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Abstract

Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian
embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly
defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related
members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping
expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed
that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-
box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of
Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfra
promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box
factors can function as negative regulators of Mixl1 activity.
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Introduction

The Mix/Bix family of transcription factors are defined by a

highly conserved 60 amino acid DNA binding motif, the

homeodomain (HD), that binds preferentially to an inverted

iteration of the canonical homeobox binding site, ATTA, separated

by three nucleotides [1]. Mix/Bix proteins function predominantly

as transcriptional activators; a function mediated through their

conserved carboxy-terminal polar/acidic region [2–7].

Members of the Mix/Bix family play key roles in vertebrate

mesoderm and endoderm formation in response to the TGFb
ligands, BMP4 and nodal/activin [2,8–14]. In the mouse, the single

Mix gene homologue, Mix-like 1 (Mixl1), is expressed in the

primitive streak and emerging mesendoderm [4,12,15]. The

requirement for Mixl1 for normal germ layer formation is

demonstrated by the observation that Mixl1-null mouse embryos

display an enlarged primitive streak and die at embryonic day 8.5,

exhibiting numerous defects in mesoderm and endoderm

patterning [12,16]. Consistent with this, during embryonic stem

cell differentiation in vitro, Mixl1 and its human ortholog (MIXL1)

mark mesendodermal precursors [13,14,17] and enforced expres-

sion of Mixl1 perturbs the normal allocation of cells to the

mesodermal and endodermal compartments [6,18].

Like Mixl1, the Tbx transcription factor genes are also involved

in the regulation of germ layer induction and patterning [19]. The

defining feature of this family is the presence of a highly conserved

DNA binding domain called the T-box. Brachyury (T), the founding

member of the T-box (Tbx) family, is a transcriptional activator

and is expressed throughout the nascent mesoderm, tailbud and

notochord [20–23]. Like Mixl1-null embryos, Brachyury deficient

embryos lack tail and trunk structures and die shortly after

gastrulation, displaying several mesodermal abnormalities includ-

ing an enlarged primitive streak [24]. Analysis of Brachyury-null

embryos also suggests that Brachyury is essential for the proper

specification of mesodermal cell identity and for their correct

movement through the primitive streak [25–28].

As noted above, loss- and gain-of-function studies in the mouse

suggest Mixl1 and Brachyury are involved in common processes

during early development. In Xenopus, Mix.1 and the Brachyury

homologue, Xbra, repress each other’s expression [3,29]. Further-

more, RNAi-mediated knockdown of Mixl1 expression in mouse

ESCs results in an enhancement of Brachyury expression whilst

Mixl1 over-expression suppresses Brachyury expression [30]. These

results are consistent with the increased and prolonged expression

of Brachyury in the expanded primitive streak of Mixl1-null embryos

[16].
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Additional members of the T-box family have also been

implicated in modulating the function of Mixl1. Eomesodermin

(Eomes) plays a key role in the formation early mesoderm and

trophoectoderm [31,32] as well as in the development of

endodermal lineages [33,34]. Notably, Mixl1 expression is lost in

Eomes null-embryos and Eomes and Mixl1 also act as a negative

regulators of Brachyury expression [30].

Despite the importance of Mix/Bix proteins during develop-

ment, our understanding of the molecular mechanisms underlying

their relationship with other transcription factors remains poor. In

this study we show that Mixl1, Brachyury and related Tbx factors

are co-expressed during embryonic stem cell differentiation. We

provide evidence that Mixl1 physically interacts with Brachyury

and other members of the Tbx family. Luciferase reporter

experiments indicate that this association inhibits the ability of

Mixl1 to activate the Gsc and Pdgfra promoters, suggesting a

functional co-operativity between Mixl1 and Tbx factors during

early mammalian development.

Results

Co-expression of Mixl1 and Brachyury in differentiating
mouse ESCs

We have previously demonstrated that the transient expression

of Mixl1 RNA during the in vitro differentiation of mouse (m)

embryonic stem cells (ESCs) closely mirrored the kinetics of

expression of the Brachyury transcription factor [13,35]. It was

unclear whether this overlap reflected the presence of mesendo-

dermal precursors that co-expressed both genes or the temporal

coincidence of two distinct populations. Immunofluorescence

analysis of Mixl1 and Brachyury expression in day (d) 4 ESC-

derived embryoid bodies (EBs) revealed a high frequency of

Mixl1+ and Brachyury+ cells, with expression of both proteins

restricted to the nucleus (Figure 1A). Many cells co-expressed

Mixl1 and Brachyury, with some exhibiting more intense Mixl1

staining whilst others displayed higher levels of Brachyury

(Figure 1A). This pattern of staining was not observed in d9 EBs

that no longer expressed Mixl1 or Brachyury (Figure S1A). These

data indicated the presence of a Mixl1+Brachyury+ population of

cells transiently during ESC differentiation.

Physical association between Mixl1 and Brachyury
We wondered whether the pattern of expression observed in

Figure 1A reflected a functional relationship between Mixl1 and

Brachyury during development that required their physical

interaction. Consistent with this hypothesis, immunoprecipitation

of cell lysates prepared from 293T cells expressing epitope-tagged

forms of Mixl1 and Brachyury revealed that Mixl1 interacted with

Brachyury (Figure 1B). The selectivity of this interaction was

argued by the finding that Mixl1 formed homodimers or

heterodimers with Goosecoid (Gsc) (Figure S2), consistent with

prior work [1,2,36], but could not heterodimerize with the POU-

homeodomain protein Oct4 (Figure S2).

We next determined whether Brachyury formed a stable

interaction with endogenous Mixl1. We performed poly Histidine

(His) pull-down experiments with nuclear protein extracts derived

from d4 EBs (Figure 1C). Recombinant His-Brachyury immobi-

lised on Talon-affinity metal resin was able to interact with

endogenous Mixl1 (Figure 1C). In contrast, no Mixl1 signal was

detectable using nuclear extracts prepared from Mixl1-null d4 EBs

(Figure 1C). Furthermore, in d4 EB nuclear extracts, endogenous

Brachyury could be detected in an immunoprecipitated complex

of endogenous Mixl1 (Figure 1D). A direct interaction between

Mixl1 and Brachyury was demonstrated using purified recombi-

nant Glutathione-S-Transferase (GST) Mixl1 and His-Brachyury

fusion proteins (Figure 1E). We found that GST-Mixl1 could pull-

down His-Brachyury using mouse, human and Xenopus forms of

each protein, highlighting that this interaction was conserved

across vertebrate evolution (Figure 1E).

Mapping Mixl1 and Brachyury interacting domains
To delineate the Mixl1 binding regions in Brachyury, a deletion

analysis of Brachyury was performed. Prior mapping of key

domains within the Brachyury protein identified an N-terminal (aa

1–229) DNA binding domain (DBD) (T-box), central (aa 230–380)

trans-activation (TAD) and repression domains (RD) and a C-

terminal (aa 400–436) second repression domain [23] (Figure 2A).

Whole cell protein lysates were prepared from 293T cells

expressing GST-tagged deletion mutants of Brachyury and full-

length HA-tagged Mixl1 and used in GST-pulldown experiments.

This analysis showed that full-length Mixl1 could interact with

Brachyury deletion mutants retaining the first 230 amino acids,

suggesting the amino terminal DBD is sufficient for interaction

with Mixl1 (Figure 2B). Mutant proteins with amino terminal

truncations (aa 151–436, aa 230–436) also bound Mixl1, albeit less

robustly. Thus, Brachyury appears to have a second region outside

the T-box DBD that is capable of independently interacting with

Mixl1 (Figure 2B).

We mapped the domains in Mixl1 (Figure 2C) that interacted

with Brachyury using similar GST-pulldown assays. We found that

Brachyury bound strongly to deletion mutants that retained the

homeodomain, more weakly to amino terminal truncation

mutants (aa 86–231 and aa 145–231), but poorly to an isolated

amino terminal Proline rich domain (aa 1–86) (Figure 2D). Thus,

Mixl1 also appears to have a second region within its carboxy

terminus that is capable of independently interacting with

Brachyury (Figure 2D).

The in vitro binding data suggested an interaction between the

DNA binding domains of Mixl1 and Brachyury. Indeed, pulldown

experiments confirmed that recombinant GST-Mixl1 HD (aa 86–

145) could associate with the T-box domain (aa 1–230) of

Brachyury (Figure 2E). Together these results indicate that

multiple regions within Mixl1 and Brachyury, including their

DNA binding domains, are able to mediate association between

these two proteins.

Mixl1 DNA binding activity is not required for its
association with Brachyury

Mixl1 binds its consensus DNA binding site as a cooperative

dimer [1,2,5,6]. To examine whether Mixl1 DNA binding activity

was required for its interaction with Brachyury, we assayed a series

of Mixl1 DNA binding HD mutants (P126I, V132A, I113R and

R143I) [37] for their ability to associate with Brachyury [2,5,11].

Whilst all four Mixl1 HD mutants associated with GST-

Brachyury, the P126I HD mutation showed reduced interaction

with Brachyury (Figure 3A). When we examined this HD mutant

for its ability to dimerise in solution with wt Mixl1, we observed

that the P126I mutant displayed a markedly reduced dimerisation

capacity (Figure 3B). These results suggest that Brachyury interacts

with same domain within Mixl1 that is required for homodimer-

isation.

Mixl1 interacts with additional members of the T-box
family

The T-box family contains several members that play important

roles during embryonic development [19,38]. We used Affymetrix

GeneChip array analysis of differentiating Mixl1GFP/w mouse

Interaction of Mixl1 and Brachyury
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Figure 1. The Mixl1 homeodomain protein is co-expressed and interacts with Brachyury. (A) Immunofluorescence analysis of day 4
differentiated W9.5 mouse ESCs showing expression of Brachyury (green) and Mixl1 (red). Arrowheads indicate cells in which Mixl1 (red in overlay
panel) or Brachyury (green in overlay panel) predominated, or in which expression of the two proteins was approximately equal (orange in overlay
panel). Nuclei were visualized with TOPRO (Blue). Original magnification: 650 upper row and 6100 lower row. (B) Mixl1 and Brachyury (T) associate.
293T cells were co-transfected with FLAG mMixl1 and HA mT expression plasmids and Mixl1 immunoprecipitated (IP) from whole cell lysates with
anti-FLAG antibody or IgG control antibody followed by Western blot analysis with anti-HA or anti-T N19 antibodies. (C) Western blot analysis of
nuclear proteins from day 4 differentiated Mixl1GFP/w and Mixl1GFP/Hygro ESCs isolated with TALON resin pre-coated with recombinant His-tagged T
protein. Bound proteins were visualized using anti-Mixl1 6G2 or anti-T N19 antibodies. (D) Nuclear proteins from day 4 differentiated Mixl1GFP/w (+) or
Mixl1GFP/Hygro (2) ESCs were subjected to IP with anti-Mixl1 6G2 antibody or rat isotype control antibody. Immunoprecipitates were analysed by

Interaction of Mixl1 and Brachyury
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embryonic stem cells [37] to identify T-box factors whose

expression overlapped that of Mixl1 during ESC differentiation.

Consistent with previous findings, the expression of Mixl1

overlapped with the primitive streak gene Gsc and the stem cell

marker Oct4 [35,39] (Figure 4A). We also observed that the

expression of several members of the T-box family of genes

including Brachyury, Eomes, Tbx2, Tbx3, Tbx4, and Tbx6 largely

overlapped with Mixl1 at days 3 and 4 of ESC differentiation

(Figure 4A and Figure S3). In the case of Tbx20, the overlap was

partial (Figure 4A), whilst the expression profiles of Tbx1, Tbx5,

Tbx14 and Tbx21 did not show substantial overlap with Mixl1

expression (Figure S3). Real time PCR (Q-PCR) analysis provided

independent confirmation that the T-box factors Brachyury, Eomes,

Tbx3, and Tbx6 were expressed during the transient wave of Mixl1

transcription (Figure 4B). Western blot analysis of nuclear extracts

collected from differentiating ESCs showed that protein expression

for Mixl1, Brachyury, Eomes, Tbx3, Tbx6 and Tbx20 also

correlated with their mRNA expression profiles (Figure 4C).

Additionally, immunofluorescence showed co-expression of Eomes

with Mixl1 in the nuclei of cells from d4 EBs (Figure S1B, C).

Therefore, we examined whether Mixl1 could also interact with

other contemporaneously expressed T-box genes. We found that

GST tagged versions of Eomes, Tbx3, Tbx6 and Tbx20 expressed

in 293T cells could isolate Mixl1-T-box complexes (Figure 4D and

Figure S4A). Consistent with our earlier observation that the

Brachyury T-box domain could associate with Mixl1 (Figure 2B),

we observed that the T-box domains of Eomes, Tbx3, Tbx6 and

Tbx20 could also interact with Mixl1 (data not shown).

Given that expression of the paired-like homeodomain protein

Gsc also overlapped with that of Mixl1 and T-box factors during

ESC differentiation, we examined the potential for Gsc to complex

with T-box factors (Figure 4A, B). These studies demonstrated that

Western blot using anti-Mixl1 2D10 or anti-Brachyury N19 antibodies. (E) The Mixl1-Brachyury interaction is conserved across vertebrate species.
Recombinant His-mBrachyury (mT), hBrachyury (hT) or Xbra (xBra) were incubated with recombinant GST, GST-mMixl1, hMixl1 or xMix.1 proteins pre-
adsorbed to glutathione resin. The bound fractions were analysed by Western blot with anti-T N19 antibody.
doi:10.1371/journal.pone.0028394.g001

Figure 2. Mapping the interacting domains of Mixl1 and Brachyury. (A) Schematic of Brachyury (T) and its truncated mutants. Amino acid
residues present in each protein are shown. DNA binding domain (DBD), Transactivation domain (TAD), Repression domain (RD). (B) The amino
terminal DBD (T-box) domain of T and a carboxy terminal region can independently interact with Mixl1. 293T cells were transfected with HA mMixl1
and GST-T or its truncated mutants as indicated. GST-T proteins were isolated from whole cell extracts using glutathione resin and the bound fraction
analysed by Western blot with an anti-HA antibody. Expression of each protein was confirmed with anti-GST and anti-HA antibodies. (C) Schematic of
Mixl1 and its truncated mutants. Amino acid residues present in each protein are indicated. Proline rich domain (Pro), Homeodomain (HD), Activation
domain (AD). (D) The Mixl1 HD and amino terminal flanking sequences are required for its interaction with T. 293T cells were transfected with HA mT
and GST-Mixl1 or its truncated mutants as indicated. GST-Mixl1 proteins were isolated from whole cell extracts using glutathione resin and the bound
fractions were analysed by Western blot with an anti-HA antibody. Expression of each protein was confirmed with anti-GST and anti-HA antibodies.
(E) The Brachyury T-box domain and Mixl1 HD associate. Recombinant His mT-box was incubated with recombinant GST, GST mMixl1 or GST mMixl1
HD proteins pre-adsorbed to the glutathione resin. The bound fractions were analysed by Western blot with anti-T N19 and anti-GST antibodies.
doi:10.1371/journal.pone.0028394.g002
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Gsc could indeed interact with T-box factors including Brachyury,

Tbx3, Tbx6 and Tbx20 (Figure 4E). Conversely, we were unable

to observe a stable interaction between Brachyury and POU-

Homeodomain factors, including Oct4, whose expression also

coincided with that of Mixl1 and Brachyury during ESC

differentiation (Figure S4B). These results suggested that Mixl1

and the related paired-like homeodomain protein Gsc could

physically interact with members of the T-box family of

transcription factors.

Mixl1 and Brachyury form a ternary complex on the Gsc
MBS

We used electrophoretic mobility shift assays (EMSA) to

determine the effect of Brachyury on the interaction between

Mixl1 and promoter DNA. Mixl1 bound to Gsc promoter distal

and proximal element Mixl1 binding site (MBS) probes as

previously described (Figure 5) [6,7] [37]. Addition of recombinant

FLAG-tagged Brachyury T-box domain resulted in the formation

of two slower-migrating complexes and a reduction in the intensity

of the Mixl1-DNA complex. The presence of Mixl1 and

Brachyury in the resulting complexes was confirmed by supershift

experiments in which addition of anti-Mixl1 antibody [35] or

FLAG M2 antibody, in a dose dependent manner, resulted in a

supershift (Figure 5).

T-box factors repress Mixl1 transactivation of the Gsc
promoter

To investigate the functional consequences of the Mixl1-

Brachyury interaction, we used activation of transcription of the

Gsc promoter as an assay for Mixl1 transcriptional activation [6,7].

These experiments demonstrated that co-expression of Brachyury

repressed the ability of Mixl1 to induce expression from the Gsc

promoter in a dose dependent manner (Figure 6A). We examined

the ability of Brachyury deletion mutants to modulate the action of

Mixl1 on the Gsc promoter, to determine which domains within

Brachyury were required for repression of Mixl1 transactivation

activity. Unlike the full-length Brachyury protein, the Brachyury

T-box domain alone (aa 1–229) did not repress Mixl1 induction of

the Gsc promoter. Similarly a truncated Brachyury protein lacking

the T-box domain (aa 230–436) did not repress Mixl1 transactiva-

tion activity (Figure 6B and Figure S5A). Analyses of additional T-

box family members revealed that full length Eomes and Tbx6

also repressed the transactivation ability of Mixl1 on the Gsc

promoter (Figure 6B and Figure S5A). Similar effects of

Brachyury, Eomes and Tbx6 were also observed on the promoter

of a second Mixl1 target gene, Pdgfra (Figure S5B, C) [37].

Inspection of the Gsc promoter did not reveal consensus DNA

binding sites for Brachyury [22,23], suggesting that Brachyury was

not directly binding to the Gsc promoter to regulate Mixl1 activity.

Previous analysis of the structure of the Xenopus Brachyury T-box

domain [40] revealed a conserved lysine residue within beta

strand-e and a conserved phenylalanine residue located within

helix H4 that were involved in DNA binding (Figure 6C).

Therefore, in order to test if DNA binding was necessary for

Brachyury to repress Mixl1 dependent transactivation, we

constructed Brachyury mutants K150A and F217A and examined

their ability to repress Mixl1 induction of the Gsc promoter

(Figure 6C). Gel shift analysis showed that His-tagged recombi-

nant wt Brachyury T-box domain bound to an oligonucleotide

containing a previously determined consensus sequence for T-box

factors (T probe) (Figure 6C) [22,23]. Binding of Brachyury was

confirmed by supershift analysis with an anti-Brachyury antibody

and binding of Brachyury was specifically competed by unlabeled

T probe (Figure 6C). In contrast, the K150A and F217A mutants

displayed substantially reduced DNA binding activity (Figure 6C).

Brachyury proteins possessing the K150A mutation repressed

Mixl1 induction of the Gsc promoter at a level comparable to wt

Brachyury, while the F217A mutant consistently displayed a

stronger repressive effect when compared to wt Brachyury

(Figure 6D and Figure S5D). This trend was also observed on

the promoter of the Pdgfra gene (Figure S5E). These results

demonstrated that the DNA binding activity of Brachyury is not

essential for the repression of Mixl1-mediated target gene

transactivation.

Discussion

The Mixl1 homeodomain transcription factor plays a key role in

normal mesoderm and endoderm patterning during mammalian

embryogenesis [12,16]. Despite the wealth of information

regarding the importance of Mixl1 during gastrulation, little is

known about the molecular determinants underlying Mixl1

Figure 3. Mixl1 DNA binding activity is not required for its
association with Brachyury. (A) Mixl1 DNA binding mutants and
their interaction with T. 293T cells were transfected with GST mT and
HA mMixl1 wt or Mixl1 HD DNA binding mutant expression plasmids as
indicated in the text. GST-fusion proteins were isolated from whole cell
extracts using glutathione resin and the bound fraction was analysed by
Western blot with an anti-HA antibody. Expression of each protein was
confirmed with anti-GST and anti-HA antibodies. (B) The Mixl1 P126I (PI)
mutant shows reduced dimerisation. 293T cells were transfected with
GST mMixl1 and HA mMixl1 wt and DNA binding mutant expression
plasmids as indicated. Whole cell extracts were prepared and reactions
performed as in (A).
doi:10.1371/journal.pone.0028394.g003
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Figure 4. Tbx factors are co-expressed with Mixl1 during ESC differentiation and interact with Mixl1. (A) Signal intensity of Mixl1, Oct3/
4, Gsc and T and the Tbx genes Eomes, Tbx3, Tbx6 and Tbx20 during ESC differentiation, as measured by microarray analysis. Expression profiles of the
genes in (A) were validated by real time-PCR (B) results from an independent experiment are shown. Error bars show the S.E.M., n = 3 and Western
blot analysis (C). (D) Mixl1 interacts with members of the Tbx family. 293T cells were transfected with HA mMixl1 and GST mT, mTbx6 or mEomes
expression plasmids as indicated. GST-fusion proteins were isolated from whole cell extracts using glutathione resin and bound fractions were

Interaction of Mixl1 and Brachyury
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function. In particular the identity of protein cofactors and their

effects on Mixl1 activity remains largely unknown. In this study,

we addressed this issue and showed that members of the T-box

family of transcription factors physically associated with Mixl1 and

repressed its transactivation function on target gene promoters.

For pragmatic reasons, we employed differentiating mouse ES cells

as a model system to study early post-implantation embryonic

development. Whilst there is sufficient evidence that findings in ES

cells reflect events occurring in the embryo, we acknowledge that

aspects of our in vitro model, especially the kinetics and the lack of

complex structural organization within EBs might not accurately

indicate events occurring during in vivo mammalian development.

Several sets of observations suggested that Brachyury and Mixl1

might regulate each other during mesoderm and endoderm

formation. Firstly, in the early mouse embryo, Mixl1 and

Brachyury are both expressed in the primitive streak [4,41] and

studies in Xenopus demonstrated cross repression by Mixl1 and

Brachyury [3,29,42]. Similarly, constitutive expression of Mixl1

during ESC differentiation repressed activin induced Brachyury

expression, whilst analysis of Mixl1-null ESC lines and mice

revealed that loss of Mixl1 resulted in an up-regulation of Brachyury

expression in vitro [37] and in vivo [16]. These results were also

consistent with reports in Xenopus where Mix.1 down regulated

Xbra expression, in part through the activation of Goosecoid

analysed by Western blot with anti-HA antibody. Expression of each protein was confirmed with anti-GST and anti-HA antibodies. (E) Gsc interacts
with members of the Tbx family. 293T cells were transfected with HA mGsc and GST mT, mTbx3, mTbx6 or mTbx20 expression plasmids. Reactions
were performed as in (D).
doi:10.1371/journal.pone.0028394.g004

Figure 5. Interaction between T and DNA bound Mixl1. (A) Mixl1 and T form a complex on the Gsc promoter distal element (DE). EMSA was
performed with Gsc promoter DE probe and 50 ng His-tagged Mixl1 protein (lanes 2 to 4 and 6 to 12). Samples in lanes 5 to 12 included 200 ng
FLAG-His-tagged T T-box domain protein. The presence of Mixl1 and T in the DNA complexes was confirmed by super shift reactions using antibodies
against Mixl1 (lanes 3 and 7) or the FLAG epitope (lanes 9 and 11). Lanes 3 and 7 received 2 mg 6G2 anti-Mixl1 antibody and lanes 4 and 8 received
2 mg rat isotype IgG. Lanes 9 and 11 received 2 mg and 5 mg of M2 FLAG antibody, showing that 5 mg of M2 FLAG antibody was required to
demonstrate supershift activity. Lanes 10 and 12 received 2 mg and 5 mg of mouse IgG antibody, respectively. (B) Mixl1 and T form a complex on the
Gsc promoter proximal element (PE). EMSA was performed as above except the Gsc PE MBS probe was used. Samples represented by lanes 1, 2 and 4
to 6 included 50 ng His-tagged Mixl1 protein whilst those present in lanes 3 to 6 contained 200 ng FLAG-His-tagged T T-box domain protein. Super
shift reactions were performed by adding 6G2 anti-Mixl1 antibody (2 mg) to samples in lanes 2 and 5 or M2 FLAG antibody (5 mg) to the sample in
lane 6. The black arrowheads indicate the position of the Mixl1 and Mixl1-T-DNA complexes; the white arrowhead shows the complexes super-shifted
in the presence of the anti-6G2 or M2 FLAG antibodies; the grey arrowhead indicates the free probe.
doi:10.1371/journal.pone.0028394.g005

Interaction of Mixl1 and Brachyury
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Figure 6. T and related Tbx factors reduce Mixl1 induction of the Gsc promoter. (A) Luciferase assays showing the effect of T on the
transactivation activity of Mixl1. C2C12 cells were co-transfected with 100 ng of a pGL3 Gsc promoter-luciferase reporter construct, 25 ng pMT2-HA-
Mixl1 and increasing amounts of pMT2-HA-T as indicated. Regression analysis indicates that increasing amounts of T correlates with a significant
decrease in Mixl1 transactivation, p,0.001. (B) The effect of T domains and related Tbx members on the transactivation activity of Mixl1. Luciferase
Reporter analysis was performed as in (A) with 25 ng pMT2-HA-Mixl1 and 200 ng of pMT2-HA-T, T-Tbox, T DTbox (TDT), Eomes or Tbx6. For A and B,
results from an independent experiment are shown. Error bars show the S.E.M., n = 3, p,0.05 (Mixl1 vs Mixl1 co-transfected with T), p.0.05 (Mixl1 vs
Mixl1 co-transfected with T-Tbox or TDT), p,0.01 (Mixl1 vs Mixl1 co-transfected with Eomes or Tbx6). (C) The effect of T-box mutations on the DNA
binding activity of T. EMSA was performed with a T DNA binding sequence probe and 50 ng His-tagged wt or mutant (K150A and F217A) T-box
domain as indicated. A schematic of T showing the nature and position of mutations within the T-box domain is shown. The presence of T-box
protein in the DNA complex was confirmed by super shift reactions using N19 anti-T antibody (lane B). Goat IgG was used as a control (lane I).
Specificity of the T-box-DNA complex was confirmed by inclusion of a 100-fold molar excess of unlabeled T probe or mutant T probe competitor. The
black arrowhead indicates the position of T-DNA complexes; the white arrowhead shows the complex super-shifted in the presence of anti-T
antibody; the grey arrowhead indicates the free probe. The inset panel shows Western blot analysis using N19 anti-T antibody confirming the
expression of wt and mutant T-box proteins. (D) Luciferase assay showing the effect of T mutants on the transactivation activity of Mixl1. Reporter
analyses were performed on the Gsc promoter as in (A) with 50 ng pMT2-HA-Mixl1 and 200 ng of pMT2-HA-T or T mutants (K150A and F217A) as
indicated. Results from an independent experiment are shown. Error bars show the S.E.M., n = 3 p,0.05 (Mixl1 vs Mixl1 co-transfected with wt T, or T
mutants K150A and F217A).
doi:10.1371/journal.pone.0028394.g006
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[3,29,42]. In RNAi-mediated knockdown (KD) experiments in

ESCs, Mixl1 KDs resulted in enhanced Brachyury expression

whilst Mixl1 overexpression suppressed Brachyury expression [30].

The results presented in our study extend the scope of this previous

work, suggesting that a functional relationship in which Brachyury

represses Mixl1 might be based on their physical interaction.

We provide several lines of evidence to support this notion.

Firstly, by immunofluorescence analysis, we observed the presence

of Mixl1+Brachyury+ cells at d4 of differentiation. Second, through

co-immunoprecipitation and GST-pulldown experiments, we

showed that Mixl1 physically associated with Brachyury and that

this interaction was conserved in several vertebrate species. Others

have demonstrated physical associations between homeobox

proteins and T-box family members [43–47]. Our mapping

studies demonstrated that the T-box domain of Brachyury and the

Mixl1 homeodomain were important domains for interaction,

consistent with previous findings documenting interactions

between the T-box and homeodomains [43,47].

While our data suggested important roles for the Mixl1 and

Brachyury DNA binding domains, we also provide evidence that

other regions may contribute to the interaction, supporting a

model where multiple domains within Mixl1 and Brachyury

underpin their association. This conclusion mirrors previous

studies showing that sequences outside the T-box domain of

Tbx5 contributed to its interaction with the homeodomain

protein, Nkx2-5 [43]. An important finding was that Mixl1

mutants defective for DNA binding [2,5,11] were still able to

interact with Brachyury. An exception was the Mixl1 mutant

(P126I) that displayed substantially reduced binding to Brachyury.

Strikingly we observed that this mutation also impaired the ability

of Mixl1 to associate with itself, presumably as a homodimer.

These results suggest a number of interesting possibilities. Firstly,

since the capacity of Mixl1 to bind DNA is not a pre-requisite for it

to interact with Brachyury, part of the pool of Mixl1 and

Brachyury within the cell may exist as a pre-formed complex

sequestered from DNA. These factors might then be recruited

alone or as a complex to promoter DNA in order to regulate gene

transcription. Second, our data suggests that helix 3 of the Mixl1

HD is a direct interaction surface for Brachyury or that Brachyury

has a preference to associate with Mixl1 homodimers. Further

structural analysis of the Mixl1-Brachyury complex may shed

further light on the function and dynamics of the Mixl1-Brachyury

interaction.

Brachyury is the founding member of a family comprising at least

18 mammalian T-box genes that are involved in the induction and

regional specification of mesoderm [19,24,48]. We provide

evidence to support the notion that in addition to Brachyury,

other members of the T-box family might interact with Mixl1.

Firstly, we confirmed that the expression of the T-box genes Eomes,

Tbx2, 3, 6 and 20 significantly overlapped with the transient

expression of Mixl1 at days 3 and 4 of ESC differentiation.

Furthermore, immunofluorescence analysis of differentiating EBs

revealed the presence of a Mixl1+Eomes+ population of cells

during ESC differentiation. The expression pattern of these genes

is consistent with their previously reported expression in the

primitive streak and emerging mesoderm of gastrulation stage

embryos [48–50]. Second, our biochemical analyses demonstrated

that Eomes, Tbx2, 3, 6 and 20 were all capable of interacting with

Mixl1. Our interaction studies suggested that these same four T-

box factors could also interact with the related homeodomain

protein, Gsc [51–53]. The finding that multiple members of the T-

box family bind Mixl1 or Gsc suggests that the Mixl1-Brachyury

interaction reflects a generic propensity for association between

paired homeobox proteins and T-box factors. Notably, we were

unable to detect an interaction between Brachyury and the POU-

homeodomain factors Oct4 or Oct6, suggesting that additional

sequence requirements govern Mixl1-T-box interactions and that

not all classes of homeodomain proteins associate with T-box

factors.

The functional significance of the Mixl1-Brachyury association

was demonstrated in luciferase reporter experiments in which

Brachyury repressed Mixl1 activation of the Gsc promoter. A

similar effect was observed with Eomes and Tbx6. Whilst it was

possible that Brachyury would block Mixl1 binding to DNA, we

observed that the T-box domain of Brachyury actually formed a

ternary complex with DNA-bound Mixl1. These observations

suggested that Brachyury and related T-box factors might be

recruited to target genes via the association of their T-box domain

with promoter bound Mixl1. Such an arrangement might allow T-

box factors to regulate genes to whose promoters they do not

directly bind. Our observation that non-DNA binding mutants of

Brachyury repressed Mixl1 activity and that Brachyury alone did

not transactivate the Gsc promoter are consistent with this idea.

This indirect mode of promoter repression through complex

formation with an unrelated transactivating factor has previously

been described for basic helix-loop-helix factors such as Hey1

protein and its association with the GATA family of transcrip-

tional activators [54].

The repressive effect of Brachyury might be mediated through

the recruitment of co-repressor complexes to the Gsc promoter

(Figure 7). While Brachyury has largely been described to function

as a transcriptional activator [22,23,55], mapping of regulatory

domains in the carboxy terminal half of Brachyury has identified

repression domains [23]. In addition, Tbx6 has been shown to

repress gene expression [56]. More recently, the T-box proteins

Tbx15 and Tbx18 have been suggested to repress promoter

activity through the recruitment of Groucho/HDAC or CtBP/

HDAC repressor complexes [45] while a C terminal motif in Tbx2

and Tbx3 mediates repression by direct association with HDAC1

[57]. It is noteworthy that in our reporter assays, neither the

Brachyury T-box domain nor the carboxy-terminal portion alone

repressed Mixl1 transactivation activity. These observations lead

us to speculate that the T-box, in this context, might target Tbx

proteins to promoter bound homeodomain factors while the

carboxy-terminal region participates in the recruitment of co-

repressor factors (Figure 7).

In summary, these studies represent the first demonstration that

the paired-like homeodomain protein Mixl1 can interact with

several members of the Tbx protein family. These data raise the

Figure 7. Model for repression of Mixl1 transactivating ability
by T. Top panel: Mixl1 binds and activates expression of the Gsc gene
promoter through the recruitment of co-activators. Bottom panel: Mixl1
recruits T through the association of the HD with the T T-box domain
(grey). The carboxy terminal portion of T (black) mediates recruitment
of co-repressors at the Gsc gene, resulting in gene repression.
doi:10.1371/journal.pone.0028394.g007
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interesting possibility that the temporal and/or spatial expression

of Tbx factors during development may influence the Tbx partner

choice and transcriptional activity of Mixl1. Future experiments

aimed at establishing which Mixl1-Tbx interactions take place

during the establishment and patterning of the primary germ

layers will help shed light on the function of Mixl1-Tbx complexes

during early development.

Materials and Methods

Plasmids
pEF-BOS FLAG Mixl1 was created by cloning a PCR fragment

generated from Mixl1 cDNA into the AscI site of pEF-BOS [58].

pMT2-HA Mixl1 and pMT2-HA Goosecoid (Gsc) were created by

cloning PCR fragments generated from Mixl1 and Gsc cDNAs into

the SalI and EcoRI sites of pMT2-SM HA. pMT2-HA Brachyury

(T) was created by cloning a Brachyury cDNA into the XhoI and

EcoRI sites of pMT2-SM HA. pMT2-HA Tbx6 was created by

cloning a Tbx6 cDNA into the NotI and SalI sites of pMT2-SM

HA. pMT2-HA Eomoseodermin (Eomes) was created by cloning a

Eomes cDNA into the XhoI and EcoRI sites of pMT2-SM HA.

pMT2-SM HA containing the T-box domain of Brachyury was

created by cloning a cDNA encompassing nt 1–687 of Brachyury

into the XhoI site of pMT2-SM HA. pMT2-SM HA DT-box-

Brachyury was created by cloning a cDNA excluding nt 1–687 of

mBrachyury into the XhoI and EcoRI sites of pMT2-SM HA. To

ensure nuclear localization of the Brachyury T-box and DT-box-

Brachyury proteins an SV40 nuclear localization sequence

(PKKKRKV) [59] was cloned between the NotI/SalI sites and

NotI/XhoI sites upstream of the cDNAs for pMT2-SM HA

Brachyury T-box and pMT2-SM HA DT-box-Brachyury, respec-

tively. pMT2-HA Oct4 and Oct6 were created by cloning cDNAs

spanning the coding regions of each gene into the XhoI and EcoRI

sites (for Oct4) and the SalI and EcoRI sites (for Oct6) of pMT2-SM

HA. To obtain N-terminally fused GST-tagged proteins, Mixl1,

Brachyury, Tbx3, Tbx6, Tbx20 and Eomes cDNA sequences were

generated by PCR from a day 4 differentiated Mixl1GFP/w ESC

[13] cDNA library, and cloned into the pDONR221 entry vector

via the BP reaction (Gateway Technology, Invitrogen). pENTRY

clones were subsequently used in LR reactions (Invitrogen) with

the expression vector pDEST27 (GST). Sequences encoding

truncated Mixl1 or Brachyury were made from cDNA using a

PCR based approach and cloned into pDONR221 via the BP

reaction (Invitrogen). pENTRY clones were subsequently used in

LR reactions (Invitrogen) with the mammalian expression vector

pDEST27 (GST). Similarly for bacterial protein expression, GST-

mMixl1, GST-hMixl1, GST-xMixl1, His-Brachyury, His-Brachy-

ury T-box domain, His-Brachyury and His-Xbra derivatives were

constructed by Gateway cloning using Gateway converted

bacterial expression vectors pGEX2T (GST) or pET15b (His).

Site directed mutagenesis of the Brachyury T-box domain (K150A

and F217A) was performed with the pET15b Brachyury T-box

construct using the Gene Tailor site directed mutagenesis system

according to the manufacturer’s instructions (Invitrogen). pGL3

reporter constructs contained the luciferase gene linked to genomic

fragments from Gsc (111 bp) or Pdgfra (1 kbp) promoters. These

genomic fragments represented sequences immediately upstream

from the transcription start site in the case of Pdgfra or nts-574 to -

463 relative to the transcription start site in the case of the Gsc

promoter.

Quantitative Real-Time Polymerase Chain Reaction
RNA from undifferentiated and differentiated ESCs was

prepared using the RNAeasy kit according to the manufacturer’s

instructions (Qiagen). First strand cDNA was reverse transcribed with

random hexamer priming using Superscript III reagents (Invitrogen).

Quantitative real-time polymerase chain reaction was performed using

TaqManH gene expression probes and TaqmanH reagents (Applied

Biosystems) and the 7500 Fast Real-Time PCR System absolute

thermal cycler and software (Applied Biosystems). Quantifica-

tion studies using TaqManH Gene Expression Assays were carried

out according to the manufacturer’s instructions with the

following TaqManH Gene Expression Assay probe sets: Tbx3

(Mm01195726_m1); Tbx6 (Mm00441681_m1); Tbx20 (Mm00451515

_m1); Eomes (Tbr2) (Mm01351985_m1); Brachyury (Mm00436877_m1);

Mixl1 (Mm00489085_m1); Goosecoid (Mm00650681_g1); Oct4

(Mm00658129_gH) and Hprt (Mm00446968_m1). For each of the

gene specific primers sets used, the signal was compared to that

obtained with Hprt and the results expressed as a relative gene

expression as described previously [60].

ESC growth and differentiation
The Mixl1w/w (W9.5) [61], heterozygous Mixl1GFP/w [13] and

homozygous null Mixl GFP/Hygro ESCs [37] were cultured on

primary mouse embryonic fibroblast (PMEF) feeder layers as

described [62] in ESC media (high glucose DMEM supplemented

with 15% FCS (v:v) and 1000 U/ml Leukaemia Inhibitory Factor

(LIF). ESCs were differentiated as embryoid bodies as described

[13]. On the day prior to differentiation, ESCs were passaged onto

fresh PMEFs. ESCs and PMEFs were harvested and re-suspended

in Iscove’s Modified Dulbecco’s Medium (IMDM) (Invitrogen)

supplemented with 10% FCS. Cells were then transferred to a

non-gelatinised tissue culture dish and placed at 37uC in an

incubator for 40 minutes to separate PMEFs from ES cells by

virtue of their more rapid adherence. The non adherent ES cell

fraction was harvested and disaggregated ES cells seeded at

5000 cells/ml in 6 cm non-adherent dishes in differentiation

medium, comprising IMDM supplemented with 15% FCS (v:v),

5% protein free hybridoma medium II (v:v) (Invitrogen), 2 mM

glutamine (v:v), 50 mg/ml ascorbic acid (w:v) (Sigma) and

4.561024 M a-MTG (Sigma). Embryoid bodies formed and grew

for the indicated number of days. Cultures were maintained at

37uC in a humidified environment of 8% CO2 in air. The

initiation of differentiation was denoted as day 0.

Cell culture and luciferase assays
293T (ATCC CRL-11268) and C2C12 (ATCC CRL-1772)

cells were maintained in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum. C2C12 cells were

transfected using FuGENE 6 reagent (Roche) and assayed for

luciferase activity as previously described [6]. Reporter and

expression plasmids were added in the amounts indicated in the

figure legends. Transfection of 50 ng pRTKluc (Renilla) served as

a transfection control and was used to normalize luciferase activity.

All data shown represents an average of at least three experiments

performed in triplicate. Error bars represent standard error of the

mean where n = 3.

Double indirect immunofluorescence cell staining
Day 4 and day 9 W9.5 EBs were fixed in 4% (w/v)

paraformaldehyde (PFA) in 10 mM PBS (pH 7.2) for 20 minutes

and 40 minutes at room temperature, respectively. Following

fixation, samples were rinsed twice in PBS. Aggregates of day 4

and day 9 mouse EBs were then pelleted, covered in 0.7% (w/v)

low melt agarose, paraffin embedded and subsequently sectioned

at 5 mm. Following de-waxing, histological sections underwent an

antigen retrieval step followed by brief washes in deionised water

and PBS. Sections were then washed in PBS containing 0.5%
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bovine serum albumin, 0.1% Tween 20 and 5% donkey serum at

room temperature for 30 min and then labelled overnight at 4uC
with Brachyury N-19 (diluted 1:50, Santa Cruz Biotechnology). A

negative control consisted of the parallel staining step on day 9

mouse EB sections. Anti-Brachyury was detected by incubation

with biotinylated donkey anti-goat IgG (diluted 1:100, Vector

Laboratories), for 30 minutes at room temperature followed by

Streptavidin Alexa FluorH 488 (diluted 1:500, Molecular Probes).

Sections were blocked with goat serum diluted 1:20 in 0.5% BSA/

PBS-T and incubated with anti-Mixl1 2D10 rat monoclonal

antibody (diluted 1:50) [35] for 1 hour at room temperature. Anti-

Mixl1 was detected by incubation with Alexa FluorH 568 goat

anti-rat IgG (diluted 1:100, Molecular Probes). All sequential

antibody incubation steps included three washes in PBS containing

0.1% Tween 20. In case of Mixl1 and Eomes staining, sections

were incubated for 30 minutes in normal goat serum diluted 1:20

in PBS containing 0.1% Tween 20 and 0.5% BSA (0.5% BSA/

PBS-T) and then labeled overnight at 4uC with anti-Mixl1 2D10

rat monoclonal antibody (diluted 1:50) [35] and an anti-Eomes

rabbit polyclonal antibody (diluted 1:50, Chemicon International).

Negative controls consisted day 9 mouse EBs processed in parallel.

Sections were then incubated with biotinylated goat anti-rabbit

IgG (diluted 1:100, Vector Laboratories) for 30 minutes at room

temperature. Anti-Mixl1 and anti-Eomes were detected by

incubation with Alexa FluorH 568 goat anti-rat IgG (diluted

1:100, Molecular Probes) and Streptavidin Alexa FluorH 488

(diluted 1:500, Molecular Probes). All sequential antibody

incubation steps included three washes in PBS containing 0.1%

Tween 20. Sections were incubated in the nuclear stain (TOPRO-

3 diluted 1:500, Molecular Probes) for 5 minutes at room

temperature and mounted with anti-fade mounting medium.

Confocal images were captured using the Leica TCS SP-5

confocal microscope.

Recombinant protein expression and purification
E. coli strain BL21 RIPL(DE3) (Stratagene) containing pGEX-

mMixl1, pGEX-hMixl1, pGEX-xMixl1, pET15b-mBrachyury,

pET15b-mBrachyury T-box domain, pET15b-hBrachyury or

pET15b-Xbra derivatives was cultured at 37uC in 2.5 litre LB

media containing ampicillin (100 mg/ml) and chloramphenicol

(30 mg/ml). At an OD600 of 0.5–0.6 the cells were induced with

IPTG (1.0 mM). After 5 h at 30uC cells were harvested and the

cell pellet resuspended in 30 ml of lysis buffer (50 mM Tris-HCl

pH 8.0, 20% sucrose, 1 mM EDTA, 0.3 M KCl, 0.5% Triton X-

100, 1 mM DTT, 0.5 mM PMSF, 1 mg/ml Aprotinin and 1 mg/

ml Leupeptin). The cells were incubated on ice with 200 mg/ml

lysozyme, lysed by freeze-thawing and sonication and the bacterial

lysate cleared by ultracentrifugation. His-Brachyury derivatives

were batch purified by mixing clarified lysates containing 10 mM

Imidazole with Talon resin (Clontech) for 4 h at 4uC with gentle

rotation. The slurry was washed three times in wash buffer

(50 mM Tris-HCl pH 8.0, 150 mM KCl, 0.5% Triton X-100,

10 mM Imidazole, 0.5 mM PMSF, 1 mg/ml Aprotinin and 1 mg/

ml Leupeptin) and the His-Brachyury proteins were eluted in wash

buffer containing 300 mM Imidazole for 30 min at 4uC with

gentle rotation. The preparations were dialysed against ELB150

buffer (50 mM HEPES-KOH pH 7.9, 150 mM KCl, 5 mM

MgCl2, 0.5 mM EDTA, 0.5% TX-100, 0.5 mM PMSF, 1 mg/ml

Aprotinin and 1 mg/ml Leupeptin). GST-Mixl1 derivatives were

batch purified by mixing clarified lysates with glutathione agarose

(Sigma) for 4 h at 4uC with gentle rotation. The slurry was washed

three times in wash buffer (50 mM Tris-HCl pH 8.0, 150 mM

KCl, 1 mM EDTA, 0.5% Triton X-100, 0.5 mM PMSF, 1 mg/ml

Aprotinin and 1 mg/ml Leupeptin) and the GST-Mixl1 proteins

were eluted in wash buffer containing 15 mM Glutahione for

30 min at 4uC with gentle rotation. The preparations were

dialysed against ELB150 buffer.

Preparation of nuclear extracts
Differentiating W9.5 ES cell nuclear extracts were prepared as

previously described [63] and dialysed against ELB150 buffer.

Protein-Protein interaction analyses
To perform co-immunoprecipitation assays, 293T cells were

transfected with pEF-BOS FLAG or pMT2-SM HA expression

vectors encoding Mixl1, Goosecoid, Oct4 or Brachyury proteins in

combinations indicated in the figure legends using FuGENE 6

reagent as described by the manufacturer (Roche). After

transfection (72 hours) cells were lysed in ELB150 buffer. For co-

immunoprecipitation, 293T cell lysates were incubated in ELB150

buffer with 5 mg anti-FLAG M2 antibody or 5 mg isotype control

antibody with rotation at 4uC. After 4 h, pre-washed protein G-

beads were added to recover immunoprecipitates, washed in

ELB150 buffer and analysed by Western blot analysis. For GST

pull-down experiments using mammalian cell extracts, 293T cells

were transfected as above with pDEST27 and pMT2-SM HA

expression vectors encoding Mixl1 or Brachyury proteins in

combinations indicated in the figure legends. After transfection

(72 h), cells were lysed in ELB150 buffer. 293T cell lysates were

incubated in ELB150 buffer with pre-washed glutathione agarose

(Sigma) with rotation at 4uC, washed in ELB150 buffer and

subjected to Western blot analysis. To analyse interactions

between bacterial produced Mixl1 and Brachyury, purified lysates

containing His-Brachyury derivatives were incubated with purified

lysates containing equivalent levels of GST-Mixl1 derivatives or

GST alone and 100 ml of pre-washed glutathione beads in 500 ml

of ELB150 buffer. Reactions were performed at 4uC for 3 h with

rotation. Complexes were washed in ELB300 buffer containing

0.3 M KCl and subjected to Western blot analysis.

Protein-DNA interaction assays
Electrophoretic mobility shift assays (EMSA) were performed

with 5000 c.p.m. of 32P-labeled double-stranded P3, Gsc DE

MBS, Gsc PE MBS or Brachyury T DNA probes as previously

described [6].

Antibodies and Western blotting
Protein extracts were resolved on 4–12% Bis-Tris gels and

transferred to PVDF membrane. Membranes were blocked with

Superblock Blocking Buffer (Pierce) and subsequently probed with

the following antibodies: anti-6G2 [35], anti-Brachyury (Santa

Cruz, N19), anti-GST (Santa Cruz, B14), anti-HA (Roche), anti-

actin (Sigma), anti-Tbr2 (Eomes; Chemicon), anti-Tbx6 (abcam,

35733), anti-Tbx3 (Santa Cruz, S17), anti-Tbx20 (abcam, 42468)

and anti-Oct4 (Santa Cruz, N19). Primary antibodies were

detected using a Chemiluminescence Substrate Kit according to

the manufacturer’s instructions (GE).

Microarray analysis
Mixl1 and Tbx gene expression profiles were obtained from

AffymetrixH array gene profiling experiments [37]. Primary data is

available through (http://www.ebi.ac.uk/arrayexpress/) via Ac-

cession number E-MEXP-1976.

Supporting Information

Figure S1 Immunofluorescence analysis of differentiat-
ed W9.5 ESCs. (A) Immunofluorescence analysis of Mixl1 and
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Brachyury expression in day 9 differentiated W9.5 ESCs. In

contrast to d4 immunofluorescence images presented in Figure 1,

staining with anti-T and anti-Mixl1 antibodies at day 9 did not

reveal expression of either protein. Nuclei were visualized with

TOPRO (Blue). Original magnification: 650. (B) Mixl1 protein is

co-expressed with Eomes. Immunofluorescence analysis of day 4

differentiated W9.5 ESCs showing co-expression of Eomes (green)

and Mixl1 (red) proteins. Nuclei were visualized with TOPRO

(Blue). Original magnification: 650 upper row and 6100 lower

row. (C) As a negative control, day 9 W9.5 ESCs were subjected to

the same staining protocol as in (B). No specific antibody staining

was observed at this time. Nuclei were visualized with TOPRO

(Blue). Original magnification: 650 upper row and 6100 lower

row.

(TIF)

Figure S2 Association of Mixl1 with homeodomain
proteins. 293T cells were transfected with FLAG mMixl1

together with HA mMixl1 (A), HA mGsc (B) or HA mOct4 (C) as

indicated. Whole cell lysates were subjected to immunoprecipita-

tion (IP) with anti-FLAG antibody or IgG control antibody

followed by Western blot analysis with anti-HA antibodies.

(TIF)

Figure S3 Expression of Tbx factors during ESC
differentiation. Graphs showing the signal intensity of Mixl1,

and the Tbx genes Tbx1, Tbx2, Tbx4, Tbx5, Tbx14 and Tbx21

detected by microarray analysis of EBs from d2 to d6 of

differentiation.

(TIF)

Figure S4 Mixl1 associates with Tbx proteins. (A) 293T

cells were transfected with HA mMixl1 together with GST mT,

mTbx3, mTbx6 or mTbx20 as indicated. Whole cell extracts were

prepared and the GST-fusion proteins isolated using glutathione

resin. Bound fractions were analysed by Western blot analysis with

an anti-HA antibody. Expression of each protein was confirmed

with anti-GST and anti-HA antibodies. (B) Analysis of the

interaction between T and Oct4 and Oct6. 293T cells were

transfected with GST-mT together with HA-mMixl1, HA-mOct4

or HA-mOct6. Whole cell extracts were prepared and the GST-

fusion proteins were isolated using glutathione resin. Bound

fractions were analysed by Western blot analysis with an anti-HA

antibody. Expression of each protein was confirmed with anti-

GST and anti-HA antibodies.

(TIF)

Figure S5 T and related Tbx factors reduce Mixl1
induction of the Gsc and Pdgfra promoters. (A) An

additional replicate of the luciferase reporter assays showing the

effect of T domains and related Tbx members on the transactiva-

tion activity of Mixl1. Luciferase reporter analysis was performed

on the Gsc promoter with 25 ng pMT2-HA-Mixl1 and 200 ng of

pMT2-HA-T, T-Tbox, T DTbox (TDT), Eomes or Tbx6. Results

from an independent experiment are shown. Error bars show the

S.E.M., n = 3. (B) Luciferase reporter analysis was performed on

the Pdgfra promoter with 25 ng pMT2-HA-Mixl1 and increasing

amounts of pMT2-HA-T. Results from an independent experi-

ment are shown. Error bars show the S.E.M., n = 3. (C) Luciferase

reporter analyses were performed on the Pdgfra promoter as

outlined in (B) with 25 ng pMT2-HA-Mixl1 and 200 ng of pMT2-

HA-T, T-Tbox, T DTbox (TDT), Eomes or Tbx6. Results from

two independent experiments are shown. Error bars show the

S.E.M., n = 3. (D) Additional replicates of the luciferase assay

showing the effect of T mutants on the transactivation activity of

Mixl1. Reporter analyses were performed on the Gsc promoter

with 50 ng pMT2-HA-Mixl1 and 200 ng of pMT2-HA-Brachy-

ury or pMT2-HA-Brachyury T-box mutants K150A and F217A.

Results from two independent experiments are shown. Error bars

show the S.E.M., n = 3. (E) Luciferase reporter analyses were

performed on the Pdgfra promoter as outlined in (D). Results from

three independent experiments are shown. Error bars show the

S.E.M., n = 3.

(TIF)
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