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Abstract

Brain networks offers a new insight about connections between function and anatomical

regions of human brain. We present results from brain networks built from functional mag-

netic resonance images during finger tapping paradigm. Pearson voxel-voxel correlation in

time and frequency domains were performed for all subjects. Besides this standard frame-

work we have implemented a new approach consisting in filtering the data with respect to

the fMRI paradigm (finger tapping) in order to obtain a better understanding of the network

involved in the execution of the task. The main topological graph measures have been com-

pared in both cases: voxel-voxel correlation and voxel-paradigm filtering plus voxel-voxel

correlation. With the standard voxel-voxel correlation a clearly free-scale network was

obtained. On the other hand, when we prefiltered the paradigm we obtained two different

kind of networks: 1) free-scale; 2) random-like. To our best knowledge, this behaviour is

reported here for first time for brain networks. We suggest that paradigm signal prefiltering

can provide more infomation about the brain networks.

Introduction

It is known, since the nineteenth century, that the brain constitutes a huge and complicated

structural network [1]. The latest advances in the study of complex systems have motivated

new approaches and interpretations applied to brain structural and functional characterization

[2, 3].

Functional brain networks can be studied with fMRI [4]. One of the first studies where

functional magnetic resonance imaging was used to extract functional networks connecting

correlated human structural images of brain was performed by Eguı́luz et al. [5]. In this work

they reconstructed correlation matrices of BOLD signals from all MRI voxels during different

finger tapping tasks for seven healthy subjects. The resulting functional networks showed

small-world behaviour [6] with large clustering coefficients, from 0.14 to 0.15 for a threshold

ranging from rc = 0.6 up to 0.8, a short path length, and a probability of a functional connec-

tion between any two nodes (degree distribution), scaled as a power law P(k)/ k−γ [7]. Their
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computations showed clearly scale-free degree distributions with a scaling exponent γ close to

2, a value that was identified as independent of the threshold value rc. A similar dependence of

the functional connectivity was found by Salvador et al. [8]. Resting-state functional connectiv-

ity in the human brain was studied by van den Heuvel et al. where both patterns, the small-

world configuration as well as the power law degree distribution with a scaling exponent

around 2, were confirmed [9], regardless of the threshold. In all mentioned works the authors

identified clearly scale-free degree distributions and compared them to random-like distribu-

tions with a marked different behaviour.

Following the approach of Eguı́luz et al., in this work we have studied voxel-voxel correla-

tion matrices of BOLD signals which were extracted from fMRI studies and we have con-

structed and analyzed the corresponding graphs. Besides this standard framework, we have

implemented a new approach consisting in a previous filtering of the data with respect to the

fMRI paradigm in order to obtain a better understanding of the network involved in the exe-

cution of the task. The main topological graph measures have been compared in the two cases:

voxel-voxel correlation and voxel-paradigm filtering plus voxel-voxel correlation. We illustrate

the process in Fig 1.

The pre-filtering is justified since it is aimed at selecting the nodes related to the task in

order to enhance the effect under study. We understand that no meaningful information

related to the task is removed since pre-filtering is based on correlations with the paradigm.

Higher order structural properties may be eliminated by applying pre-filtering, in fact if these

higher order structural properties are not related to the task we understand that they should be

removed.

Materials and methods

MRI protocol

Five volunteers all right-handed, 4 males, 1 female, mean age 38, were recruited at Hospital

Los Madroños in Madrid, Spain. A previous questionnaire, a general medical and neurological

examination were performed for volunteer selection. Those volunteers were taken from a pre-

vious unpublished study (Tractografı́a Funcional de Imagen de Resonancia Magnética) whose

protocol was previously approved from the Local Ethics Committee. As the current individuals

have been selected from the former study, Los Madroños Board of Director waived any new

requirement for the current study. The study was performed using a Siemens-Avanto 1.5 Tesla

imaging system with a 12-element head matrix coil. The finger-tapping test (FTT) is a neuro-

psychological test that examines motor functioning, specifically, motor speed and lateralized

coordination. Subjects, while they were comfortably lying down on the scanner stretcher, were

asked to perform FTT with their index finger by flexing-extending the metacarpo-phalangeal

joint. During the procedure, the subject’s palm was immobile and flat on the board, with fin-

gers extended, and the index finder placed on the counting device. One hand at a time, subjects

tap their index finger on the lever as quickly as possible within a 10 s time interval, in order to

increase the number on the counting device with each tap.

Onset and end of a task were indicated by a brief light signal (� 1 s) generated by light-

emitting diodes. For head fixation, a vacuum head holder was used. Subjects had ear plugs and

were advised to keep their eyes closed during the whole examination. Task execution was con-

trolled by on-line video monitoring.

fMRI Data Processing Gradient-echo EPI acquired during fMRI examinations were

exported to a workstation with Brain Voyager software [10] for fMRI data processing. Prior to

statistical analyses, the time series of the functional images were aligned for each slice to mini-

mize the effects of head motion and linear trends. Data analyses for all studies included spatial
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and temporal Gaussian smoothing, removal of linear trend and nearest-neighbour cluster

analysis. Correlation maps were computed with the stimulation protocol as reference function

reflecting the temporal sequence of stimulation and control condition. On a pixel by pixel

basis, the signal time course was cross-correlated with the reference function. Significant acti-

vation was reported at P< 0.001. We registered the mean increase of the perfusion in each

region of interest (ROI). We used a minimal cluster size of six pixels considering that the sub-

cortical ROI were smaller than the cortical motor areas.

Cubic spline interpolation was used for slice scan time correction. Images from the first

dynamics were used as a reference, and translation and rotation of images in subsequent

dynamics were plotted in all directions to illustrate motion [11]. Trilinear estimation and

interpolation were used for 3D-motion correction. An 8-mm full width at half maximum

Gaussian filter was used for spatial smoothing. Linear trend removal and a high-pass filter

with 3 cycles/points were used for temporal filtering. The T1-weighted 3D images were also

exported to BrainVoyager to create an anatomic image series, and the processed fMRI was cor-

egistered to the anatomic images automatically. The 3D dataset with anatomic images and

fMRI information was then transformed to the Talairach atlas to create a 3D-aligned time

course dataset. A stimulation protocol was then created in BrainVoyager to represent the

block design (with hemodynamic response function -HRF- refinement) used in the fMRI

scans. General linear model analysis was performed to calculate activation maps for the 3D-

aligned time course dataset for each subject [12]. Finger tapping paradigm was design as a

sequence of activation-deactivation cycles starting with an activation state [13]. Blood oxygen-

ation level-dependent single-shot T2� with TR 3000ms, TE 150ms, Slice thickness 8, and

64x64, 20 planes were acquired. Sagittal 3d T1 MPRAGE isotropic 256x256x1mm FOV 25.6

Fig 1. Methodology. (a) standard voxel-voxel correlation leading to a free-scale network. (b) By previous filtering with the paradigm different typologies of networks

are obtained (free-scale or random-like) as a function of the threshold rc.

https://doi.org/10.1371/journal.pone.0238994.g001
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sequence was acquired as an anatomical basis for subsequent fusion with BOLD results. Each

paradigm-cycle had a duration of 15 seconds and the finger tapping task lasted a total of 195

seconds. Thus the temporal signal for each voxel V(xi, t) consisted of 60 points with a sampling

rate for the BOLD signal of 0.3077 Hz.

Graph implementation

Graph theory is the mathematical study of networks. A graph is a mathematical representation

of a network of elements connected to each other. A simple graph is formed by a set of nodes,

or vertices, and a set of edges, or links, connecting pairs of nodes. The total number of nodes is

called the order of the graph, the total number of edges is called the size of the graph. The

nodes represent the elements of the system. In our case they are the voxels of a functional mag-

netic resonance imaging (fMRI) [2]. The links represent the connections between each pair of

voxels. In our case, they mark the existence of a correlation between the time-signals of the

two voxels with value above a given threshold.

This correlation has been measured by the Pearson coefficient according to the expression:

[5]

rðxi; xjÞ ¼
hVðxi; tÞVðxj; tÞi � hVðxi; tÞi � hVðxj; tÞi

sðVðxiÞÞsðVðxjÞÞ
; ð1Þ

where r(xi, xj) is the correlation coefficient between voxels i and j, V(xi, t) is the BOLD signal

of voxel i as a function of time t and h�i represents the average over the time values in the series,

defined as

hVðxi; tÞi ¼
1

N

XN

k¼1

Vðxi; tkÞ; ð2Þ

N being the total number of values in the temporal series. The standard deviation, σ, is given

by:

s2ðVðxiÞÞ ¼ hVðxi; tÞ
2
i � hVðxi; tÞi

2
: ð3Þ

The short time span of the signal implies that no subsampling (such as windowing or analogue

techniques) was relevant to the analysis. Longer signals such as those obtained in Resting State

studies may demand considering the time evolution of the signal [14, 15]. Our work focus on

the influence of the different threshold values on the network not the temporal dynamics as

shown in other approaches [16–19]. Since the coefficient r(xi, xj) is symmetric, we consider

undirected links: in a pair of correlated voxels there is not a source and a destination.

The links between voxels i and j are represented in a matrix with elements r(xi, xj). This is

the adjacency matrix. In our case, when the correlation is above the given threshold, rc, such

that r(xi, xj)> rc, we will assign the value 1, and 0 otherwise. In this way, our effective matrices

will always be considered as binary ones with all the accepted links having the same weight

[20].

Once the network is, thus, created, its main topological graph measures are computed,

namely the degree distribution and its Shannon Entropy S, the clustering coefficient C, the

characteristic path L and the network efficiency E [21, 22].

The characteristic path of a network, L, is the average of the minimun paths lenghts between

all pairs of nodes in the graph. These are the number of links to be traveled on the shortest

route from one node to the other. Although relevant, the value of L can be biased by a small

number of nodes very remote or even disconnected, since the logical topological distance
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between disconnected nodes is infinite. A more reliable measure is the network efficiency, E,

computed from the inverses of the minimum path lengths between pairs of nodes. This avoids

the excessive influence of disconnected nodes, as their efficiency has null value [2]. For node k,

we define its characteristic length as:

Lk ¼
1

n � 1

Xn

i¼1

dðk; iÞ; ð4Þ

where n is the number of nodes in the graph and d(k, i) is the length of the shortest path con-

necting nodes k and i. Using Lk we can define the (global) characteristic path of the graph as:

L ¼
1

n

Xn

k¼1

Lk: ð5Þ

Equivalently we can define the Efficiency of node k as

Ek ¼
1

n � 1

Xn

i¼1;i6¼k

1

dðk; iÞ
; ð6Þ

Using Ek we define the (global) efficiency E of the graph as:

E ¼
1

n

Xn

k¼1

Ek: ð7Þ

The topological proximity between the nodes has a positive effect on their interaction in

many networks. There are several graph measures that evaluate the organization of the net-

work in logical topological neighbourhoods, known as clusters. One of these parameters is the

clustering coefficient, C, that measures the density of connections between the neighbours of a

node. The graph clustering coefficient is computed as the average of the clustering coefficients

for each node in the graph. We define the clustering coefficient for node k as:

Ck ¼
2GðkÞ

nkðnk � 1Þ
; ð8Þ

where Γ(k) is the number of edges between the neighbours of node k (thus, the number of tri-

angles that have node k at one of its vertices) and nk is the number of nodes that are neighbours

of node k. The clustering coefficient of a graph with n nodes can be defined now as:

C ¼
1

n

Xn

k¼1

Ck: ð9Þ

A significative description of a graph can be obtained considering the degree distribution.

As mentioned above, in the case of scale-free networks the degree distribution follows a power

law P(k)/ k−γ, where k represents here the degree. A simple way to illustrate this is to repre-

sent P(k) as a function of k in a double-logarithmic scale since it corresponds, then, to a linear

dependence with (−γ) as linear coefficient:

PðkÞ ¼ ck� g , log ðPðkÞÞ ¼ log ðcÞ � g log ðkÞ: ð10Þ

A measure associated to the uncertainty of a probability distribution is the Shannon

entropy, S [23]. It measures the uncertainty in the degree of a node picked randomly. A distri-

bution with maximun Shannon entropy is a uniform distribution, in which all events occur

with the same probability. A distribution with minimal Shannon’s entropy is a Dirac delta, in

PLOS ONE Prefiltering based on experimental paradigm for analysis of fMRI complex brain networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0238994 October 14, 2020 5 / 13

https://doi.org/10.1371/journal.pone.0238994


which the uncertainty is zero because the result of the event is always the same. We compute

the Shannon’s entropy of the degree distribution with the following expression:

S ¼ �
Xn

k¼1

PðkÞ log ðPðkÞÞ; ð11Þ

where P(k) is the number of occurrences of the degree k. We may view P(k) as a probability

distribution given by the number of times that a given degree appears in the graph if we divide

by the total number of nodes.

Due to the huge size of the order of the resulting graphs (� 2 � 105) and of their size (� 4 �

109) a new C library for graph creation and computation has been built. This library supports

different types of data structures (adjacency matrix, adjacency list, hash table and double

linked list) for graph manipulation, selecting the optimal type of data for the measure to be

computed. The library (C source code) has been designed having as main objective to obtain a

fast computing time with a low memory consumption [24]. The more demanding computa-

tions were carried out on a workstation with 3.00GHz Intel Xeon E5-2687W v4 processor and

512-GB RAM.

Voxel-paradigm filtering

To validate the voxel-paradigm filtering as a tool with a possible clinical character, our proce-

dure was compared to standard software, namely Brain Voyager and FSL [25]. Parametric

maps were generated with selected voxels with a correlation with HRF compensated paradigm

p< 0.012 for all the subjects with Brain Voyager software. Activation regions were located on

sagittal, coronal and axial planes for healthy volunteers under a right-handed finger tapping

fMRI study. Pearson correlation values between the temporal BOLD signal from the 81920

voxels obtained from the scanner divided in 20 planes of 64 × 64 cells and the HRF compen-

sated paradigm function were performed with threshold rc = 0.7 for all the subjects. Similar

results were obtained when correlating BOLD-voxel signal with paradigm and from Brain

Voyager postprocess.

Results and discussion

In this work, the functional brain networks are characterized through the properties of the cor-

responding graphs, generated for different threshold values. Brain networks are built from

functional magnetic resonance images under finger tapping paradigm taken at Hospital Los

Madroños, Madrid, Spain. Following the results of Eguiluz et al. [5] a Pearson correlation

voxel-voxel in time domain was performed using Eq 1 for all subjects. As mentioned above,

two voxels were defined as functionally connected if their temporal correlation exceeds the

threshold value rc. Fig 2 shows log-log plot of nine degree distributions for subject 1 as a func-

tion of the threshold value rc from 0.5 up to 0.9. In all plots, the horizontal axis represents the

degree k and the vertical one axis the recounts P(k). Similar results where obtained for the rest

of the subjects.

Log-log degree distributions for all subjects, similar to the ones in Fig 2, were fitted showing

a linear behaviour. Fig 3(a) shows averaged slopes γ as a function of the threshold rc. The main

topological graph measures were computed, mainly, the clustering coefficient C, the Shannon

entropy S, the characteristic path L and the network efficiency E for all the subjects. Fig 3(b)

shows the clustering coefficient C for subject 1 where rest of subjects showed similar clustering

coefficient behaviour as a function of the threshold. Average values of E and S for all subjects

as a function of the threshold rc from 0.50 up to 0.90 are shown in Fig 3(c) and 3(d). The valur

of L increases with the threshold. Contrarily to E, no relevant information seems to be
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obtained from L as a function of the threshold. We understand this fact is due to the presence

of more disconnected nodes as rc increases.

As a new procedure, in order to enhance the contribution of voxels whose response might

be more directly involved in the execution of the task required by the paradigm, we performed

a filtering of the data taking into account the correlation of their BOLD time-signal with the

one of the paradigm, convoluted with the standard HRF: only voxels with time-signal corre-

lated to that of the paradigm with a correlation coefficient above rparadigm = 0.5 were selected.

Then, we repeated the graph construction by Pearson voxel-voxel correlations given by Eq 1.

In Fig 4 we show, for subject 1 and right-handed finger tapping paradigm, eight distributions

in a log-log plot as a function of the threshold value rc, from 0.5 up to 0.8. As before, the verti-

cal axis represents the count of number of voxels, P(k), as a function of the degree k of connec-

tivity in the horizontal axis. Similar plots were obtained for the rest of the subjects.

As in the previous case, once the network is created after applying the paradigm-voxel fil-

tering and the subsequent voxel-voxel correlation, the main topological graph measures were

computed: C, S, L and E for all subjects. Fig 5(a) shows the clustering coefficient C for the same

Fig 2. Log-log plot of nine degree distributions extracted from brain networks obtained for voxel-voxel correlation under finger tapping paradigm for subject 1 as

a function of threshold value rc from 0.5 up to 0.9. Horizontal axis represents the degree and vertical axis counts.

https://doi.org/10.1371/journal.pone.0238994.g002
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subject (subject 1) than Fig 4(a) for comparison where rest of subjects shows similar clustering

coefficient behaviour as a function of the threshold. Average values of E and S for all subjects

as a function of the threshold rc from 0.50 up to 0.85 are shown in Figs 5(b) and 3(c). Log-log

degree distributions could not be fitted for low value thresholds (from rc = 0.50 up to 0.80)

due to the non-linear behaviour of the log-log degree distribution plot. For all the subjects

the averaged value of γ could be calculated for the highest value of rc = 0.85 with a value

γ = −0.83 ± 0.13.

Voxel correlation in frequency domain

To avoid artifacts and any influence due to time shifting when correlating temporal voxel-

voxel signals, the study was repeated in the frequency domain. Using the Fourier transform

(FT) with real and imaginary components, as well as the power spectrum, all relevant measures

(a) (b)

(c) (d)

Fig 3. Average slope γ of the fittings of Fig 2 (a), clustering coefficient C for subject 1 (b) and averaged values of efficiency E (c) and Shannon entropy S (d) for all

the subjects as a function of the threshold rc.

https://doi.org/10.1371/journal.pone.0238994.g003
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were computed for all the subjects. Namely, the degree distribution fitting parameter γ, the

clustering coefficient C, the Shannon entropy S, the characteristic path L and the network effi-

ciency E. The results obtained were similar to those in the time domain.

Graph parameters comparison

In a similar manner than Eguı́luz et al., our present work include voxel-voxel correlation

matrices of BOLD signals which were constructed from fMRI studies under right-handed fin-

ger tapping tasks for all subjects. As shown is Fig 2, a free-scale network was identified, where

we considered a range of threshold values up to rc = 0.90. However, the exponent of the degree

distribution shows a linear dependence with threshold ranging from γ = −0.74 to γ = −1.79 as

shown in averaged γ values in Fig 3(a) and 3(b) shows the dependence of the clustering coeffi-

cient with the threshold for subject 1. Similar results are obtained for the rest of the subjects.

The average Efficiency E shows a minimum for an intermediate value of rc. As to the average

Shanon entropy S, it shows a linear decrease with rc in accordance to the degree distribution

showing less dispersion as the threshold increases.

Fig 4. Log-log plot of eight degree distributions extracted from brain networks obtained with a previous filtering to the data correlating voxel signal with HRF

compensated paradigm and a rc = 0.50 threshold for subject 1. Subsequent voxel-voxel correlation was calculated for threshold values rc from 0.5 up to 0.85.

Horizontal axis represents the degree and vertical axis and horizontal axis counts.

https://doi.org/10.1371/journal.pone.0238994.g004
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When the graphs are constructed with a prior filtering by correlation with the task para-

digm the linear dependence of the distribution is lost for lower values of rc. As the value of the

threshold increases the linear dependence seems to be recovered as shown in Fig 4 for the

same subject 1 shown in Fig 2. For lower values of the threshold the distribution is similar to

that of a random network with the average of the distribution located at the mean degree

value. This results is consistent for all the subjects. The change of form in the distributions

seems to appears close to the value of the threshold where E has a minimum.

All the network characterization parameters namely C, E and S behave in a similar manner

as in the non-filtered case as can be oberved in Fig 5(a), 5(b) and 5(c). The log-log linear fitting

of the degree distributions could only be achieve for those obtained with the highest values of

the threshold with an average value of γ = −0.83 ± 0.13 for rc = 0.85.

Fig 5. Clustering coefficient C for subject 1 (a) and averaged values of Efficiency E (b) and Shannon entropy S (c) for all the subjects as a function of the threshold

rc.

https://doi.org/10.1371/journal.pone.0238994.g005
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Conclusion

Our findings show marked dependence of γ with the threshold, ranging from γ = −0.74 to γ =

−1.79. As far as we know this behaviour has not been described before. Our results also suggest

that for higher thresholds the free-scale behaviour of the graph is not related to the executed

paradigm.

On the other hand the distributions of the graph at lower threshold, after eliminating the

effects of paradigm execution, have random-like behaviour. This is the first study describing

differences after filtering by paradigm execution. We suggest that paradigm signal prefiltering

can provide more infomation about the brain networks when a task is involved. This particular

behaviour in brain networks associated to volunteer-task studies (FTT-fMRI) shows new fea-

tures not published before.

Further studies are in progress checking the possible applications of functional brain net-

works to characterize subjects with pathology since we believe that more information can be

extracted from the functional brain networks where “there is plenty of room at the bottom”.
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