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A B S T R A C T

Background: The goal of this bioinformatics research is to get a comprehensive understanding of 
the driver genes and their function in the development, progression, and treatment of cervical 
cancer. This study constitutes a pioneering attempt, adding to our knowledge of genetic diversity 
and its ramifications.
Material and methods: In this project, we use bioinformatics and systems biology methods to 
identify candidate transcription factors and the genes they regulate in order to identify micro-
RNAs and LncRNAs that regulate these transcription factors and lead to the discovery of new 
medicines for the treatment of cervical cancer. From the differentially expressed genes available 
via GEO’s GSE63514 accession, we use driver genes to choose these candidates. We then used the 
WGCNA tool in R to rebuild the co-expression network and its modules. The hub genes of each 
module were determined using CytoHubba, a Cystoscope plugin. The biomarker potential of hub 
genes was analyzed using the UCSC Xena browser and the GraphPad prism program. The TRRUST 
database is used to locate the TFs that regulate the expression of these genes. In order to learn 
how drugs, MicroRNAs, and LncRNAs interact with transcription factors, we consulted the Drug 
Target Information Database (DGIDB), the miRWalk database, and the LncHub database. Finally, 
the online database Enrichr is utilized to analyze the enrichment of Gene Ontology and KEGG 
pathways.
Results: By combining the mRNA expression levels of 2041 driver genes from 14 early-stage 
Cervical cancer and 24 control samples, a co-expression network was built. The cluster analysis 
shows that the collection of shared genes may be broken down into seven distinct groups, or 
"modules." According to the average linkage hierarchical clustering and Summary smaller than 2, 
we found five modules (represented by the colors blue, brown, red, green, and grey) in our 
research. Then, we identify 5 high-degree genes from these modules that may serve as diagnostic 
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biomarkers (ZBBX, PLCH1, TTC7B, DNAH7, and ZMYND10). In addition, we identify four tran-
scription factors (SRF, RELA, NFKB1, and SP1) that regulate the expression of genes in the co- 
expression module. Drugs, microRNAs, and long noncoding RNAs are then shown to cooperate 
with transcription factors. At last, the KEGG database’s pathways were mined for information on 
how the co-expression module fits within them. More clinical trials are required for more trust-
worthy outcomes, and we collected this data using bioinformatics methods.
Conclusion: The major goal of this research was to identify diagnostic and therapeutic targets for 
cervical cancer by learning more about the involvement of driver genes in cancer’s earliest stages.

1. Introduction

Cervical cancer is the fourth most frequent disease among women, with an estimated 604,000 cases and 342,000 deaths by 2020 
[1]. Persistent infection with the human papillomaviruses (HPV) is linked to about 100 % of cervical malignancies [2]. The 
non-enveloped single-stranded DNA genome of human papillomaviruses, a member of the papillomaviridae family, is categorized into 
high-risk, likely high-risk, and low-risk types [3]. HPVs − 16 and − 18 are responsible for over 70 % of cervical malignancies among 
high-risk types [4,5]. Indeed, infection of mucosal squamous epithelial cells with one of the high-risk types of papillomaviruses results 
in precancerous lesions and cervical cancer [6,7]. The HPV virus genome has eight ORFs that encode early genes such as E1, E2, E4, E5, 
E6, and E7, and late genes such as L1 and L2 [8]. Oncoproteins E5, E6, and E7 are the early genes that cause persistent infection and 
malignancy in infected cervical cells [9,10]. For example, oncoprotein E7 attaches to the retinoblastoma (Rb) protein and destroys it, 
activating the transcription factor E2F1, interrupting the cell cycle, and causing unrestrained cell proliferation [1]. The p53 tumor 
suppressor protein controls these cell cycle abnormalities, ubiquitinated and degraded by the oncoprotein E6 by creating complexes 
with E6AP (E6-related protein) [11,12]. As a result, infected cervical cells become cancerous. Cancer cells move throughout the body 
through the circulation or lymphatic system, resulting in secondary tumors in other organs [1]. In this respect, the identification of 
cervical cancer mechanisms in treatment strategies for primary prevention, such as HPV vaccinations, and secondary prevention, such 
as screening and diagnosis of precancerous lesions, is critical [13]. Unfortunately, cervical cancer is often identified in advanced stages 
in developing countries, leading to inadequate screening and immunization programs and poor therapeutic efficacy. Therefore, 
identifying relevant treatment strategies is essential for early diagnosis, prognosis, and therapy prediction [14]. Unregulated tran-
scription factors (TFs) play a crucial role in dysfunction tumor suppressors and cancer genes in malignancies such as cervical cancer 
[15]. Indeed, TFs bind to DNA promoter or gene enhancer regions as significant regulators of gene expression. As a result, following 
TFs’ mutations and dysfunction, abnormal expression of genes, such as inhibition of expression of genes associated with differentiation 
and cell death, is induced [16,17]. Moreover, TFs, the primary regulators in embryonic development and early morphogenesis con-
taining homeoboxes, are impaired in cervical cancer malignancy [15]. In this regard, transcription factors may be considered potential 
therapeutic targets.

On the other hand, genomic alternations are involved in the onset and progression of cervical cancer. Disorders such as copy 
number alterations (CNAs) [18], DNA methylation [19], and dysfunctional microRNA (miRNA) have been shown to occur during 
cervical cancer [20]. In addition, genetic and epigenetic mutations lead to increased malignancy and therapeutic resistance. As a 
result, tumor cells can maintain the ability to proliferate and metastasize to other tissues and adjacent organs [21]. These mutations 
occur in a set of genes called cancer driver genes, leading to disruption and impacting the hemostatic growth of crucial cell functions. 
Cancer driver genes can be divided into tumor suppressor genes (TSGs) or oncogenes (OGs) based on their role in disease formation. 
Unharmed TSGs inhibit the onset or progression of malignancy; in contrast, OGs cause malignancies due to mutations and genomic 
changes [22]. Significant advances have been made in surgery, chemotherapy, and radiotherapy; however, molecular biomarkers such 
as miRNAs have been considered for potential therapeutic purposes [23]. MicroRNAs, as small non-coding RNAs, regulate 
post-transcriptional gene expression. Abnormal expression of miRNAs has been reported to be directly related to cervical cancer 
progression, metastasis, and unfavorable treatment outcomes [14]. These small molecules, with a length of 18–22 nucleotides, can 
control the expression of various oncogenes or tumor suppressor genes. In addition, miRNAs can regulate 60 % of the genes encoding 
proteins in the human genome; in this way, they are known as the central modulators of the human genome [24,25]. The role of 
miRNAs has been studied in many cancers such as ovarian cancer, lung cancer, breast cancer, and cervical cancer [14]. In cervical 
cancer tissues and cell lines, aberrant expression of miRNA causes genetic alteration such as deletion, amplification, point mutations, 
and epigenetic changes such as histone changes and irregular DNA methylation [26]. However, to plan effective treatment and 
intervention and discover potential biomarkers, further studies on the mechanisms involved in cervical cancer and recurrence of 
malignancy are needed [21]. Due to the rapid growth of high throughput technologies such as microarray and RNA-seq, new insights 
into gene expression profiles have been proposed. As a comprehensive method, systems biology can be a new approach to identifying 
biomarkers and finding genes and cellular pathways involved in diseases and malignancies [27]. As a result, reconstructing a 
co-expression network from a complete transcriptome profile can identify the essential transcripts involved and their network in-
teractions. The weighted gene co-expression network analysis (WGCNA) algorithm is the most appropriate method of inferring the 
expression gene network to identify essential genes associated with a unique character involved in malignancy and disease [28]. Hub 
genes, the most corresponding genes in a module, are highly functional and can play a potential role in many diseases and biomarkers 
for therapeutic purposes [29].

Bioinformatics and systems biology approaches are used in this project to determine prospective transcription factors and the genes 
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they regulate to discover new medicines, MicroRNAs and LncRNAs that govern these transcription factors concerning cervical cancer. 
For this purpose, we use driver genes to choose these genes from the differentially expressed genes shipped from GEO with accession 
number GSE63514. Next, we reconstructed the co-expression network and modules using the WGCNA package in R. CytoHubba, a 
plugin for Cytoscape, was used to identify the hub genes of each module. TRRUST database is used to identify the transcription factors 
(TFs) that target these genes. UCSC Xena browser and GraphPad prism software were used to evaluate the biomarker capability of hub 
genes. The DGIDB, miRWalk and LncHub online databases were used to determine the relationship between medicines, MicroRNAs 
and LncRNAs with transcription factors, finally Enrichr, the online database, was used to examine the enrichment of Gene Ontology 
and KEGG pathways (Fig. 1).

2. Materials and methods

2.1. Dataset and pre-processing

A search of the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/) for the keyword "early-stage 
cervical cancer" and "cervical cancer" yielded datasets including samples from different pathological stages as well as normal controls. 
Finally, the dataset GSE63514 was found to meet our requirements and downloaded. It was GSE63514 [30] that assembled microarray 
profiles, including gene expression profiles of healthy controls and tumors from patients with cervical cancer. GEO2R was used to 
evaluate and normalize expression data from each of these samples. The driver gene lists related to cervical cancer were exported from 
the DriverDBv3 dataset, containing information on driver genes [31]. The establishment of a co-expression network relied on the 

Fig. 1. The flowchart shows the overall procedure of the proposed method. At first, the transcriptome profile for healthy (control) and early-stage 
cervical cancer samples were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) with the accession number GSE63514 then 
the differentially expressed genes (DEGs) were exported with the aid of GEO2R tool (A, B and C). From http://driverdb.tms.cmu.edu.tw, we have 
extracted a list of driver genes known to be involved in cervical cancer (D). The WGCNA package in R was used to rebuild the networks of genes that 
interact with one another and Essential gene modules were generated from this network (E and F). The transcription factors (TFs) that regulate the 
expression of these genes were found using the TRRUST database. The biomarker potential of hub genes was analyzed using the UCSC Xena browser 
and the GraphPad prism program (G). Drug-MicroRNA-LncRNA-Transcription Factor Associations Determined Using Online Databases DGIDB, 
miRWalk, and LncHub (H). Consequently, the mRNA-drug network was rebuilt using the DGIDB database (I). Enrichr, a web-based database, was 
then used to investigate the enrichment of Gene Ontology and KEGG pathways (J).

A.H. Yari et al.                                                                                                                                                                                                         Heliyon 10 (2024) e40179 

3 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://driverdb.tms.cmu.edu.tw


selection of driver genes. We utilized DriverDBv3’s (http://driverdb.tms.cmu.edu.tw/) gene symbols to select driver genes from GEO’s 
differentially expressed genes after exporting a list of DriverDBv3’s driver genes. It is possible to preserve and share high-performance 
functional genomic data contributed by the scientific community on the Gene Expression Omnibus (GEO), a global resource that is 
freely accessible [32]. DriverDBv3 is a cancer omics database that incorporates somatic mutation, RNA expression, miRNA expression, 
methylation, copy number variation, and clinical data using annotation bases and well-established bioinformatics techniques. To 
locate specific driver genes and mutations, DriverDB uses openly accessible bioinformatics techniques, which were previously featured 
in articles from 2014 to 2016. In this updated version of DriverDB, they aim to display cancer omics’ cutting-edge data understandably 
[33].

2.2. Weighted gene co-expression network analysis (WGCNA)

An algorithm called WGCNA was employed to determine gene expression levels. Using the flashClust tool in the R environment, 
cluster analysis was utilized to discover data with outliers [34]. After no further grouping of the outlier data, Descriptive and infer-
ential statistics between all differentially expressed genes were calculated. β (soft thresholding power) parameter based on the net-
work’s size was devised to rebuild the network for strongly connected genes and eliminate weakly linked ones. In other words, 
scale-free topology [35]. A topological overlap matrix (TOM) and dissimilarity measure were used to identify the modules. Hierar-
chical clustering was used to create gene dendrograms, and the dynamic tree-cut approach was used to identify modules of 
co-expressed genes as branches of the gene dendrogram [36]. DeepSplit was set to 3, and the minimum module size was 50. Combining 
modules with comparable gene expression patterns is possible because of their proximity. As the first and most crucial element in each 
module, the module eigengene was created to represent a gene expression profile and serve as a summary for each module. These were 
then divided into subgroups depending on how closely they were linked. Dissimilarity was set at 0.14 between the modules and the 
aggregated, highly expressed modules. The module-trait relationship was utilized to quantify the links between the identified modules 
and each early-stage cervical cancer subtype (MTR) [37].

2.3. Module preservation

"Module Preservation" was used to find modules shared across the two datasets. In addition, the Z-score was summarized using this 
method. The ZSummary score is what we used to evaluate module preservation in this investigation. No conservation, poor to moderate 
preservation, or important preservation are considered for modules with Zsummary values less than 2, 2–10, or higher, respectively [38]. 
Modules are having a "Zsummary" value less than 2 were the ones we selected.

2.4. Identifying hub genes of module

The Maximal Clique Centrality (MCC) algorithm was the most efficient way for locating hub nodes in co-expression network 
modules [39]. CytoHubba [40], a plugin in Cytoscape [41], was used to compute the MCC of each node The genes with the top five 
MCC scores were deemed hub genes in this research. Hub genes are characterized as genes having a strong link between potential 
modules. Connectivity that is in the top 10 percent is deemed to be high. For instance, if the size of the module was 1000, the top 100 
genes would be considered hub genes.

2.5. Identifying transcription factors (TFs)

Library of search tools for obtaining Transcription Factors (TRRUST (https://www.grnpedia.org/trrust/)) was utilized to establish 
the TFs and the genes they regulated the TFs-gene interactions were studied using Trust database. We may learn more about how TFs 
affect the module genes with the help of this investigation. In the current bioinformatic study, we predicted the TFs for the module 
genes that had been shown to be involved. The TFs-genes regulatory findings were produced and we found high degree TFs in the 
network. TRRUST (version 2) is a manually curated database of human and mouse transcriptional regulatory networks [42].

2.6. TCGA validation, biomarker capability of hub genes

RNAseq gene expression data were obtained and interpreted using the UCSC Xena Functional Genomics Explorer. Using the TCGA, 
a receiver operating characteristic (ROC) curve analysis was also conducted [43] to determine the potential of the hub genes 
expression pattern as a diagnostic biomarker for early-stage cervical cancer. Then, patient and control values were calculated based on 
the expression of these genes in tumor and normal samples obtained from TCGA-CESC. The area under the curve (AUC) was then 
determined using GraphPad Prism8 software to analyze the ROC curve. The UCSC Xena Functional Genomics Browser is an 
open-source, web-based program for analyzing and visualizing public data hubs. In addition, Xena provides the secure analysis and 
presentation of your functional genomics data collection using publicly accessible and shareable genomic/phenotypic data sets [44].

2.7. Data enrichment

The modules’ genes were chosen for gene ontology (GO) and pathway enrichment analysis. Enrichr (https://maayanlab.cloud/ 
Enrichr/), the web-based program, was used for pathway enrichment analysis to establish which biological pathways are 
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influenced by each module’s genes. Then, using the GO operation, we gathered information on biological processes (BP), cellular 
components (CC), and molecular activities (MF).

Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further 
biological discoveries [45].

2.8. Drug, MicroRNA and LncRNA-TF network

After identifying the most critical TFs, we constructed Drug, MicroRNA and LncRNA-TF network. For this purpose, the DGIdb 
(https://maayanlab.cloud/Enrichr/), miRWalk (http://mirwalk.umm.uni-heidelberg.de/) and lncHUB (https://maayanlab.cloud/ 
lnchub/) databases were used respectively. As a potential treatment for cervical cancer, the results may suggest MicroRNAs and 
LncRNAs as options for potential drugs. Using the Drug Gene Interaction database, putative new pharmaceuticals were suggested 
(DGIdb). This database gathers drug-gene interaction information from six separate sources (My Cancer Genome 39, TALC 40, TEND 
41, PharmGKB 42, TTD43, and DrugBank 44) [46]. miRWalk is an open-source software giving a simple interface that provides 
predicted and confirmed miRNA-binding sites of known genes of human, mouse, rat, dog and cow [47]. lncHUB is online tool for 
Gene-lncRNA correlation from the 11,284 TCGA samples [48].

2.9. Drug and module genes network

The DGIDB database was used to generate a drug-gene network for the module’s retrieved genes, and the cytoscape program was 
used to view the network. Finally, the high degree drugs were introduced.

2.10. Statistical analysis

Statistical techniques were used in order to ensure the resilience of the results. The gene expression levels of cervical cancer samples 
and normal controls were compared using the student’s t-test, with a significance threshold of p < 0.05. Utilizing GraphPad Prism 
software, a Receiver Operating Characteristic (ROC) curve analysis was performed to assess the diagnostic capability of the discovered 
hub genes by computing the area under the curve (AUC) for each gene. The False Discovery Rate (FDR) approach was used to apply 
numerous testing adjustments once selection criteria were defined. Prior to the t-test, normality and homogeneity of variance were 
evaluated; non-parametric alternatives were taken into account when assumptions were broken. R (version 4.2.3) and GraphPad Prism 
(version 8) were used for all analyses.

3. Results

3.1. Dataset and preprocessing

To discover genes associated with various stages of cervical cancer, we analyzed the GSE63514 microarray data set. The char-
acteristics of this dataset are detailed in Table 1. This dataset consists of various groups but we select twenty-four Normal samples and 
fourteen early stage cervical cancer samples groups to further investigations. After removing nameless genes and duplicate genes we 
identified 22186 genes that expression levels were significantly different (Supplementary file 1). The genes related with cervical cancer 
are shown in supplementary file 2. There are 2041 driver genes related with cervical cancer, and we choose the driver genes from the 
Differentially Expressed genes.

3.2. Weighted gene co-expression network analysis

A co-expression network was constructed using the mRNA expression levels of 2041 driver genes in 14 early-stage cervical cancer 
samples and 24 healthy controls. Using WGCNA with a screen-out power of 1–20 and a scale-independent topology index (R2) of 10 as 
the ideal value, we were able to increase the network’s average connectedness and reach an R2 of 0.8550. Fig. 2 uses R2, the mean 

Table 1 
Specifications of the GSE63514 dataset.

Groups
Source name Number of 

samples
Expression Array:

Normal samples (Healthy 
control samples)

Normal cervical epithelium 24 samples GPL570: [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array

Cancer Cervical squamous epithelial cancer 28 samples
CIN1 lesions Cervical intraepithelial neoplasm, low 

grade lesion
14 samples

CIN2 lesions Cervical intraepithelial neoplasm, moderate 
grade lesion

22 samples

CIN3 lesions Cervical intraepithelial neoplasm, high 
grade lesion

40 samples
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connection, and a range of soft threshold values to illustrate this scale dependency (Fig. 2). After that, an adjacency matrix of 
expression data was generated. That’s why we put it to use in constructing our topological overlap matrix (TOM).

3.3. Module preservation

To check whether the modules were shared across the two groups, we next created two gene dendrograms, where the modules were 
shown in distinct colors (Fig. 3). Contiguous gene sets have been organized into 5 different modules. Next, we built a comprehensive 
clustering tree with the help of the WGCNA software tool. For example, in Fig. 2A, where each line represents a different gene, clusters 
of genes with similar expression patterns are shown by lines of the same color. All the genes that are grayed out cannot be mixed. You 
could see seven different modules. Our analysis of the data using average linkage hierarchical clustering (Fig. 3a) revealed five 
modules represented by the hues blue, brown, green, grey, and red. The number of genes in each module is shown in Table 2. The grey 
module contains genes that do not fit into the other categories. Based on the link between the components, a cluster tree diagram 
(Fig. 3b) was generated. Additionally, the module Preservation function supplied a Z-score summary for every module. We found one 
module containing Zsummery<2. This module is colored red. The very well-preserved modules were collected for further examination 
(Fig. 4).

3.4. Identifying hub genes of red module and biomarkers

CytoHubba, a plugin in Cytoscape, was used to calculate the MCC of each node. This study considered the genes with the top 5 MCC 
values as hub genes of module. With the help of this plugin the hub genes of red module were explored (Fig. 5).

3.5. Identifying transcription factors (TFs)

The TFs-gene interactions were studied using TRRUST database. We may learn more about how TFs affect the module genes with 
the help of this investigation. In the current bioinformatic study, we predicted the TFs for the module genes that had been shown to be 
involved. The TFs-genes regulatory findings were produced and we found high degree TFs in the network (Table 3 and Fig. 6).

3.6. TCGA validation, biomarker capability and overall survival of hub genes

Additionally, the TCGA database was used to validate the results of the GEO datasets and co-expression network. The TCGA dataset 
consists of 306 cervical cancer samples and 21 normal samples, all screened via RNA sequencing (RNA-seq). This comprehensive 
dataset provides a robust foundation for our analysis, as RNA-seq allows for a detailed examination of gene expression profiles at a high 
resolution. The expression of red cluster genes with a high degree of expression was examined in cervical cancer and normal tissues. 
TCGA results demonstrate that compared to normal specimens, these genes are significantly dysregulated in cervical cancer samples 
(Supplementary file3). In addition, as shown in Supplementary file3, TTC7B and DNAH7 expressions have the ability to act as 
diagnostic markers for cervical cancer and normal samples, as measured by their AUC. Table 4 displays the p-value, AUC, and 

Fig. 2. A: R2 demonstrates how the power value affects the scale independence of co-expression of the modules. B: The average co-expression 
network connection for different amounts of soft-thresholding power. To determine the significance of the relationships between genes, WGCNA 
uses weighted gene correlation network analysis (WGCNA), which involves calculating initial gene correlations and then applying a power function 
to them. After that, modules are created to organize genes with comparable expression patterns. The network with the fewest nodes and maximum 
degree is the most scale-independent one, and we can quantify this property with a power value.
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biomarker potential of these genes. The expression levels, ROC curve, and overall survival of hub genes are shown in Additional file3.

3.7. Data enrichment

We used the Enrichr database for the gene ontology and pathways enrichment of the genes employed in this experiment. The 
ontology indices for each of the three routes, Biological Process (BP), Cellular component (CC), Molecular function (MF), and KEGG 
Pathway, are analyzed independently for the genes of the red module (Fig. 7, Table 5 and supplemental file 4 has the entire data).

3.8. Drug, MicroRNA and LncRNA -TF network

After identifying the most important TFs, a Drug, MicroRNA, and LncRNA-TF network was created. The DGIdb, miRWalk, and 
lncHUB databases were used for this purpose. As a potential treatment for cervical cancer, the results may suggest MicroRNAs and 
LncRNAs as options for potential drugs. Using the Drug Gene Interaction database, putative new pharmaceuticals were suggested 
(DGIdb). The co-expression genes, transcription factors that control these genes, LncRNAs, MicroRNAs, and medicines that target these 
transcription factors (Fig. 8). Additional file 5 and Table 6 describe the network in detail.

Fig. 3. Gene co-expression is being explored. Analyses of gene expression networks have shown distinct modules of co-expressed genes. The vertical 
axis represents the value of gene expression, while the horizontal axis represents the number of genes in the sample. In a dendrogram, a vertical line 
represents a gene, and a branch denotes a module of highly co-expressed genes (one color). Modules that have been detected appear in the first color 
band, whereas modules that have been combined appear in the second. (b) Module eigengenes clustered. The components of Part A were integrated 
in this manner. The threshold for module eigengene dissimilarity, shown in red, is the modules’ merged level. In a single main branch, modules 
below a specific threshold will be merged into a single module. 28 distinct modules were discovered and condensed into 27 primary modules.

Table 2 
This table indicates the Zsummery and high degree genes of each module.

Module name Module size Zsummary

Blue 392 30
Brown 328 16
Red 91 1.80
Green 144 2.70
Grey 10 − 0.95
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3.9. Drug-target genes (TGs) network

DGIDB database was also used to construct a drug-gene network for module’s retrieved genes and cytoscape software was used to 
visualize the network. (Table 7, Fig. 9, and supplementary file 6).

Fig. 4. Red module co expression network. Blue nodes represent the genes and edges represent the co expression of these genes.

Fig. 5. The hub genes of red module and their rank.
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4. Discussion

In the field of cervical cancer prevention, screening, and treatment, many advances have been made, such as modern radiotherapy 
and targeted treatment; however, the treatment of cervical cancer has not improved significantly [49–51]. Additionally, the death rate 
from cervical cancer is remains high in low-income countries despite the usefulness of vaccination and regular medical tests in 
avoiding the disease [52]. In this regard, considering the need to search for potential regulators involved in the development of cervical 
cancer, our study was conducted to identify biomarkers related to cervical cancer and potential therapeutic targets.

According to reports, there are several variables and different stages involved in the development of cervical cancer [53,54]. Also, 
in addition to human papilloma virus (hr-HPV) infection, other factors such as epigenetic abnormalities, changes in DNA methylation, 
as well as environmental factors such as smoking, alcohol consumption, immune status, number of sexual partners, and genetic 
background, plays an important role in causing cervical cancer [55,56].

Table 3 
TFs and their target genes.

Transcription Factors (TFs) Description Genes

SRF serum response factor (c-fos serum response element-binding transcription factor) MYL9, SAMD4A
RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) REPS2, F8, IL1A
NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 REPS2, IL1A, F8
SP1 Sp1 transcription factor GIPR, MME, FBN1

Fig. 6. TF-genes network. Blue nodes represent the genes and edges represent the co expression of these genes and green triangles show the 
transcription factors.

Table 4 
The p-value, AUC, and biomarker capability of these genes.

Gene P-value AUC Biomarker capability

ZBBX 0.5843 0.6126 ✘
PLCH1 0.3414 0.6385 ✘
TTC7B 0.0047 0.9737 ✓
DNAH7 0.0539 0.7805 ✓
ZMYND10 0.9817 0.5038 ✘
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In this regard, with the development of high-throughput technologies, new biomarkers were identified for the early detection of 
this type of cancer through the analysis of microarray datasets. In addition, in order to identify biomarkers and discover the molecular 
mechanism involved in cancer, microarray and sequencing technologies are widely used [57].

Impairment in the immune function of people with cervical cancer, in turn, can lead to the development of effective treatment 
strategies. In this regard, Cheriyan et al. investigated the anergy of T cells through anti-CD3 capacity in order to extract cell signaling 
proteins in people with cervical cancer [58]. Also, they showed that the decrease in the expression and function of downstream 
proteins or defects in TCR, lead to disruption in the transfer of NF-κB to the nucleus and the levels of other proteins such as TCR-z, 
CD3-e, zap 70, p56lck, NF-κB-P50, Rel-A, Rel-B, Rel-C [58]. Levey and Srivastava also reported that the reduction of TCR-z, zap-70 
or p56lck protein expression, as well as disruption of Rel-A transfer from cytoplasm to nucleus, cause T cell dysfunction in response to 
antigenic stimulation [59]. In addition, the reduction of TCR-z chain activation and the inability to transfer components of the NF-κB 
pathway from the cytoplasm to the nucleus, and subsequently the disruption of IL-2 secretion, can be one of the causes of immune 
response disorders [58]. In this regard, our study also showed that the level of expression of NF-κB as well as Rel-A decreases 
significantly in the early stages of cervical cancer compared to normal samples. As a result, it can be stated that disruption in the 
signaling pathway of T lymphocytes and subsequently transcription factors such as NF-κB and Rel-A in cervical cancer patients leads to 
disruption in their anti-tumor responses.

It has been reported that NF-κB has an important role in cell growth, survival, and apoptosis. Also, inhibition or induction of 
apoptosis following NF-κB activation depends on different factors and cell types. In addition, rel/nuclear factor kappa B (NF-κB) 
proteins have two protein groups, including proteins that require proteolytic processing and proteins that do not require proteolytic 
processing [60]. The first group proteins are Rel-A (known as p65), Rel-c and Rel-B, and the second group proteins are NF-κB1 (known 
as p105) and NF-κB2 (known as p100). Also, the proteins of the second group produce p50 and p52 proteins, respectively [60]. Besides, 

Fig. 7. Samples of Gene ontology and pathway enrichment.

Table 5 
samples of Gene ontology and pathway enrichment.

Biological process (BP) Cellular component (CC) Molecular function (MF) KEGG PATHWAY

Term P- 
Value

Term P-Value Term P-Value Term P-Value

cell junction assembly 
(GO:0034329)

1.03E- 
04

catenin complex 
(GO:0016342)

0.008739 phosphatidylcholine flippase 
activity (GO:0140345)

2.03E-04 Axon guidance 0.009593

postsynaptic density protein 
95 clustering 
(GO:0097119)

2.03E- 
04

endoplasmic 
reticulum lumen 
(GO:0005788)

0.009751 glycerophospholipid flippase 
activity (GO:0140333)

0.001312 Focal adhesion 0.013418

axonemal dynein complex 
assembly (GO:0070286)

4.11E- 
04

sarcoplasmic 
reticulum 
(GO:0016529)

0.017856 transmembrane receptor 
protein phosphatase activity 
(GO:0019198)

0.002357 Caffeine 
metabolism

0.026994

peptidyl-tyrosine 
dephosphorylation 
(GO:0035335)

5.37E- 
04

adherens junction 
(GO:0005912)

0.022404 transmembrane receptor 
protein tyrosine phosphatase 
activity (GO:0005001)

0.002357 Glutathione 
metabolism

0.027794

peptidyl-tyrosine 
dephosphorylation 
involved in inactivation of 
protein kinase activity 
(GO:1990264)

5.63E- 
04

apicolateral 
plasma membrane 
(GO:0016327)

0.022546 phosphatidylcholine 
transporter activity 
(GO:0008525)

0.002988 Epithelial cell 
signaling in 
Helicobacter pylori 
infection

0.040496

A.H. Yari et al.                                                                                                                                                                                                         Heliyon 10 (2024) e40179 

10 



Fig. 8. The co-expression genes and the transcription factors that regulate these genes and the LncRNAs, MicroRNAs and drugs that target these 
transcription factors. Genes are represented by blue ellipses, green triangles show transcription factors, red triangles indicate the MicroRNAs 
whereas yellow diamonds show LncRNAs and purple hexagons represent medications.

Table 6 
genes and the transcription factors that regulate these genes and the LncRNAs, MicroRNAs and drugs that target these transcription factors.

TF Genes Drugs MicroRNAs LncRNAs

SRF MYL9, SAMD4A Not reported hsa-miR-665 MBNL1-AS1, LINC01581, BARX1- 
DT
MYCL-AS1, MRGPRF-AS1, ACTA2- 
AS1
PGM5-AS1, NEXN-AS1, 
LINC01081
WWTR1-AS1

RELA REPS2, F8, IL1A ARTESUNATE, VORICONAZOLE, GEFITINIB, DEXAMETHASONE hsa-miR-373-3p 
hsa-miR-373-3p 
hsa-miR-373-3p

FARSA-AS1, CD81-AS1, 
LINC02065 
LINC01097, ZNRD2-AS1

NFKB1 REPS2, IL1A, F8 BACLOFEN, NIFEDIPINE Not reported LINC01726, CYP1B1-AS1, 
LINC02242 
LINC00469, KIF25-AS1, RMDN2- 
AS1 
LINC01249, C1QTNF9-AS1, GAS6- 
AS1 
LINC01694

BORTEZOMIB, ARTESUNATE
CHLORAMBUCIL, THALIDOMIDE
HYDROQUINONE, PROTRIPTYLINE
TRIAMCINOLONE, PROMETHAZINE HYDROCHLORIDE, 
CHLORPROPAMIDE
SULFAPHENAZOLE, MITOXANTRONE
DISULFIRAM, HYDROCORTISONE

SP1 GIPR, MME, 
FBN1

METFORMIN hsa-miR-24-3p LMLN-AS1, CYP4A22-AS1, 
LINC02068 
RNF213-AS1, PAXIP1-AS2

hsa-miR-24-3p
hsa-miR-324-5p
hsa-miR-24-3p
hsa-miR-216a- 
3p
hsa-miR-22-3p
hsa-miR-24-3p
hsa-miR-216a- 
3p
hsa-miR-22-3p
hsa-miR-324-5p
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Table 7 
Drugs and their target genes.

TGs Drugs

NAT1 DESVENLAFAXINE, DESVENLAFAXINE SUCCINATE, DEXMETHYLPHENIDATE, HYDROCHLORIDE, DEXTROAMPHETAMINE, 
DEXTROAMPHETAMINE ADIPATE,
DEXTROAMPHETAMINE SULFATE, DIETHYLPROPION HYDROCHLORIDE,
DOXEPIN HYDROCHLORIDE, DULOXETINE, DULOXETINE HYDROCHLORIDE, FLUOROURACIL, FRUCTOSE, FUROSEMIDE, GEFITINIB, 
GUANETHIDINE, MONOSULFATE, HYDROCHLOROTHIAZIDE, HYDROXYCHLOROQUINE, IMIPRAMINE, HYDROCHLORIDE, LENALIDOMIDE, 
LEVOMILNACIPRAN HYDROCHLORIDE, LISDEXAMFETAMINE DIMESYLATE, MAPROTILINE HYDROCHLORIDE, MAZINDOL, MESALAMINE 
METHYLPHENIDATE HYDROCHLORIDE, NEFAZODONE, HYDROCHLORIDE, NORTRIPTYLINE, OCRIPLASMIN, OLANZAPINE, ORPHENADRINE 
CITRATE, ORPHENADRINE HYDROCHLORIDE, PHENMETRAZINE HYDROCHLORIDE
PHENTERMINE, PHENTERMINE HYDROCHLORIDE, PROTRIPTYLINE HYDROCHLORIDE
PSEUDOEPHEDRINE HYDROCHLORIDE, PSEUDOEPHEDRINE POLISTIREX, RANITIDINE
RILONACEPT, SACUBITRIL, SORBITOL, SPIRONOLACTONE, SUNITINIB

ADD1 AFLIBERCEPT
AMITRIPTYLINE HYDROCHLORIDE
AMOXAPINE
AMPHETAMINE
AMPHETAMINE ADIPATE

VEGFC TORSEMIDE
TRIMIPRAMINE MALEATE
VANDETANIB
VENLAFAXINE HYDROCHLORIDE

IL1A BUPROPION HYDROCHLORIDE
COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

F8 BENZPHETAMINE HYDROCHLORIDE
BETHANIDINE SULFATE
BEVACIZUMAB

Fig. 9. Drugs and their target genes. Genes are represented by purple ellipses whereas yellow hexagons show drugs.
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it has been reported that the transcriptional activity of NF-κB is mostly regulated by Rel-A; in addition, p50-Rel-c dimers have the 
lowest frequency [60]. It is worth mentioning that one of the causes of drug resistance in cancers can be mentioned the nuclear factor 
kappa B (NF-κB) transcription factor. In this regard, Garg et al., showed that in patients with cervical cancer treated with chemo-
therapy radiation therapy (CRT), there is an inverse relationship between the transcription factor NF-κB and its outcomes [61]. In 
addition, Altoos et al., also reported that poor clinical results in patients treated with CRT could be caused by increased cytoplasmic 
expression of NF-κB-p65 [62].

Moreover, P65 subunit is involved in different types of human cancers, and in malignancies such as esophagus, breast, liver cells, 
digestive system, cervix, pancreas, and lung, there are P65 gene expression changes [63]. Xue Pan stated in 2008 that NF-kB p65 
induces apoptosis in malignancy of pancreatic cancer cells [64]. However, Sergio Vaira in 2008 reported that NF-κBp65 leads to 
inhibition of apoptosis in cancer cells and malignant progression and has an oncogenic role [65].

Sp1 is another transcription factor involved in cervical cancer and adjacent tissues, and it is a clinical biomarker and therapeutic 
target in patients’ resistant to radiotherapy [66]. Besides, studies indicate that Sp1 as a critical mediator leads to the control of HPV18 
function in cervical cancer, and is closely related to metastasis, cancer recurrence, and malignant progression [67–69]. Since Sp1 is a 
type of cell cycle regulator, Deng et al., in 2019, has been demonstrated that its excessive decrease and increase lead to the acceleration 
and inhibition of the cell cycle in the G2/M phase of cervical cancer cells, respectively [66]. Also, considering that cells are sensitive to 
radiation therapy in G2/M phase, so increasing Sp1 transcription factor causes inhibition of cells in this phase and increase sensitivity 
to radiation therapy [66]. In fact, this transcription factor leads to increased expression of CDK1, the main target molecule of the G2/M 
cell cycle checkpoint, in cervical cancer cells [66]. Moreover, Deng et al., showed that the number of changes in CDK1 expression is 
directly related to the level of Sp1, especially in patients’ resistant to radiation therapy. Also, our study showed that in the early stages 
of cervical cancer, the expression of Sp1 increases significantly compared to normal people, which can be concluded that this increased 
expression increases cell growth and also resistance to radiation therapy in patients with cervical cancer [66]. Furthermore, tran-
scription factors and epigenetic regulators can lead to the modulation of the expression level of lncRNAs [70,71]. It has also been 
reported that the expression level of lncRNAs changes in tumor cells such as cervical cancer cells [71]. For example, the transcription 
factor Sp1 leads to the overexpression of lncRNA SNHG14 and subsequently to the development of renal cell malignancy [72]. Also, in 
gastric carcinoma, Sp1, through activating EZH2, leads to increased transcription of lncRNA UCA1 and increased growth and pro-
gression of malignancy [73]. In addition, Jang et al., showed that in cervical cancer, the Sp1 transcription factor interacts with the 
LUCAT1 promoter to regulate the expression of this gene [70]. In other words, the low expression of Sp1 is directly related to the 
expression of LUCAT1 and leads to the suppression of its expression. It is worth mentioning that LUCAT1 is an oncogene identified in 
cervical cancer and leads to the development of cervical cancer [70]. In addition, it has reported that in normal cells the transcription 
factor Sp1 binds to the GC box in the MALAT1 promoter [74]; while wang et al., in 2021, illustrated that in cells infected with hr-HPV, 
E7 oncogene with over activation of Sp1 leads to increased activity and transcription of MALAT1 and malignant progression [75]. Also, 
Chou et al., reported in 2022 that in the malignancy of osteosarcoma cells, the overexpression of transcription factors Sp1 and NF-κB 
(Rel-A) may play an important role in increasing metastasis [76]. As a member of the MADS box transcription factor family, SRF plays 
an important role in important cellular activities [77]. Also, studies indicate that SRF, together with MRTF and TCF, lead to the 
regulation of migration, invasion, and growth mechanisms through the signaling and cytoskeleton-dependent pathway [78]. However, 
the mechanism of action of SRF in the proliferation and invasion of cells involved in cervical malignancy is not clear. In this regard, in 
the study conducted by MA et al., in 2019, on cervical cancer cells, it was reported that inhibiting the expression of SRF through the 
control of the early growth response pathway-1 (Egr-1), leads to a decrease in the growth and proliferation of cervical cancerous cells 
[79]. In this regard, our study also showed that the level of SRF expression in normal samples has decreased significantly compared to 
the initial stage of cervical cancer. In addition, Silverman and Collins showed in their study that SRF increases the transcription of 
Egr-1 gene [80]. In other words, increased expression of SRF in cancer cells leads to decreased expression of E-cadherin and increased 
expression of N-cadherin in EMT [81–83]. It has been shown that EMT as an important process in cell metastasis leads to the loss of 
polarity of epithelial cells and subsequently increases cell migration [84,85]. It has also been reported that following the inhibition of 
SRF expression due to the transfer of SRF siRNA to cervical cancer cells, the expression levels of N-cadherin and E-cadherin decrease 
and increase, respectively; and subsequently leads to the inhibition of proliferation and invasion of cells [86]. Also, MA et al., observed 
that following the inhibition of SRF expression in cervical cancer cells, the expression level of Egr-1 decreases, which subsequently 
affects the expression level of E-cadherin and N-cadherin and cell metastasis in cervical cancer cells [79]. As a result, they reported that 
in normal tissue compared to cancer tissue in the early stages, the expression level of SRF is significantly low [79]. In addition to 
transcription factors, hub genes are also involved in the process of malignant progression. For example, axonal dynein heavy chain 
(DNAH) genes, as a family of genes encoding axonal dynein heavy chain, are involved in cell motility; in such a way that changes in 
DNAH gene expression play a role in the process of malignancy [87]. Reports indicate that sensitivity to chemotherapy increases in 
patients with gastric carcinoma. In other words, mutated DNAH in patients with gastric carcinoma leads to increased sensitivity to 
chemotherapy in these patients. However, resistance to chemotherapy has been reported in some of these patients [87]. In fact, 
functionally, the activity of ATPases is affected by DNAH proteins; and they play a role in biological processes such as microtubule 
movement, cilia assembly, cilia movement and internal/external dynein arm assembly [88–90]. ZMYND10, as another type of hub 
gene, is a 50kd protein that has a DNA binding domain on the MYND type at the C-terminus [91]. This region is mostly found in 
transcription repressors. This gene is involved in many malignancies such as lung cancer, glioma tumors, ovarian cancer, liver cancer, 
esophageal squamous cell carcinoma, neuroblastoma, and myelodysplastic syndrome, and it is reduced due to genetic and epigenetic 
changes [92]. In addition, ZMYND10 as a tumor suppressor leads to induction of apoptosis, cell cycle arrest, and inhibition of 
angiogenesis [92]. Also, reports indicate that increased expression of this gene leads to increased sensitivity to chemotherapy in 
malignancies [93,94]. ZMYND10 is deleted following promoter hypermethylation in multiple cancer types. In other words, ZMYND10 
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is a tumor suppressor gene and has epigenetic regulatory activity, whose hypermethylation is associated with poor prognosis in all 
types of cancer [92]. In this regard, during their study on breast cancer, Wang et al., in 2019, reported that the inhibition of NEDD9 
oncogene expression through the reregulation of miR-145-5p by ZMYND10 leads to the inhibition of tumorigenesis, cell metastasis, 
and malignant progression [92]. In addition, they showed that following ZMYND10 demethylation, its expression increases and thus 
leads to inhibition of malignant progression. In other words, ZMYND10 through miR145-5p/NEDD9 signaling storm leads to inhibition 
of cell migration and spread of breast malignancy [92]. Concerning the novelty of this investigation, it is possible to assert that this 
research constitutes a pioneering undertaking, given that to date, no study has examined the particular role of driver genes in pro-
gression of cervical cancer. The transcription factors and driver genes that may be essential to the development of cervical cancer have 
been clarified by this work. Nonetheless, the intrinsic difficulties and constraints linked to our in-silico methodology need careful 
deliberation. The Gene Expression Omnibus (GEO) and DriverDBv3, two freely available databases, provided the gene expression data 
used in this investigation. Although these sites provide insightful information, there might be wide variations in the data’s repre-
sentativeness and quality. Variations in the procedures used to collect the samples, prepare them, or run the experiments might create 
biases and compromise the validity of our findings. Furthermore, the findings’ generalizability may be limited by the fact that the 
dataset (GSE63514) may not fully capture the genetic variety of cervical cancer patients across other ethnicities. Experimental 
confirmation is necessary since our predictions are computational in nature and were produced using sophisticated bioinformatics 
tools such as CytoHubba and Weighted Gene Co-expression Network Analysis (WGCNA). The biological significance of the discovered 
genes is yet unknown given the absence of in vitro or in vivo investigations. Thorough experimental research is necessary to support 
the hub genes and transcription factors’ promise as diagnostic and therapeutic tools. Despite their strength in processing complicated 
data, bioinformatics tools sometimes depend on mathematical models and assumptions that may not fully capture biological facts. For 
example, the scale-free network structure assumption made by WGCNA could not hold true in every situation. Moreover, the iden-
tification of hub genes via network connection does not always correspond to their functional significance in the advancement of 
cervical cancer. Such computational restrictions may result in the omission of important genes linked to the illness or false positive 
results. Numerous variables, including as environmental influences, genetic background, and epigenetic alterations, affect the levels of 
gene expression. Although insightful, our attention on mRNA expression levels does not fully capture the regulatory environment, 
which includes activity realities, protein expression, and post-transcriptional regulation. As a result, firm judgments on the functions of 
discovered genes at the protein level or in more general cellular settings cannot be made. As useful as in-silico techniques are in 
producing ideas and possible treatment targets, their conversion into clinically applicable biomarkers or approaches requires careful 
experimental confirmation. As a result of patient heterogeneity, illness stage, and treatment history, the discovered transcription 
factors and driver genes may vary in their usefulness as biomarkers among clinical samples. In order to evaluate the therapeutic 
significance of our results, clinical trials and patient-based research are essential. Based on bioinformatics resources like DGIDB, 
miRWalk, and LncHub, we have predicted the interactions between transcription factors and non-coding RNAs (miRNAs and 
LncRNAs). However, because non-coding RNAs’ regulatory functions are so context-dependent, these links need to be confirmed 
through experimentation. Further studies are needed to validate these interactions specifically in cervical cancer. With the purpose of 
finding effective drugs drug screening will be employed, utilizing databases like the Drug-Gene Interaction Database (DGIDB) to 
explore interactions between existing drugs and the identified genes. DGIDB has suggested potential drug repurposing options for 
cervical cancer treatment. Additionally, virtual screening of drug libraries will be conducted to identify novel compounds that can 
interact with these driver genes. Although preliminary interactions have been identified, further experimental validation through in 
vitro assays is necessary. Future studies will focus on assessing the efficacy of these drugs, aiming to refine therapeutic strategies for 
cervical cancer based on bioinformatics findings. In conclusion, the limits of in-silico research must be recognized even if this study 
provides a thorough overview of prospective molecular targets in cervical cancer through bioinformatics and systems biology 
methodologies. Confirmation of these results and assessment of their potential in therapeutic and diagnostic applications necessitate 
experimental validation and clinical investigations.

5. Conclusions

The results of this study highlight the significance that driver genes play in the development of cervical cancer, highlighting them as 
potential targets for diagnosis and treatment. With this research, the authors hoped to learn more about the function of driver genes in 
cervical cancer, both as diagnostic indicators and as targets for treatment. We employed bioinformatics methods to do this task. We 
mapped the co-expression network for 2041 driver genes to identify the key early-stage cervical cancer genes. We next use bioin-
formatics techniques to the data to identify candidate diagnostic biomarkers and treatment drugs. Computational approaches provide 
the backbone of our investigation. Therefore, clinical studies both in vitro and in vivo are required. We expect the findings will inform 
efforts to refine methods of diagnosis, prevention, and treatment.
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[4] N. Muñoz, et al., Epidemiologic classification of human papillomavirus types associated with cervical cancer, N. Engl. J. Med. 348 (6) (2003) 518–527.
[5] P.S. Aghbash, N. Hemmat, H. Fathi, H.B. Baghi, Monoclonal antibodies in cervical malignancy-related HPV, Front. Oncol. 12 (2022) 904790.
[6] E.M. Burd, Human papillomavirus and cervical cancer, Clin. Microbiol. Rev. 16 (1) (2003) 1–17.
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