patients,
and contribute to tumor cells escaping the antitumor immune
response (93).MDSCs reduce the proliferation of CD8+ T cells and
increase apoptosis by generating ROS and RNS. The consumption
of CD8+ T cells in mice eliminates the protective effect of
complement deficiency on tumor growth (94, 95). Microbial
ablation can reduce the proportion of MDSCs in the tumor in the
orthotopic KPC model, thereby reducing tumor cell immune
evasion (14). Microbial ablation resulted in a decrease in
immunosuppressive CD206+ M2-like TAM with a concomitant
increase in M1-like tumor-associated macrophages (TAMs), while
at the same timeM1-like TAM increased, with higher expression of
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MHC II, CD86, TNF-a, IL-12 and IL-6 (14). Microbiota
metabolites also affect immune cell activity. For example, the
SCFAs produced by beneficial symbiotic bacteria can increase the
antitumor response of CD8+ T cells (96). SCFAs can reduce the
down-regulation ofmacrophage pro-inflammatorymediators such
as IL-6, thereby inhibiting tumor growth (58).Unfortunately, in PC
patients, the beneficial symbiotic bacteria that produce SCFAs are
reduced, thereby subduing the antitumor response of CD8+ T cells
and indirectly promoting the tumor-promoting effect of
macrophages. In addition, not all SCFAs are beneficial. For
example, butyrate can increase regulatory T cells (Treg)
production (97). Treg cells are considered one of the most
effective antitumor immunosuppressants, capable of reducing the
activity of CD4+, CD8+ and NK cells, and are associated with poor
prognosis in PC (98). In short, the microbiota might regulate the
proportion of immune cell components in the TME (Figure 5),
which indirectly affects the tumor immune response, thereby
changing the malignant phenotype of the tumor.

The Pro-Inflammatory and Anti-
Inflammatory Imbalance Caused
by Microbiota
Microbiota metabolites mediate the communication between the
symbiotic microbiota and the immune system, affecting the
balance between pro-inflammatory and anti-inflammatory
Frontiers in Immunology | www.frontiersin.org 8
mechanisms (99). As mentioned above, in chronic pancreatitis
tissues, T cells and macrophages are the main immune infiltrating
cells (62, 63). Macrophages are another type of immune cells that
can differentiate into two phenotypes, M1 and M2. They are
usually responsible for removing debris from injury or infection
sites and present antigens to the host’s immune cells (B and T
cells), triggering adaptive immunity. It has been shown that in
early tumors, TAMs exhibit more pro-inflammatory M1
phenotypes that promote antitumor activity, and as the disease
progresses, they exhibit more M2 phenotypes, that is, anti-
inflammatory and contribute to tumor immunoediting,
facilitating tumor growth and invasion (99). In the mouse PC
model, Zhu et al. found that PC tissue macrophages were
significantly increased, which promoted the development of
high-grade aggressive tumors and the proliferation of PC cells
and the pro-fibrotic phenotype (100). M1 secretes pro-
inflammatory factors IL-1b, IL-6, TNFa (99). However, these
pro-inflammatory factors with antitumor effect can also become a
tumor-promoting factor in a certain environment. For example, in
a mouse model of PC liver metastasis, IL-6 derived from activated
macrophages activates the oncogenic transcription factor STAT3,
which directly inhibits the miR-124 gene through its conserved
STAT3 binding site in its promoter; targeting Notch ligand Jagged
1 to regulate Notch signaling in cancer cells, thereby promoting
mesenchymal transition and invasion (101). The pro-
FIGURE 4 | The pathogenic molecular mechanisms of microbial metabolites in PC. Microbial lysates such as LPS in the pancreatic TME, upregulates PD-L1 through
the TLR4/MyD88/AKT/NF-kB signaling pathway, and induces TILs depletion and apoptosis. The activation of TLRs can cause a variety of tumor suppressor
proteins, such as p16, p21, p27, p53, pRb, PTEN and MAP2K4, disorder, which induce STAT3 activation, promote migration and EMT.
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inflammatory factor TNF-a relies on the NF-kB pathway to
regulate the expression of GLI1 to induce EMT phenotype,
malignant behaviors and drug resistance (102). However, the
high levels of innate cytokines in chronic inflammation may
induce angiogenesis, cancer cell migration, and EMT by driving
sustained NF-kB activation and mitogen-activated protein kinase
(MAPK) activity (89, 103, 104). For example, M2 macrophages
express high levels of anti-inflammatory cytokines (such as IL-10,
TGF) to promote cancer cell metastasis (105, 106). In vivo and
in vitro experiments revealed that M2 macrophages secrete CCL18
which specifically binds to PITPNM3 at the cellular membrane
and subsequently upregulates VCAM-1 expression in PC cells by
activating NF-kB signal transduction, promoting the Warburg
effect, proliferation, migration and metastasis of PC cells. In that
study, the authors found that VCAM-1-derived lactic acid could
promote the M2-like polarization of macrophages in a dose-
dependent manner, indicating a mutual feedback loop between
CCL18-positive macrophages and PC cells (107). Wnt pathway
activation is also related to macrophage activation and is a driver
of PC development (108). In addition, the polarization of M2
macrophages could lead to the increased metastatic potential of
PC cells (109). In the TME, CD4+ T cells recognize the exogenous
antigen peptides presented by MHCII molecules. After activation,
Frontiers in Immunology | www.frontiersin.org 9
they will mainly differentiate into Th and mature into Th1, Th2,
Treg or Th17 lineage, classic Th1 cytokine-interference IFNg plays
an antitumor effect in TME, and Th2, Treg, Th17, cytokines-IL-4,
IL-5, IL-10 and IL-17a mediate tumor-promoting effects (87). For
instance, Th17 CD4+ cells release the pro-inflammatory factor IL-
17, which causes adenocarcinoma cells to increase the activation of
NF-kB and mitogen-activated protein kinase signals and increase
the expression of DCLK1 and ALDH1A1 (markers of embryonic
stem cells). In human pancreatic tumor tissues, patients with high
levels of DCLK1 have a shorter median survival time (88). In PC
patients, tissues infiltrated by CD4+ T cells show a shorter survival
time (90). CD8+ T cells recognize endogenous antigen peptides
presented by MHC class I molecules and differentiate into
cytotoxic T lymphocytes (CTLs) after activation. In the
pancreatic tissue of longer-lived patients, CD8+ T cells have
higher infiltration, which is beneficial to the clinical outcomes of
patients (90). The microbiota may induce the differentiation of
tumor-promoting immune cells and hinder the differentiation of
antitumor immune cells (Figure 5), thereby causing an imbalance
between pro-inflammatory and anti-inflammatory factors (14). In
addition, the complement system plays an important role in the
proliferation, migration, invasion and EMT of various tumors
(93). For example, the presence of fungi in PC tissues promotes
FIGURE 5 | Microbiota regulates tumor immune microenvironment. The microbiota in the TME can activate the immune system and recruit immune cells. Immune
cells are induced by microbiota to differentiate into different subtypes of immune cells, which secrete the appropriate factors that play pro- or anti-neoplastic roles in
tumorigenesis and progression. For example, immune cells with antitumor effects, M1 macrophages (secreting IL-1b/IL-6/TNF), CD8+ T cells, and Th1 (differentiated
from CD4+ T cells and secreting IFNg) may be reduced by the presence of microbiota. In contrast, immune cells with pro-tumor effects, M2 macrophages (secreting
TGF/IL-10/CCL18), B cells, MDSC, and CD4+ differentiated into Th2 (secreting TGF/IL-6), Th17 (secreting IL-17), and Treg (secreting IL-10) are increased.
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tumor growth through the mannose-binding lectin (MBL)-C3
complement cascade pathway (15).
IMPLICATIONS OF THE MICROBIOTA IN
THE TREATMENT OF PC

Microbiota and Chemotherapy
At present, although gemcitabine is still the standard first-line
choice for advanced PC, its benefits on the survival of PC patients
remain non-ideal (110). One of the reasons may be that the
microbiota damages the antitumor properties of gemcitabine.
Geller et al. proved that most of the microorganisms associated
with pancreatic tumors are Gammaproteobacteria, including
Enterobacter and Pseudomonas, which can produce cytidine
deaminase (CDD) and promote the metabolism of gemcitabine
into its inactive form, 2’,2’-difluorodeoxyuridine, leading to the
degradation and resistance of gemcitabine (12). The combination
of gemcitabine and antibiotics is more effective than gemcitabine
alone. Thus a possible mechanism of this action might be
because the bacteria in the tumor reduced the metabolism of
gemcitabine (111). In addition, the pyrimidine nucleoside
phosphorylase (PyNP) produced by mycoplasma can remove
the natural pyrimidine nucleosides uridine, 2’-deoxyuridine and
thymidine, which indirectly affects the therapeutic effect of
chemotherapy drugs (112). The above experimental results
illustrate that the microbiota, including bacteria and
mycoplasma, may be the main culprit for the poor efficacy of
gemcitabine, a chemotherapy drug for PC. However, the culprits
discovered are just the tip of the iceberg.

Probiotics Combined With Chemotherapy
Probiotics are live microorganisms, which confer a health benefit
on the host and most frequently belong to the lactic acid bacteria
categories Lactobacillus spp. and Bifidobacterium spp (113).
Using a mouse model of PC xenotransplantation, Panebianco
et al. found that probiotics combined with chemotherapy can
significantly increase the DNA damage of PC cells, effectively
inhibit the cell cycle, and induce cell apoptosis, and effectively
inhibit the EMT of PC cells, and better preserve the overall
structure of the intestinal mucosa, and increase the species
richness of the intestinal microbiota, which is mainly
manifested in the bacteria that produce butyrate and other
beneficial SCFAs, such as Eubacteriaceae, Ruthenibacterium,
Faecalicatena, Pseudobutyrivibio and Roseburia. In addition,
probiotics restore the number of platelets affected by
gemcitabine (114). Combining gemcitabine and probiotics can
cause a reduction in the formation of PanIN and the expression
of vimentin and Ki-67. Mice treated with gemcitabine combined
with probiotics have lower aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) levels. These findings indicate
that probiotics can make standard chemotherapy more effective
and help improve patients’ tolerance to chemotherapy (115). In
addition, probiotic administration reduced the histological
expression of Smad3 and phosphorylated Smad3 in KC mice
treated with Porphyromonas gingivalis. It may have beneficial
Frontiers in Immunology | www.frontiersin.org 10
effects by reducing cancer cell proliferation and viability, inhibiting
PanIN progression, EMT and cancer cell metastasis (116). In a
xenograft model, the probiotic bacteria Lactobacillus casei-derived
iron pigment could suppress the progression of cancer cells and
induce apoptosis of PC cells by activating p53 and hindering the
cell cycle. Its antitumor efficacy was even better compared to a
combination of 5-FU and cisplatin in refractory and resistant PC
(117). However, the application of chemotherapeutic drugs can
also change the microbiota and its metabolites in PC patients. An
overall increase in inflammation-related bacteria was observed
with gemcitabine. Besides, activation of the NF-kB classic pathway
was found in the cancer tissues of mice treated with gemcitabine
(118). Therefore, the microbiota could affect the therapeutic
efficacy of chemotherapeutics. Importantly, the elimination of
pathogenic bacteria and probiotic application could increase the
efficacy of chemotherapeutics and improve patients’ tolerance to
chemotherapy. Conversely, chemotherapeutic drugs could cause a
change in the composition of the microbiota, leading to a vicious
circle and ultimately accelerating tumor progression. However, the
conclusion that probiotics contribute to the treatment of PC
patients needs more data to support.

Prebiotics, a substrate selectively utilized by host microorganisms,
confer health benefits, mainly include indigestible fructo-
oligosaccharides (FOS) and galactans (GOS), which are
preferentially metabolized by Bifidobacteria to convert them into
SCFAs, namely propionate, butyrate and acetate, and they are
essential for intestinal health (119, 120). Unfortunately, reports on
its connection with PDAC have not been published publicly, but it
can be used as a future research direction.
Microbiota and Immunotherapy
Immune cells are essential in the PC microenvironment. On the
one hand, immune cells can recognize and kill tumor cells; on the
other hand, immune cells and their related inflammatory factors
can promote tumor occurrence and progression (121).
Antitumor immune cells and tumor-promoting immune cells
in the microenvironment of PC are reportedly regulated by the
microbiota. In terms of mechanism, the microbiota can act as an
antigen and activate the immune system. More importantly, in
the absence of intestinal flora, the immune system cannot be
activated (122, 123). For example, MDSC has antigen-non-
specific and antigen-specific immunosuppressive effects. Once
it enters the TME, it can cause oxidative stress on surrounding
immune cells and inhibit T cell proliferation, and the MDSC
level of patients was found to be higher than that of healthy
people (124). Antibiotic ablation could reduce MDSC in mouse
PC tissue (14), which indirectly reflects the influence of the
microbiota on MDSC infiltration of PC. In the TME, CD4+ T
cells differentiate into Th upon activation and mature into the
Th1, Th2, Treg or Th17 lineage. The classic Th1 cytokine-IFNg
plays an antitumor effect while Th2/Treg cytokines-IL4, IL5, IL10,
IL17, etc., have tumor-promoting effects (87). After activation,
CD8+ T cells differentiate into CTLs, which have antitumor effects
(89). Interestingly, PC patients showing a higher degree of CD8+ T
infiltration possessed a longer survival time (90). The microbiota
in the TME induces the production of tumor-promoting immune
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cells Th2, Treg or Th17 while inhibiting antitumor immune cells.
Treg is considered one of the most effective antitumor
immunosuppressants, being able to effectively reduce the
activity of CD4+, CD8+ and NK cells. Several experimental
results have shown that the immunomodulatory molecule
polysaccharide A (PSA) of Bacteroides fragilis can mediate the
transformation of CD4+ T cells into Foxp3(+) Treg cells and
produce IL-10 during symbiotic colonization (125). The ablation
of the microbial population could improve this outcome and
enhance the infiltration of antitumor immune cells (14, 15, 87).

Immune checkpoint molecules (immune checkpoint) are
inhibitory regulatory molecules in the immune system, which
are essential for maintaining self-tolerance, preventing
autoimmune responses, and minimizing tissue damage by
controlling the duration and intensity of immune responses.
Immune checkpoint molecules expressed on immune cells can
inhibit the function of immune cells and prevent the body from
producing effective antitumor immune responses, leading to
immune evasion. Currently, cytotoxic T lymphocyte-associated
antigen 4 (CTLA4) and programmed cell death protein 1 (PD-1)
are being actively researched. Immune checkpoint blocking (ICB)
immunotherapy targets intrinsic immune downregulation factors,
such as CTLA4, PD-1 and PD-L1, leading to a lasting clinical
response and has recently become a source of promising new
cancer treatments (126, 127). Recently, several studies have shown
that the gut microbiota can enhance the antitumor efficacy of PD-
1 and CTLA4 blocking therapies (128). In addition, experimental
results show that immune checkpoint inhibition (ICI) therapy and
adoptive cell therapy using tumor-specific CD8+ CTL are affected
by the gut microbiota composition (129, 130). Intestinal bacteria
capable of producing SCFA, including eubacteria, lactobacilli and
streptococci, are positively correlated with the anti-PD-1/PD-L1
response of different gastrointestinal cancer types (131). The
efficacy of checkpoint blocking immunotherapy has been proven
to depend on the presence of unique beneficial bacteria in the
patient’s intestines. Oral bifidobacteria can improve the tumor
control of PD-L1 specific antibody therapy. The effect is that oral
bifidobacteria alone improves tumor control to the same extent as
PD-L1 specific antibody therapy (checkpoint blockade), and the
combination therapy almost eliminates tumor growth. This effect
is mediated by enhanced dendritic cell function leading to
enhanced CD8+ T cell priming and accumulation in the TME
(132). Mager et al. isolated three kinds of bacteria, namely
Bifidobacterium pseudolongum, Lactobacillus johnsonii and
Olsenia, which significantly enhanced the efficacy of immune
checkpoint inhibitors in mouse models of cancer (133).
Although ICB immunotherapy stimulates T cell activation and
effective antitumor immune response, it may also cause severe
inflammatory side effects in some patients, termed immune-related
adverse reactions (irAE), similar to autoimmune diseases. IrAEs are
common and can occur in up to 90% of patients treated with anti-
CTLA4 antibodies (134) and 70% of patients treated with PD-1/
PD-L1 antibodies (135). Although any organ system can be
affected, irAE most commonly involves the gastrointestinal tract,
endocrine glands, skin, and liver (135). One of the common
toxicities is immune checkpoint block-associated colitis (136).
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Microbiota and Radiotherapy
Radiotherapy is one of the important methods for the treatment of
PC, especially suitable for patients with advanced PC (137).
Radiotherapy may enhance the release and absorption of tumor-
associated antigens, thereby promoting the initiation of anti-tumor
T cells, and enhancing entry into the tumor due to the impact on the
tumor vascular system and the chemokine environment (138).
Interestingly, as mentioned above, the microbiota plays an
important role in the immune microenvironment of PC. It can be
assumed that the intestinal flora also plays a role in the immune
stimulating effects of radiotherapy. However, radiotherapy is a
double-edged sword, while killing tumor cells, it also affects the
healthy tissues of the body, mainly manifested in the damage to the
bone marrow and digestive tract mucosa (139). One of the reasons
for this result may be that the composition of the body’s digestive
tract microbiota has been changed after radiotherapy (140). The
application of probiotics improves the tolerance of PC patients to
radiotherapy. Experimental results prove that preparations
containing probiotics such as Lactobacillus and Bifidobacterium
have a protective effect on radiotherapy-induced intestinal toxicity
and can significantly reduce the incidence of severe diarrhea (141,
142). To date, little is known about the response caused by
microbiota to radiotherapy in PC and reliable data is needed to
prove that some microbiota is beneficial in radiotherapy.

Antibiotic Application
The combination of antibiotics and chemotherapeutics indeed
enhances the antitumor efficacy of chemotherapeutics and helps to
improve the tolerance of patients to chemotherapy. For example,
Weniger et al. found that the progression-free survival (PFS) of
some PC patients was not improved after adjuvant gemcitabine
treatment after surgery. The intraoperative bile culture of these
patients found that Klebsiella pneumoniae was positive, and the
survival time was significantly improved after quinolone treatment
(143). Similarly, a previous study shown that fungal ablation could
enhance the effect of gemcitabine-based chemotherapy (15).
However, the use of antibiotics is not all beneficial. For instance,
long-term use of tetracycline increases the risk of prostate cancer
and breast cancer (144). The use of penicillin is closely related to
the occurrence of PC (145). This may be because the use of
antibiotics changes the composition and proportion of the
microbial population, rendering some opportunistic pathogenic
bacteria more resistant, leading to more pathogenic strains,
thereby promoting tumor development. Unfortunately, previous
large-scale clinical studies did not dynamically track changes in the
microbiota during antibiotic use. In addition, the metabolic
changes caused by antibiotics may also play a critical role in
promoting tumors (144).

Fecal Microbiome Transplantation
As mentioned earlier, the microbiota (including those in the
intestine) can migrate to the pancreatic tissue through a variety
of ways, which provides a way for the fecal microbiome
transplantation (FMT) to assist the treatment of PC. Riquelme
et al. demonstrated that the use of FMT in an antibiotic-treated
mouse model causes the gut microbiota to colonize pancreatic
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tumors and change the overall bacterial composition of the
tumor (48). Compared with STS, the microbiota, FMT from
the LTS cohort, induced anti-tumor response and immune
system activation in mouse PC tissue, characterized by
infiltration with cytotoxic CD8+/killer T cells (48). However,
the potential risks of FMT, including the possible transmission of
pathogens to recipients, should not be ignored. Patients are
stratified to screen specific microbiota, especially microbiota
that can improve the efficacy of anti-cancer drugs, to choose
more effective treatments and reduce treatment complications.
CONCLUSIONS

In less than a decade, the mechanism of action of the microbiota,
the second-largest gene pool of the human body, in PC has been
increasingly studied. In addition to the interaction between PC and
microbiota, current research on the tumor-promoting and
antitumor effects of microbiota and its metabolites in PC has also
focused on the “micro-immune system” changes in the TME.
However, due to the large variety and the huge number of
microbiota and its symbiosis in the human body, it has received
Frontiers in Immunology | www.frontiersin.org 12
many aspects, such as age, gender, immune ability, diet, climate, and
regional influences, making the use of microbiota for the precise
treatment of PC fraught with challenges. There is still a long way to
go before the development and implementation of an efficacious
and robust microbiota-related precision treatment. This review
offers much-needed insight into the various mechanism and
current therapeutic advances in microbiota-associated PC, aiming
to provide the impetus for further in-depth studies.
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