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ABSTRACT The strategy that microbial decomposers take with respect to using
substrate for growth versus maintenance is one essential biological determinant of
the propensity of carbon to remain in soil. To quantify the environmental sensitivity
of this key physiological trade-off, we characterized the carbon use efficiency (CUE)
of 23 soil bacterial isolates across seven phyla at three temperatures and with up to
four substrates. Temperature altered CUE in both an isolate-specific manner and a
substrate-specific manner. We searched for genes correlated with the temperature
sensitivity of CUE on glucose and deemed those functional genes which were simi-
larly correlated with CUE on other substrates to be validated as markers of CUE. Ulti-
mately, we did not identify any such robust functional gene markers of CUE or its
temperature sensitivity. However, we found a positive correlation between rRNA
operon copy number and CUE, opposite what was expected. We also found that in-
efficient taxa increased their CUE with temperature, while those with high CUE
showed a decrease in CUE with temperature. Together, our results indicate that CUE
is a flexible parameter within bacterial taxa and that the temperature sensitivity of
CUE is better explained by observed physiology than by genomic composition
across diverse taxa. We conclude that the bacterial CUE response to temperature
and substrate is more variable than previously thought.

IMPORTANCE Soil microbes respond to environmental change by altering how they
allocate carbon to growth versus respiration— or carbon use efficiency (CUE). Ecosys-
tem and Earth System models, used to project how global soil C stocks will continue
to respond to the climate crisis, often assume that microbes respond homoge-
neously to changes in the environment. In this study, we quantified how CUE varies
with changes in temperature and substrate quality in soil bacteria and evaluated
why CUE characteristics may differ between bacterial isolates and in response to altered
growth conditions. We found that bacterial taxa capable of rapid growth were more effi-
cient than those limited to slow growth and that taxa with high CUE were more likely
to become less efficient at higher temperatures than those that were less efficient to be-
gin with. Together, our results support the idea that the CUE temperature response is
constrained by both growth rate and CUE and that this partly explains how bacteria ac-
climate to a warming world.

KEYWORDS carbon use efficiency, comparative genomics, growth strategy,
physiology, soil bacteria

Optimum allocation of carbon (C) to growth versus maintenance is central to the
success of microorganisms. This “carbon use efficiency” (CUE) is the outcome of a

complex interplay between biotic and abiotic factors which shape whether organisms
are able to thrive or just survive in their environment. In turn, how CUE responds to a
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changing world is expected to have far-reaching implications for the ability of soils to
globally maintain vital ecosystem services such as carbon retention.

Of particular pertinence is projecting how elevated temperatures are affecting
microbial physiology under conditions of climate change. In ecosystem and Earth
System models, CUE is typically parameterized either to be unaffected by warming or
to exhibit a homogeneous community-level decrease (1–3). In response to short-term
increases in temperature, community-level CUE can increase (4, 5), decrease (4, 6), or
remain unaffected (4, 6–8), with no clear explanation as to why these temperature
responses differ (9). Organism-level CUE decreases in response to increasing tempera-
ture when respiration increases more than growth; this accelerated respiration can be
caused by increased protein turnover (10), changes in membrane fluidity (11), or the
loss of energy-conserving sites in the electron transport chain (12). On the other hand,
CUE is expected to increase with temperature if maintenance costs are independent of
growth rate and if growth rate increases with temperature (13). In addition to these
direct impacts of elevated temperature, longer-term changes in temperature may
additionally play out to indirectly impact CUE through chronic warming-induced
changes in the environment.

The response of CUE to long-term warming is variable (6, 14). Chronic warming can
impact the quantity and quality of substrates available through their differential
production and consumption (6, 15). For example, warming has been observed to
increase both the quantity of C released by roots into the soil (16) and the relative
contribution of phenolic compounds (17), such that microbial activity was found
previously to be stimulated by warming in the rhizosphere (16). In other instances,
however, warming may reduce the amount of C that plants allocate belowground (18),
or plant inputs may not keep pace with increased microbial demand at higher tem-
peratures (19). In such cases, labile compounds are preferentially lost from soil and the
available substrates show signatures of a later state of decay (15). All said, these indirect
effects of temperature on CUE via changes in substrate quality may be as important
as—if not more important than—its direct effects (6). This is in part because intrinsic
differences in the oxidation states of substrates set an upper limit on how efficiently
they are anabolized (20); energy must be invested to enable the oxidation state of C in
organic acids to achieve that of the cell but not for more highly reduced lipids.
Substrates also differ in their extracellular processing and uptake costs, which impacts
the maximum potential yield of a substrate pool (1, 6). Furthermore, the presence of
alternative metabolic pathways for processing the same substrate means that microbes
may differ in how much energy they can capture (21). Finally, bacteria may switch
between metabolic pathways depending on temperature or substrate availability (22),
opening the possibility of gene-substrate interactions affecting how CUE responds to
temperature. In addition to the differences in efficiency due to substrate quality,
bacteria may differ in their maximum possible efficiency (23). As such, community-level
differences in CUE temperature response may be underlain by both shifts in who or
what is active and the direct physiological effects of warming on a fixed community.

It has long been assumed that a trade-off exists between how fast an organism can
grow and growth efficiency for a given amount of substrate—the so-called growth
rate-yield trade-off (24). Bacteria with more rRNA operons are able to sustain a higher
maximum growth rate (25) but also appear to grow less efficiently than those with
fewer copies (23). This is proposed to be a consequence of the high energetic costs of
building and running translational machinery (26), suggesting that oligotrophic bacte-
ria are more efficient than copiotrophs. Bacteria capable of producing large amounts of
extracellular enzymes (EEs) may also be less efficient than those with more-limited
extracellular enzyme production capacity because substantial energy investment is
required to polymerize amino acids under aerobic conditions (27, 28). The ability to
produce copious and diverse extracellular enzymes may also be indicative of reduced
temperature sensitivity of these taxa, however, as bacteria with diverse metabolic
potentials may be better able to tune which pathways or enzymes they use in order to
maintain efficiency even as the environment around them changes (29, 30). As such,
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genomic traits such as rRNA operon copy number (rrN) or extracellular enzyme gene
density may serve as “genomic markers” of bacterial CUE and its temperature sensitiv-
ity. However, empirical support is equivocal for the growth rate-yield (23–25, 31, 32)
and enzyme cost (28, 33) hypotheses, and a number of questions regarding the
genomic basis of efficiency remain. Specifically, are there genomic markers of CUE
which are consistent across phylogenetically diverse soil bacteria? And can the genomic
repertoire of soil bacteria be used to infer the temperature responsiveness of CUE?

We sought to first quantify how soil bacterial CUE varies in its response to shifts in
temperature and substrate and then to determine whether these shifts can be pre-
dicted based on genome composition. Because it is a complex metabolic trait, we
posited that CUE and its temperature sensitivity (Q10) would be highly variable across
taxa but would be more similar in closely related bacteria (34). Furthermore, we posited
that CUE would be negatively correlated with rRNA operon copy number (rrN) (23) and
extracellular enzyme costs (1) and would decrease more in response to temperature in
organisms with simpler metabolisms. To test these hypotheses, we measured the CUE
of 23 soil bacterial species representing seven phyla and a 50-fold difference in
maximum growth rates on substrates from pyruvate to potato dextrose broth. We then
explored correlations between CUE and gene abundances using a comparative genom-
ics approach both to test a priori hypotheses and to discover potential markers of CUE
using an explore and validate method.

RESULTS
Variability in CUE. The bacterial isolates used in this study were primarily derived

from temperate forest soil (Table 1) and were chosen to be representative of the
diversity found in the soils they were derived from (35). CUE was determined using
optical density measurements of exponentially growing cultures to quantify growth
and infrared gas analysis to measure carbon dioxide production rates. Assay conditions
included growth at 15, 20, and 25°C on the four substrates glucose, pyruvate, succinate,
and potato dextrose broth (PDB).

CUE varied from 26% to 81% across conditions (Fig. 1a). This variation in CUE was
underlain by substantial variation among taxa in both respiration and growth rates,
which did not always correlate with one-another (see Fig. S1 in the supplemental
material). Although our level of replication was relatively low, we did not find evidence
that CUE exhibited a multimodal distribution under any of the assay conditions using
a Hartigan’s dip test (36), except for PDB at 15°C (Fig. S2). CUE showed a weak positive
correlation with growth rate during CUE measurements on glucose (repeated measures
correlation r � 0.26, P � 0.001, 270 df), PDB (r � 0.22, P � 0.02, 120 df), pyruvate
(r � 0.24, P � 0.01, 114 df), and succinate (r � 0.25, P � 0.05, 92 df). CUE was more
strongly negatively correlated with mass-specific respiration rate, with correlation
coefficients between �0.41 (PDB; P � 0.001, df � 119) and �0.58 (glucose; P � 0.001;
df � 206) across the substrates tested. Thus, variation in respiration among taxa was
more strongly correlated with variation in CUE among taxa than was growth rate.

Effect of substrate quality on CUE and its temperature sensitivity. CUE did not
increase significantly with the energy content of the substrate (heat of combustion
standardized to C content; Fig. S3), likely because isolates differed in their ability to
grow on the different substrates (Fig. S1). The effects of temperature and substrate on
CUE were isolate specific [temperature * isolate interaction F(22,476) � 2.324, P � 0.001;
substrate * isolate interaction F(32,476) � 2.100, P � 0.001 for three-way analysis of
variance (ANOVA); Fig. 1b]. This effect was underlain by variation in both the growth
rate and respiration rate of the isolates (Fig. S1) with temperature.

Across all isolates and substrates, the Q10 value of CUE (i.e., the factor by which soil
respiration increased by a 10°C increase in temperature) ranged from 0.49 to 2.63
(Fig. 2), equivalent to a halving to a more than doubling in its value. In 71% of the cases,
however, CUE was unaffected by temperature over the range studied, indicating that
respiration and growth often responded similarly to temperature. CUE did not differ
with respect to mean temperature sensitivity for the different substrates (Fig. S4) or
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with respect to the frequency with which the 95% bootstrap confidence intervals did
not overlap 1 for a given isolate by temperature combination (Fig. 2).

Phylogenetic conservatism of CUE and its temperature sensitivity. A maximum
likelihood-based phylogenetic tree was built for the isolates based on a set of con-
served single-copy genes (37) using RAxML (38). This tree was used as the backbone for
identifying whether the CUE values observed were distributed at random in the
bacterial taxa studied (Pagel’s lambda � 0), whether the values were consistent with
evolution following Brownian motion (Blomberg’s K � 1, Pagel’s lambda � 1), or
whether they were comparably underdispersed (Blomberg’s K � 1) or overdispersed
(K � 1) on the phylogenetic tree. CUE did not have a consistent phylogenetic signal—it

TABLE 1 Isolates used in CUE measurementsa

Isolate IDTAXA (GTDB) taxonomy
IMG taxon
ID

% completeness
(% contamination)

Explore or
validate

Source or
reference

AN5 � Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae;
Agrobacterium

2617270923 99.98 (1.177) Explore This study

AN6A � Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae;
Agrobacterium

2619618868 99.96(0.141) Explore This study

GAS188 � Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
Beijerinckiaceae; EF018539

2693429787 97.806 (2.194) Explore 88

GAS232 � Bacteria; Acidobacteriota; Acidobacteriae; Acidobacteriales;
Acidobacteriaceae; Terriglobus

2690315654 100 (3.586) Explore This study

EB95 � Bacteria; Acidobacteria; Acidobacteria; Acidobacteriales;
Acidobacteriaceae; unclassified Acidobacteriaceae

2747843220 99.238 (1.724) Explore This study

MT12 � Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
Xanthobacteraceae; Bradyrhizobium

2690316366 99.871 (2.506) Explore This study

MT45 � Bacteria; Actinobacteriota; Actinobacteria; Corynebacteriales;
Jatrophihabitantaceae; MT45

2690315646 95.755 (1.402) Explore This study

GAS332 � Bacteria; Proteobacteria; Gammaproteobacteria; Betaproteobacteriales;
Burkholderiaceae; Paraburkholderia

2695420918 99.95 (1.02) Explore This study

GAS474 � Bacteria; Verrucomicrobiota; Verrucomicrobiae; Methylacidiphilales;
GAS474; GAS474

2690315640 99.324 (4.392) Explore 89

GAS479 � Bacteria; Firmicutes; Bacilli A; Paenibacillales;
Paenibacillaceae; Paenibacillus O

2693429825 99.511 (0.349) Explore This study

GAS525 � Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
Xanthobacteraceae; Bradyrhizobium

2740892596 99.984 (1.599) NA This study

GP183 � Bacteria; Firmicutes; Bacilli A; Paenibacillales; Paenibacillaceae;
Paenibacillus E

2690316367 97.849 (1.613) Explore This study

GAS106B� Bacteria; Proteobacteria; Gammaproteobacteria; Betaproteobacteriales;
Burkholderiaceae; Paraburkholderia

2690315676 99.95 (0.827) Validate This study

24-YEA-27� Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae; 24-YEA-8

2767802438 94.838 (1.313) Validate This study

BS19 �� Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales;
Enterobacteriaceae; Ewingella

2806310493 99.983 (0.536) Validate This study

BS40 �� Bacteria; Actinobacteria; Actinobacteriota; Actinobacteria; Actinomycetales;
Micrococcaceae; MA-N2

2806310496 99.039 (1.462) Validate This study

BS60 �� Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
Rhizobiaceae; P6BS-III

2806310495 100 (0.435) Validate This study

BS71 �� Bacteria; Actinobacteriota; Actinobacteria; Actinomycetales;
Microbacteriaceae; unclassified Microbacteriaceae

2806310494 98.99 (0.631) Validate This study

Arthrobacter
alpinus

Bacteria; Actinobacteria; Actinobacteria; Micrococcales; Micrococcaceae;
Arthrobacter

2634166197 99.541 (1.95) Validate 90

Chitinophaga
pinensis

Bacteria; Bacteroidetes; Sphingobacteriia; Sphingobacteriales;
Chitinophagaceae; Chitinophaga

644736340 99.507 (0.739) Validate 91

GAS86 � Bacteria; Proteobacteria; Gammaproteobacteria; Betaproteobacteriales;
Burkholderiaceae; Paraburkholderia

2695421038 99.95 (2.108) Validate This study

GP187 � Bacteria; Planctomycetes; Planctomycetia; Planctomycetales;
Isosphaeraceae; Singulisphaera

2695420965 99.612 (5.814) Validate This study

Nocardioides
jensenii

Bacteria; Actinobacteria; Actinobacteria; Propionibacteriales;
Nocardioidaceae; Nocardioides

2731957589 98.698 (1.215) Validate 92

aTaxonomy is based on 16S sequence assignment using IDTAXA (93). The explore/validate column denotes whether the organism was selected to identify candidate
genomic markers in an exploratory approach or appeared only as part of the data set used to determine if those markers were predictive. “NA” indicates that the
isolate did not grow on glucose and thus was not used for identifying genomic markers. “�” indicates an isolate from Harvard Forest; “�” indicates that the genome
was sequenced using PacBio for this project. ID, identifier.
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varied with temperature and substrate. Pagel’s lambda differed from zero only at 25°C
and not at 15 or 20°C on glucose, although the confidence intervals were large
(Table 2). On pyruvate, however, CUE correlated with phylogeny and approached the
expected level under conditions of Brownian motion based on Pagel’s lambda for all
temperatures. Blomberg’s K was typically small and less frequently different from zero
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FIG 1 The effect of varying temperature and substrate on the CUE of soil bacteria. (a) Tukey-style (87) box plot of mean CUE for all isolates with at least two
experimental replicates, where each point corresponds to one isolate. (b) CUE for individual experimental replicates for each isolate across temperatures; only
isolates assayed on substrates other than glucose are shown. Linear and parabolic curves were t and compared for each scenario, and curves were assigned
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depicting a significant linear t across the three temperatures are overlaid. Solid line, P � 0.05; dashed line, P � 0.1.
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than would be expected by chance, indicating that variation in CUE cannot be
decisively said to vary more within than between clades in our data set. Reflecting this
generally weak phylogenetic signal, knowing the CUE of all remaining taxa did not help
predict CUE in adjacent tips on the phylogeny except for taxa grown on glucose or
pyruvate at 15°C or for the Q10 between 20 and 25°C for taxa grown on glucose
(Fig. S5). The estimation error for CUE on glucose was not correlated with distance to
the nearest sampled taxon, although it was positively correlated for pyruvate at
15°C (� � 0.85, P � 0.01). The estimation error for Q10 CUE on glucose was weakly
positively correlated with phylogenetic distance (� � 0.37, P � 0.1) but was more
strongly negatively correlated for pyruvate between 15 and 20°C (� � 0.67, P � 0.05).

Drivers of CUE. We annotated the bacterial genomes using IMG (39) and then
tested the a priori hypotheses that CUE would be negatively correlated with rrN, growth
rate, and extracellular enzyme investment but positively correlated with metabolic
complexity. Maximum observed growth rate (0.01 to 0.56 h�1), rrN (1 to 8 copies), and
CUE were found to be frequently positively correlated with one another on glucose
(Table 3) (Fig. 3; see also Fig. S6). CUE was not correlated with extracellular enzyme
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on the estimate of the raw data overlap 1 (i.e., where CUE is insensitive to temperature), depicted here as a horizontal line.
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activity (EEA) or with extracellular gene or transporter gene density (P � 0.2). Likewise,
we did not find a correlation between in silico estimated CUE for extracellular enzyme
production—which we determined using amino acid biosynthesis and polymerization
costs (see Materials and Methods)—and the CUE observed on glucose, except at 15°C
(Table 3). Codon bias is a measure of the degree to which a genome is optimized for
rapid and efficient translation (40); based on the growth rate-yield hypothesis, codon
bias is expected to correlate negatively with CUE. However, the observed relationship
between codon bias and CUE paralleled the nonnegative correlation observed between
CUE and maximum growth rate (Fig. S7). We found evidence for a positive correlation
between CUE and the number of metabolic pathways (32) on glucose (0.002 CUE
metabolic pathway�1; P � 0.001) at 15°C (Table 3) and for a weaker nonsignificant
positive correlation at 25°C (0.001 CUE metabolic pathway�1, P � 0.1). The overall
functional gene composition that an organism had was correlated with CUE on glucose
at both 15 and 25°C, as evidenced by a significant correlation between the nonmetric
multidimensional scaling (NMDS) coordinates of a taxon’s genome size-standardized
KEGG orthology (KO) composition and its CUE (R2 � 0.43, 0.29, P � 0.05; envfit in
vegan).

We also completed an “exploratory” analysis for markers of CUE, where we looked
at all KO categories and maps to see whether they were correlated with CUE for a
subset of isolates grown on glucose, and then validated them based on their consistent
appearance in additional isolates and under alternative cultivation conditions. These

TABLE 2 Phylogenetic signal of CUE and its temperature sensitivity over a range of
temperatures and substrate typesa

Substrate Temp (oC) K (p) � (p) Range (oC) K (p) � (p)

15 0.11 0.4 15–20 0.25 0.33
glucose 20 0.11 0.8 20–25 0.70* 0.98***

25 0.21 0.86** 15–25 0.2 0.52
15 0.1 0.48● 15–20 0.05 0.19

PDB 20 0.83 0.88** 20–25 0.01 0
25 0.11 0.65* 15–25 0.02 0
15 0.66** 0.99** 15–20 0.15 0.99**

pyruvate 20 0.31● 0.98** 20–25 0.22 0.81
25 0.38● 0.99*** 15–25 0.19 0.99**
15 0.17 0.62● 15–20 0.04 0.99**

succinate 20 0.28● 1.00** 20–25 0.11 0.97*
25 0.1 0.89* 15–25 0.03 0

a“Temperature” denotes CUE at that temperature, while “range” denotes how CUE changed over the
temperature range denoted. “K” denotes Blomberg’s K, while � denotes Pagel’s lambda. Values for which
the P value for a test comparing values to zero is greater than 0.05 are in gray, while the asterisks that
follow values in black denote P � 0.05 (*), P � 0.01 (**), or P � 0.001 (***). Bullets (●) indicate P � 0.1. The
95% confidence intervals of K are 0.36 to 2.46, 0.32 to 2.45, 0.26 to 2.49, and 0.19 to 2.49 for a Brownian
process simulated on the glucose, PDB, pyruvate, and succinate trees, respectively. The corresponding
values for lambda are 0.89 to 1, 0.89 to 1, 0.9 to 1, and 0.8 to 1.

TABLE 3 Regression coefficients for a phylogenetic generalized least-squares model fit to
CUE on glucose at a given temperature versus rrN or the maximum growth rate observed
across all assay conditionsa

Temp (°C)
CUE vs
GRmax

CUE vs
rrN

rrN vs
GRmax

CUE vs
log2 rrN

Metabolic
pathway
count

CUE for
EEA
production

15 0.41*** 0.028* 7.23** 0.071** 0.0022*** 2.782*
20 — — 6.18* 0.039** — —
25 0.26* 0.021* 6.18* 0.052** 0.001. —
aSlopes are shown for the cases in which the P value was less than 0.1 (●), 0.05 (*), or 0.01 (**); dashes (—)
indicate that the slope was not statistically significant. Metabolic pathway count data correspond to the
number of MAPLE pathways with 80% completeness. CUE for EEA production corresponds to the theoretical
fraction of C from glucose expected to be retained in the extracellular enzymes produced by the organism
rather than being burned to produce the ATP needed to make the corresponding amino acids de novo and
then polymerize them into the proteins. GRmax, maximum growth rate.
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cultivation conditions included both the growth of bacterial isolates on the remaining
substrates and the growth of soil-derived mixed bacterial communities in microcosms
of artificial soil, where CUE was measured using the 18O-H2O method (41; also L. A.
Domeignoz-Horta, G. Pold, X. L. Liu, S. D. Frey, J. M. Melillo, K. M. DeAngelis, submitted
for publication). No markers proposed by our exploratory analysis were uniformly
validated by these methods (Fig. S8).

Drivers of Q10. The Q10 of CUE tended to be lower for more efficient taxa (Fig. 4).
This led to a homogenization of CUE at higher temperatures, with the standard error of
CUE comparisons between isolates decreasing between 15 and 20°C and 15 to 25°C for
all substrates. The temperature sensitivity of CUE on glucose was negatively correlated
with the number of metabolic pathways at 15 to 20°C (0.007 decrease in Q10 for every
additional pathway, P � 0.01) and at 15 to 25°C (0.002 decrease, P � 0.05) but not at 20
to 25°C. This corresponds to an expected decrease in CUE of 14% between 15 and 20°C
for the isolate with the greatest number of metabolic pathways (Ewingella BS19; n �

200) and an increase of 6% for the bacteria with the fewest (Verrucomicrobium GAS474;
n � 49). Extracellular enzyme-related functions increased the temperature sensitivity of
CUE only for the 15 to 20°C temperature range on glucose (Q10 increases 0.01;
extracellular enzyme Mbp�1, P � 0.01). Q10 of CUE was not consistently correlated with
genomic density of transporters (15 to 20°C, �0.016 transporters Mbp�1; 20 to 25°C,
�0.008 transporters Mbp�1) and did not correlate with maximum growth rate or
log2rrN (see Table S1 in the supplemental material).

Our exploratory analysis found the density of genes such as malate synthase
(K01638) to be negatively correlated with Q10 (Table S2), while the set of genes
positively correlated with the Q10 of CUE contained a number of genes encoding
transporters. Increased densities of genes involved in N-glycan biosynthesis— or de-
creased densities of genes associated with alpha-linolenic acid metabolism—were
associated with more-positive Q10 values for CUE between 15 and 20 or 25°C. As for
CUE at a fixed temperature, no candidate markers of the temperature sensitivity of CUE
were validated by both the microcosms and “other substrates” data sets for either
individual KO’s or whole KEGG pathways.

DISCUSSION

We hypothesized that CUE would be highly variable across soil bacteria and
temperatures, and this was indeed the case. The range of CUE observed for our soil
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FIG 3 Relationships between CUE, growth rate, and rrN for bacteria grown on glucose at 15°C. Full
details can be found in Table 3.
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bacteria was similar to that of fungi isolated from the same research site (E. W. Morrison,
unpublished), as well as to that of bacteria isolated from a wide range of ecosystems
and domestication histories (23). Nonetheless, the upper limit of efficiency reported for
the bacterial taxa that we studied was 10% lower than that for the fungi and almost
30% higher than that for the aforementioned bacteria grown under similar conditions.
Furthermore, the range of Q10 values for the bacteria in the present study included a
pair of stronger, more positive temperature responses (Q10 values of �1) than those
reported for fungi, consistent with a previous study which showed bacterial growth to
be less negatively affected by higher temperatures than fungal growth (42).

The diverse CUE temperature responses that we identified in this study contrast with
the homogeneous response typically assumed in models (3, 43). Although we are not
among the first to observe an increase in CUE with temperature for soil microbial taxa
(4), the magnitude and range of temperature responses seen across taxa here were up
to five times larger than those previously reported for soil communities (4, 8, 44, 45). We
suggest that the mute temperature responses observed for mixed communities rep-
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FIG 4 Change in CUE with temperature compared to the CUE at the starting temperature (i.e., Q10 between 15 and
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genetic linear model and dashed black lines the phylogenetic generalized least-squares t. Numbers on each plot
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resent the result of a statistical averaging effect wherein mixtures of substrates (4) and
microbial taxa (6, 7) with divergent CUE cancel each other out. This is consistent with
the observation that CUE on phenol (which can be used by a more restricted group of
taxa [46, 47]) showed a much stronger response to temperature than CUE on the more
ubiquitously used glucose (6). Consequently, taxon-level differences in CUE tempera-
ture sensitivity may matter for bulk soil organic matter cycling only in cases in which
they are linked to the presence of other “response” traits which narrow the diversity of
the active community. For instance, bacterial responses to drought and nitrogen (N)
addition are more similar than expected in closely related taxa (48).

As a complex physiological trait which integrates the entire metabolic network of a
cell, we hypothesized that CUE and its temperature sensitivity would be more similar
in closely related organisms than expected by chance. This pattern was observed, but
the degree of phylogenetic conservation was insufficient for building a predictive
model of CUE in unsampled tips of the phylogeny. The poor ability to predict CUE
based on phylogeny contrasts with other complex physiological traits such as oxygenic
photosynthesis (34) and with apparent growth-limiting traits such as rrN (23, 49), which
are assumed to be phylogenetically conserved because of low horizontal gene transfer
frequency. While some of the uncertainty in predicted CUE values can be attributed to
undersampling of the phylogenetic tree (50), this is unlikely to be the sole factor
because estimation errors were never strongly positively correlated—and were some-
times negatively correlated—with distance to the nearest sampled taxon on the tree.
Independently of the reason, the pattern of CUE on the tree is inadequately modeled
by Brownian motion using the scale of data available here. We proceeded to explore
whether CUE varies as a function of additional genomic traits.

The high-efficiency and low-efficiency organisms had different overall metabolic
potentials, but few of the specific traits that we had proposed a priori to be correlated
with CUE were actually correlated in the manner hypothesized. Of particular note is rrN,
which has received considerable attention for its apparent role in setting the upper
limit on growth rate (25, 26, 40) and, in turn, in determining the ecological strategy and
bacterial CUE under conditions of high nutrient availability (23). Although we observed
the expected positive correlation between rrN and maximum growth rate or codon
bias, our results diverge from those reported from previous studies (23, 32) in that CUE
was positively correlated with rrN and maximum growth rate under many temperature-
substrate combinations. The negative correlation between growth rate and CUE under
conditions of high resource availability was initially proposed based on the better-
studied and oft-observed growth rate-yield trade-off (23, 24) whereby faster-growing
organisms produce less biomass for a given amount of substrate. This growth rate-yield
trade-off is thought to be the consequence of balancing the speed and accuracy of
translation (23, 26) and has been proposed to be a central component of the
copiotroph-oligotroph niche axis (51). Nonetheless, we are not the first to question (52)
the ubiquity of the growth rate-yield trade-off.

Additional work has shown that bacteria can attain rapid growth under conditions
of both high-efficiency and low-efficiency metabolisms. For example, selection for rapid
growth in Escherichia coli can result in either a high-uptake, low-yield phenotype or a
moderate-uptake, high-yield phenotype (31). Rather, the growth rate-yield trade-off
does not act alone to determine efficiency and instead acts in concert with a second
axis describing the relationship between substrate uptake rate and yield (53). As a
result, the ubiquity of overflow metabolism— oft cited as a cause for the rate yield
trade-off—is uncertain, as not all organisms shift away from the pentose phosphate
pathway and toward glycolysis when grown on glucose (53). Since we found a similar
pattern of CUE increasing with growth rate and rrN even for nonfermentable substrates,
this indicates that overflow metabolism was not a uniform driver of CUE and yield at
high growth rates in our environmental isolates. This is also consistent with other
studies which used aquatic isolates: maximum growth rate and yield were negatively
correlated only for a subset of Proteobacteria in one study (32) and were positively
correlated for Bacillus species in another (52). Mechanistically, it would make sense that
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CUE increases with growth rate if (time-dependent) maintenance respiration out-
stripped (time-independent) growth respiration (13), but neither the literature (54) nor
the values derived from the current data set indicate this to be the case. Furthermore,
maintenance respiration rates would have to be lower in fast-growing taxa than in
slow-growing taxa to explain the higher CUE in fast-growing taxa, which contradicts the
pattern previously observed by Van Bodegom (55). Therefore, the mechanisms under-
lying the positive correlation between growth rate and efficiency in the present isolates
remain unclear and are unlikely to be the same as those proposed for growth rate
versus yield.

Our exploratory analysis searching for genomic markers of efficiency also failed to
provide a substantive explanation for the observed differences in CUE between taxa. In
contrast to other studies (23, 32), we generated data to validate the genomic correlates
of CUE proposed by an initial data exploration. None of the markers proposed on the
basis of their correlation with CUE on glucose were consistently validated by the other
data sets, and those which were validated by one or the other were often found in few
genomes and/or formed isolated steps in metabolism. This lack of validation by
additional data sets may in part be a consequence of that fact that the substrates differ
in the point at which they enter central metabolism, just like the various substrates
found in soils. Glucose may enter any of a number of pathways with different N
requirements, energy yields (21), and anabolic potentials—including through the tri-
carboxylic acid (TCA) cycle where pyruvate and succinate are generated—whereas
pyruvate and succinate are much more limited in the diversity of pathways that they
can directly enter. On the other hand, the presence of interspecific interactions may
explain why glucose-fed isolates and cellobiose-fed microcosms differed in the genes
correlated with CUE, despite the substrates being able to enter the same metabolic
pathways (56). For instance, genes whose presence is advantageous for growth in
isolation may not be beneficial in a mixed community (57, 58) or where substrates are
not in a freely available pool (59, 60). Furthermore, while we are certain that CUE was
measured during the exponential phase for the isolates, such was unlikely to be the
case for the soil communities, which were left without substrate addition for a month
prior to CUE measurements. Finally, it is possible that the metagenomes inferred for the
microcosm communities based on their 16S rRNA gene content do not adequately
represent the true metagenomic content, as even very similar 16S genes can be
associated with different functional compositions (61). Nonetheless, our results indicate
that the taxa which are most efficient on one substrate are unlikely to be the most
efficient on another, such that CUE is more like a dynamic response variable than a fixed
ecological trait. Given that CUE varied substantially as a function of substrate—and that
substrate chemistry can differ substantially across soils (62)—it is possible that the
temperature sensitivity of CUE, rather than its absolute value, is more useful for
comparing the physiologies of various microbial communities that differ in composi-
tion.

The temperature sensitivity of CUE was not consistently correlated with common
soil-associated traits such as extracellular enzyme gene allocation but could be pre-
dicted based on the value of CUE itself. Specifically, the temperature sensitivity of CUE
was negatively correlated with basal CUE under many assay conditions. This could not
be attributed to differences in the growth rates of organisms at the lower temperature,
indicating that increasing temperatures do not preferentially favor slow-growing taxa.
Decreased CUE temperature sensitivity with greater basal CUE does, however, indicate
that the CUE of communities should homogenize at higher temperatures, as inefficient
communities show increases in efficiency and efficient ones show decreases. Nonethe-
less, given the possibility of different substrates becoming available at higher temper-
atures and the substrate-specific divergences in CUE across taxa, the correlation
between CUE and its temperature sensitivity is unlikely to hold for intact microbial
communities. Accordingly, Zheng et al. (4) found only a very weak negative correlation
between CUE and its Q10 values across a range of different soils. Future work integrat-
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ing the diversity of temperature responses to predict the outcome of community
interactions is necessary to advance the field.

Conclusion. We found that fast-growing taxa are likely to grow more efficiently and
that highly efficient taxa tend to decrease in efficiency with temperature more than
those with initially low CUE. Therefore, our results are consistent with the hypothesis
that maintenance respiration is a more pivotal factor in regulating soil bacterial CUE
than previously recognized. Our results also challenge the idea that high ribosomal
operon copy number correlates with reduced growth efficiency. Previously and de novo
hypothesized markers of efficiency were not consistent across assay conditions, rein-
forcing the hypothesis that CUE represents an integrator of bacterial physiology in
response to the environment rather than a fixed descriptor of their niche and that some
bacteria are not intrinsically more efficient than others. Our results also suggest that the
communities capable of effectively retaining soil C at a given time point might not
necessarily be the best equipped to continue to do so in the future, because the taxa
able to grow most efficiently at low temperature tended to release more substrate as
CO2 as the incubation temperature increased. Our report therefore opens the door for
additional work with isolates under the more realistic soil conditions that we ultimately
wish to understand.

MATERIALS AND METHODS
Isolate selection. We used a total of 23 bacterial isolates from our laboratory culture collection and

from public culture collections for our study (Table 1). The 20 isolates from our laboratory collection were
derived from the organic and A-horizon of the Canton series underlying a temperate deciduous forest
stand at the Harvard Forest Long-Term Ecological Research (LTER) site, in Petersham, MA. These bacteria
were isolated under a range of cultivation conditions (63), and freezer stocks were prepared using the
second or third streak of the original soil-derived colony. The isolates used were selected to cover the
global diversity of soil bacteria (64). The genomes were sequenced, and a phylogenetic tree was built
following the methods described in the supplemental material.

CUE measurement. To measure bacterial CUE, isolates were grown in triplicate on up to four
substrate types at a pH of 6; this is the lowest pH at which all isolates were able to grow but was still 2
pH units higher than that of the soil from which most of them had originally been isolated. The substrate
types were potato dextrose broth (PDB) and glucose, pyruvate, and succinate media. We ensured that the
cells were acclimated by transferring exponentially growing cultures by the use of the temperature and
media used for assay conditions at least three times prior to taking CUE measurements. Additional
information on media and assay setup can be found in the supplemental material.

The optical density and respiration rate of cultures were monitored throughout the exponential-
growth phase using a Spectronic-20 spectrophotometer at 600 nm and a Quantek Instruments model
906 CO2 analyzer, respectively. Prior to each read, tubes were subjected to vigorous vortex mixing to
ensure that the solution and headspace CO2 were in equilibrium. At least three distinct experiments
starting with a new freezer stock restreak were completed for each isolate and condition assayed. A
conversion factor of 130 g C optical density (OD)�1 ml�1 was used to calculate microbial biomass carbon
(MBC) throughout the growth curve (BioNumber 109836), as technical challenges encountered in
collecting biomass from cultures meant that MBC was underestimated in the taxa characterized by small
cells. Therefore, we decided to use one nonideal biomass conversion factor rather than 23 of them.

Calculation of CUE was restricted to the exponential-growth phase, which was identified by taking
the natural logarithm of biomass versus time and finding the range of time points which maximized the
slope. Three to ten time points were used per curve for this purpose, depending on the growth rate of
the isolate and the duration of the exponential-growth phase. When the slope of the growth rate or
mass-specific respiration rate did not differ from zero (F test P � 0.05), the data were discarded and the
experiment was repeated. Only those assay conditions for which at least two replicates satisfied these
criteria were included in our analysis. CUE was calculated as CUE � �/(� � R), where � is the intrinsic
rate of increase, calculated as the slope of ln(biomass) against time, and R is the mass-specific respiration
rate during the same time period (Morrison et al., submitted). This is similar to the method used
previously by Keiblinger et al. (65); the use here of multiple CO2 measurements and of the entire
exponential-growth phase is expected to have improved estimate reliability. We used repeated-measures
correlations (66) to look at the effect of substrate quality.

Data analysis. (i) Calculating temperature sensitivity. Although our experimental design was such
that the same starting culture would be incubated in four different substrates under three different
temperatures, successful concurrent cultivation under all 12 conditions was rarely achieved. Therefore, in
the absence of such a blocked design, bootstrapping was used to determine uncertainty in the
temperature sensitivity of CUE. In other words, the temperature sensitivity of CUE was calculated for all
combinations of 15 and 25°C for a given substrate and isolate combination, and the standard error was
calculated from this.

(ii) Genome annotation. Genome annotation was completed using the Joint Genome Institute’s IMG
pipeline (39). Open reading frames (ORFs) potentially encoding extracellular enzymes were identified
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based on the presence of signal peptides using SignalP 4.1 (67) with the default d cutoff value of 0.57.
This subset of ORFs was then examined for enzymes involved in litter and necromass decomposition.
Carbohydrate-active and lignin-degrading enzymes were identified using dbCAN (68) v6, and additional
putative extracellular enzymes were extracted by name from the IMG annotations using “*rotease” or
“*roteinase” or “*eptidase” or “*osphatase” or “*hospholipase” annotation as the keyword string(s). These
extracellular enzyme classes were chosen to retain consistency with functions typically assayed in soils.

Transporters were annotated using TCDB (69) and TransportDB 2.0 (70) and summed for each isolate.
Identification was completed with gBlast2 (71) against the TCDB reference database downloaded on 20
July 2018 and using the TransAAP online tool against TransportDB in August of 2018. The number of
metabolic pathways possessed by an organism as assessed on the basis of annotations with MAPLE (72)
was used as a proxy for metabolic complexity (32). The envfit function in vegan (73) was used to evaluate
whether CUE was correlated with differences in overall KO composition of bacterial genomes, where the
initial ordination of functional gene composition was completed using NMDS of Bray-Curtis distances.

(iii) Protein production costs. We calculated the total extracellular enzyme cost as a function of
amino acid biosynthesis and translation, using the amino acid biosynthesis costs presented previously by
Kaleta et al. for E. coli with glucose as the substrate and assuming 4.2 ATP consumed per peptide bond
formed (74). Assuming that 26 ATP are produced per six glucose C, we calculated the theoretical C
assimilation efficiency for each protein as the ratio of C in the protein to the C in the protein plus CO2

respired in the process of making the ATP required to make the protein. The “per protein CUE” for each
protein was then weighted by its expected relative expression level to get a whole-exoenzyme produc-
tion cost. Relative expression levels were predicted on the basis of codon usage bias as outlined in the
supplemental material.

Mixed bacterial communities. Cells were extracted using soil from the same Harvard Forest LTER
site as the bacterial isolates by the use of 224 mM sodium pyrophosphate (75) and were subsequently
passed through a 0.8-�m-pore-size mixed cellulose ester syringe filter to remove eukaryotic cells. The
filtered cell suspension was then used to inoculate an artificial soil matrix consisting of 70% acid-washed
sand, 20% muffled and acid-washed silt, and 10% calcium chloride-treated bentonite clay, initially
amended with mixed deciduous leaf litter dissolved organic carbon (DOC), 2� VL55 media (75), VL55
minerals, and yeast extract. The communities were kept at 60% water holding capacity at 15 or 25°C for
4 months, with weekly additions of 0.5 mg g soil�1 cellobiose and 0.05 mg g soil�1 ammonium nitrate
solutions as sources of C and N, respectively, for the first 3 months.

We measured CUE using the 18O-water method (41) at the same temperature as that used for the
long-term incubations. The bacterial communities were sequenced at the Environmental Sample Prep-
aration and Sequencing Facility at Argonne National Laboratory following the Earth Microbiome Project
protocol (76). Metagenomes of these communities were inferred using PICRUSt v 1.1.1 (77), with
closed-reference OTUs picked in Qiime v1.9.0 (78) at 99% identity using uclust (79) against Greengenes
v. 13.5 (80). We used the relative abundances of the predicted KEGG ortholog gene categories as
predictors of CUE. The nearest sequenced taxon index (NSTI) values for the genomes used in the
functional assignments averaged 0.02 (range, 0.003 to 0.072).

Identification of genomic markers. We focused on identifying markers of CUE on glucose, as this
is the substrate on which we were able to get the greatest number bacteria to successfully grow.
Genomic markers of efficiency (and temperature sensitivity of efficiency) of glucose utilization were
identified and validated in one of two ways. When we had an a priori hypothesis about the marker based
on the literature, we used the full set of bacteria grown on glucose for our analysis. This was the case for
rrN, codon bias (a proxy for growth rate [40]), extracellular enzyme costs, and number of metabolic
pathways (32). For the other hypotheses, we used a two-part process: (i) a preliminary exploratory
analysis for bacteria grown on glucose to identify candidate markers and (ii) a distinct validation step in
which a “validating” data set of bacteria grown on other substrates and a data set of bacterial
communities grown in artificial soil on cellobiose were interrogated for the same patterns. This explor-
atory analysis focused on the 5,270 KEGG orthologues found in our bacterial genomes.

The process of identification and validation of markers in bacterial isolates was completed using
phylogenetic generalized least squares in caper v1.0.1 (81). caper uses a maximum likelihood method to
infer the branch length transformations of the phylogenetic tree which minimizes phylogenetic corre-
lations of the model residuals, thereby flexibly accounting for different degrees of phylogenetic signal in
the residuals of comparable models. Genes were said to be candidate markers of efficiency at an alpha
of 0.05 for the slope estimate. We used an identical approach to identify markers of efficiency in our first
validating data set, which consisted of genes similarly correlated with CUE in at least two of the three
other substrates. This criterion was selected to balance ensuring the robustness of the markers over
multiple substrates with the fact that different substrates are likely to enter different metabolic pathways.

Our second validation method involved the cellobiose-grown mixed-soil communities, for which we
calculated Spearman correlation coefficients between predicted KO density and CUE. Those genes for
which the approximate t statistic had a P value of less than 0.05 for the Spearman rank correlation were
retained. We considered markers of CUE from the isolates to be validated when they had the same
significant direction of correlation in the isolate exploratory glucose data sets, exploratory plus validating
isolate glucose data sets, and microcosm or other substrate data sets. When the validating data set
confirmed the correlation between a genomic marker and CUE that was proposed by the exploratory
data set, we examined residual plots for bias and normality for models. Model residuals were also
examined to confirm removal of any phylogenetic signal using the phylosig() function in phytools
v.0.6-60 (82). Proposed markers which did not meet these criteria were excluded from further analysis,
which in practice meant that “rare” functions found in just a few genomes were routinely removed.
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Inferring CUE based on phylogeny. The overall phylogenetic signal for CUE was calculated using
the phytools package (82) for both Blomberg’s K (83) and Pagel’s lambda (84). We then used the rescale
function in geiger (85) to scale the terminal branch lengths of the phylogeny according to this lambda
such the trait matched Brownian motion. Ancestral reconstruction of CUE and of its temperature
sensitivity was completed on the rescaled tree using the phyEstimate() function in picante (86), where
one known tip was removed at a time and the CUE of the remaining tips was used to infer that of the
removed tip.

Data availability. All data and code required to reproduce the analysis presented in the manuscript,
as well as the supplementary methods, are available in the Open Science Framework (OSF) (osf.io/ahb2v).
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