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The vision sciences literature contains a large diversity of
experimental and theoretical approaches to the study of
visual attention. We argue that this diversity arises, at
least in part, from the field’s inability to unify differing
theoretical perspectives. In particular, the field has been
hindered by a lack of a principled formal framework for
simultaneously thinking about both optimal attentional
processing and capacity-limited attentional processing,
where capacity is limited in a general, task-independent
manner. Here, we supply such a framework based on
rate-distortion theory (RDT) and optimal lossy
compression. Our approach defines Bayes-optimal
performance when an upper limit on information
processing rate is imposed. In this article, we compare
Bayesian and RDT accounts in both uncued and cued
visual search tasks. We start by highlighting a typical
shortcoming of unlimited-capacity Bayesian models that
is not shared by RDT models, namely, that they often
overestimate task performance when information-
processing demands are increased. Next, we reexamine
data from two cued-search experiments that have
previously been modeled as the result of unlimited-
capacity Bayesian inference and demonstrate that they
can just as easily be explained as the result of optimal
lossy compression. To model cued visual search, we
introduce the concept of a “conditional communication
channel.” This simple extension generalizes the lossy-
compression framework such that it can, in principle,
predict optimal attentional-shift behavior in any kind of
perceptual task, even when inputs to the model are raw
sensory data such as image pixels. To demonstrate this
idea’s viability, we compare our idealized model of cued
search, which operates on a simplified abstraction of the
stimulus, to a deep neural network version that
performs approximately optimal lossy compression on
the real (pixel-level) experimental stimuli.

Introduction

The scientific literature on visual attention contains a
wide variety of experimental approaches and theoretical

perspectives. For example, many publications contend
that attentional mechanisms exist as a way to allocate
a limited computational resource. There is ample
evidence, for example, that neural tuning curves can
change (e.g., in response to a cue) so as to afford
higher signal-to-noise ratios in some receptive fields
at the cost of lower signal-to-noise ratios for other
receptive fields (Desimone & Duncan, 1995; Reynolds
et al., 2000; Spitzer et al., 1988). Experiments have also
demonstrated that people can voluntarily change the
spatial range of their focus of attention and that an
increase in spatial range comes at the cost of lower
resolution (Carrasco, 2011). These findings have been
interpreted by some (but not all) as evidence for
resource reallocation.

At the same time, however, there has been a debate
within the visual search community about whether
search times and detection accuracy are best described
by a noisy but unlimited-capacity process (a so-called
data-limited process) versus a limited capacity process
that allocates more resource to some parts of a display.
Results have been mixed, with some experiments finding
stronger evidence for data-limited processing (Eckstein,
1998, 2011, 2017; Eckstein et al., 2006, 2002, 2009;
Palmer et al., 1993, 2000; Palmer, 1994; Shimozaki et al.,
2003, 2012) and other experiments supporting limited
capacity processing (Davis et al., 2003; Lu & Dosher,
1998; Palmer et al., 2011). In additional experiments
on visual search, data are found to be well explained
by unlimited-capacity Bayesian or signal-detection
models, but these models are not always compared
to capacity-limited models (Eckstein et al., 2000; Ma
et al., 2011; Schoonveld et al., 2007). In still other
experiments, data support a role for capacity limits and
compression of information (e.g., Rosenholtz et al.,
2012, though note that this work concerns differences
between peripheral and foveal representations).

Data from cued visual search tasks are often
explained in terms of capacity limits (Carrasco &
Yeshurun, 1998; Posner, 1980). In these tasks, subjects
are given a cue before the stimulus appears as to which
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of N locations is likely to contain a target object. Then
they report target presence or absence. Usually, the
cue indicates the correct location, but on some trials, it
does not. It is generally found that the cue is helpful
when it is correct and hinders when it is incorrect.
These results have been explained by some form of
attentional allocation, such as lowering neural noise
at the cued location while increasing it at the uncued
location(s). However, they have also been explained
without appealing to capacity limits, by stipulating that
the cue influences a Bayesian prior distribution over
target locations. A Bayesian observer can treat a cue as
indicating a high prior probability of a target appearing
at the cued location and multiply this probability by the
likelihood of the target given the sensory measurement
(Shimozaki et al., 2003, 2012).

The evidence just presented for a possible lack
of capacity limits in visual search would seem to fly
in the face of other well-established results within
the attention literature, which argue that capacity
limits almost surely play a role. For example, it is well
established that people can simultaneously track only a
limited number of moving objects and that attending to
the moving objects makes it harder to detect changes in
other parts of a display (Alvarez & Franconeri, 2007;
Alvarez & Oliva, 2008, 2009; Tombu & Seiffert, 2008).

In this article, we argue that the wide range of
experimental findings and theoretical claims in the
vision sciences literature arises, at least in part, from the
field’s inability to unify differing theoretical perspectives.
In particular, the field has been hindered by a lack
of a principled conceptual and formal framework for
simultaneously thinking about both optimal (Bayesian)
attentional processing and capacity-limited attentional
processing. A goal of this article is to supply such a
framework, which is based on rate-distortion theory
(RDT) and optimal lossy compression. We argue that
this framework can reconcile the simultaneous successes
of Bayesian ideal observers and of capacity limits in
explaining performance in perceptual tasks.

Here, we apply RDTmodels to both uncued and cued
visual search tasks. When examining uncued search,
we present data suggesting previously unexplored
limitations to data-limited models of visual search and
providing additional evidence that the search is more
capacity limited than data limited. Next, we extend
the framework to the domain of cued visual search,
where we model results from two cueing experiments
that have previously been taken as evidence for an
absence of a capacity limit in search (Shimozaki et al.,
2003, 2012). We show that these results can just as
easily be explained within our optimal, capacity-limited
framework.

The article is organized as follows. The following
two sections explain RDT at intuitive and formal
(mathematical) levels. The subsequent two sections
compare our RDT framework to existing theories
of attentional capacity limits in visual search and

to unlimited-capacity signal detection and Bayesian
theories, respectively.

The following section reports our experimental and
modeling work on uncued visual search. We reasoned
that if people adaptively allocate their perceptual
capacity, their performance in an attentional task
should be limited by the entropy of the stimulus
distribution (roughly, the uncertainty in the prior
distribution over target locations) they are exposed
to. While most visual search tasks use a single target,
here we varied the number of targets (either one or
two). Subjects viewed displays with vertically oriented
distractors and nonvertically oriented targets and
reported the direction of tilt away from vertical on
all targets in the display. We designed our stimuli
such that RDT and unlimited-capacity Bayesian
accounts made widely divergent predictions in the
one- versus two-target conditions so we could easily
distinguish between them. The two models make
different predictions because the RDT model is more
sensitive to stimulus entropy than the Bayesian model
due to its capacity limitations.1

The next section considers cued search. We revisit
important experimental studies by Shimozaki and
colleagues (Shimozaki et al., 2003, 2012). We offer
an explanation for how subjects respond to cues
that is different from the authors’ strictly Bayesian
explanation and addresses its known limitations. Most
important, the explanation by Shimozaki et al. does not
generalize beyond the case of signal-detection per se.
For instance, it is well known that people can modulate
their attention to different aspects of a stimulus (e.g.,
different features in an image) even when the prior
probabilities over target locations have not changed,
meaning that attentional modulation is not equivalent
to prior probability modulation. By contrast, our
RDT-based explanation generalizes to any kind of
attentional shift. In the context of cued visual search, it
posits that subjects respond to cues by allocating more
representational resources (i.e., bits) to locations where
the target is more likely to appear.

Finally, we demonstrate that our approach based on
efficient lossy compression can feasibly scale up, such
that we can predict behavior at the level of raw sensory
signals. Specifically, we implement an image-computable
model of one of the cued search experiments that takes
real stimulus images (pixel values) as input. We compare
its predictions to the idealized model, which operates
on simplified abstractions of the stimuli, as is typical in
psychological modeling.

RDT and optimal lossy
compression: An intuitive account
This section provides an intuitive overview of RDT

and optimal lossy compression in the context of visual
perception. Readers seeking additional information
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should see Bates and Jacobs (2020), Bates et al. (2019),
Sims (2016, 2018), and Sims et al. (2012).

Our framework regards a visual observer as a type of
“communication channel” that, speaking loosely, needs
to communicate information from visual portions of
its brain to portions that control decision making and
behavior. Let’s consider the problem of communicating
a signal, such as a visual image, denoted x. In nearly
all applications, one does not communicate x directly.
Rather, one communicates a code for x, denoted x̂.
For example, a code might be a neural code such as a
pattern of neural activities. (In this case, the mapping
x → x̂ is known as neural encoding, and the mapping
x̂ → x is neural decoding.) Ideally, one might set x̂ = x
so that a code conveys all the information about the
signal, including all its fine details. That might be what
one would do if there were no capacity constraints on a
communication channel.

But physically realized channels, such as neural
circuits in biological observers, always have limited
capacity. It is therefore imperative to find an “efficient”
code satisfying the following two properties. The first
property is that a code must be compressed, meaning
that, on average, it represents signals using fewer
representational resources (i.e., bits) than the channel’s
maximum capacity. For example, if a channel has a
small capacity, then a compressed code for an image
might convey the coarse structure of the image but not
its fine details. This property is a hard constraint that
cannot be violated.

The second property is that a channel’s code
should be maximally informative about signals in a
task-dependent manner, meaning that it represents
as much task-relevant information in the signals as
possible. This criterion is a soft constraint in the sense
that the representation of task-relevant information
should be maximized to the greatest extent possible.
Importantly, these two properties interact with each
other. A low-capacity channel will need to use highly
compressed codes that might convey only some of the
task-relevant information. In contrast, a high-capacity
channel can use codes that are only mildly compressed
(or perhaps not compressed at all) and therefore can
convey more task-relevant information.

In our RDT framework, the notion of task-
dependent lossy compression is critically important
to the idea of capacity-limited visual attention. In a
communication channel—or a visual observer—a lossy
code might convey the detailed structure of one portion
of an image (a portion within the observer’s focus of
attention) but convey only the coarse structure of other
portions (portions outside the focus of attention).

How does RDT find a task-dependent capacity-
limited lossy code? It does so based on three inputs
provided by the user. One input is the capacity of the
communication channel. It is through this input that
a user quantifies the “bottleneck” or capacity limit on

performance. As indicated in the previous paragraph,
our RDT framework conjectures that attention helps
alleviate problems associated with low capacity. In a
visual search task, for example, attention is a way of
representing some portions of an image with high
fidelity (namely, those portions likely to contain a
target) while simultaneously representing other portions
(regions unlikely to contain a target) with low fidelity.

Capacity limits are typically formalized using
the information-theoretic unit of “bits.” This is
an appealing feature of RDT because this unit is
“assumption free,” meaning that it does not depend
on the nature of a task or the nature of an observer’s
internal representations and operations. This helps
explain the broad generality of RDT.

A second input is a loss function that quantifies the
penalties for mismatches between signals and their
task-dependent reconstructions based on codes. It is
through the loss function that a user specifies properties
of a task. For example, consider a TSA officer visually
searching bags at an airport. If the officer’s code for
an image fails to represent a weapon, then that failure
would carry a large penalty, whereas if the code fails to
represent a toothbrush, then that failure would carry a
small penalty.

The loss function is another appealing aspect of
RDT. In cases in which subjects’ understanding of a
task differs from an experimenter’s understanding, the
experimenter may want to try multiple loss functions
to see which one provides the best fit to subjects’ data.
An experimenter can also attempt to infer subjects’ loss
function from their data (Sims, 2015).

The final input is a prior distribution over visual
stimuli. This distribution carries information about the
statistical regularities in a visual environment. Similar
to Bayesian approaches, this information is used by
RDT to find optimal codes (lossy codes that minimize
task errors as quantified by the loss function). This
prior should match the knowledge of the subject being
modeled. In some circumstances, the experimenter may
choose to assume a prior distribution that they believe
approximately matches the subject’s, while in other
circumstances, the experimenter may fit a parametric
prior to subjects’ responses (see, e.g., Bates et al., 2019).

The RDT framework studied here should be regarded
as a “computational theory” of vision in the sense of
Marr (1982). That is, it provides an analysis of the visual
task faced by an observer, identifying the problems that
need to be solved during task performance along with
their optimal solutions. Although Bayesian approaches
also provide computational theories, the RDT
framework differs from Bayesian approaches because
RDT considers capacity limits—formalized in a general,
task-independent manner—when it computes optimal
solutions to problems. Like Bayesian approaches,
RDT does not provide an analysis at the level of
“representation and algorithm,” which seeks to identify
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an observer’s mental representations and operations, or
at the level of “hardware implementation,” which seeks
to understand an observer’s underlying hardware.

Historically, RDT has been developed primarily
within the engineering literature to characterize the
trade-off between rate (or capacity) and distortion
(or loss). We believe that the success of RDT in
the engineering literature over many decades—and
in a wide variety of task contexts—bodes well for
its success in the vision sciences. In general, other
information-theoretic approaches to attention and
other aspects of cognition have been tried in the past
(e.g., Kahneman, 1973). These approaches fell out of
favor in much of psychology as they failed to explain
many important phenomena (Luce, 2003). A crucial
shortcoming of earlier attempts has been their use of
lossless compression. Because a lossless code represents
all information in signals—both task relevant and task
irrelevant—it has limited applicability to biological
perception and cognition in real-world settings. In
contrast, RDT emphasizes capacity constraints that
lead to task-dependent lossy compression. Capacity
constraints mean that the end use (or task goal) of a
code (or representation) is critical for its design. Due
to capacity constraints, an efficient communication
channel (or visual observer) must choose which
information in the signal to prioritize. Hence, task
goals (loss function) and the statistical nature of a
channel’s environment (prior or stimulus distribution)
play essential roles in shaping a channel’s performance.
By taking both of these factors into account, RDT
is capable of accounting for structured psychological
representations and in fact provides an especially strong
account of psychological similarity and Shepard’s law
of generalization (Sims, 2018).

Finally, it is important to emphasize that while
traditional information theory applications address
the case of “signal reconstruction,” the theory applies
equally when the coded message that is transmitted
is not ultimately used for reconstruction, per se.
Therefore, it is applicable to the brain, which does not
generally try to reconstruct the signal. For example, the
engineering application of communicating over video
chat concerns signal reconstruction: The pixels sent
from your computer are first mapped to a compressed
code, this code is sent to a receiving computer, and
finally the receiving computer tries to reconstruct the
original image from the code. This same process occurs
in the brain, except that the end use for the code is
not reconstruction of the original signal but rather
some downstream task. For example, there is no brain
region devoted to reconstructing retinal activations (this
would be highly inefficient!). Rather, the retinal signal is
decoded to extract behavior-relevant information about
scene and object categories, ensemble statistics, material
and geometric properties, and so on. The neural code
from which these kinds of information are extracted

should be carefully designed to contain as much
task-relevant and as little task-irrelevant information as
possible.

RDT and optimal lossy
compression: A formal account

With this intuitive account of RDT as a foundation,
we next provide a formal (mathematical) account. RDT
defines a constrained optimization problem. It seeks
a probability distribution over codes given signals,
denoted p(x̂|x), that minimizes the expected value
of a loss function. However, the mutual information
between codes and signals (i.e., the average amount of
information the code x̂ conveys about signal x or vice
versa) cannot exceed the capacity of the communication
channel. This constrained optimization problem is
stated as follows:

p∗(x̂|x) = argmin
p(x̂|x)

Ep(x,x̂)L(x, x̂)

subject to MI(x; x̂) ≤ C.

(1)

where C denotes the channel’s capacity (in bits) and
L(x, x̂) denotes the loss function. Mutual information
is given by

MI(x; x̂) =
∑
x

∑
x̂

p(x, x̂) log
p(x, x̂)
p(x)p(x̂)

. (2)

The expected value of the loss function is taken with
respect to the joint distribution p(x, x̂). Because
p(x, x̂) = p(x) p(x̂|x), one typically specifies a prior
distribution p(x) over signals, sometimes referred to
as an input or stimulus distribution. A maximum
likelihood solution to the constrained optimization
problem can be found using the Blahut algorithm (see
Sims, 2016).

In general, the constrained optimization problem
is computationally tractable only when signals are
low-dimensional. In the context of visual perception,
that means that exact RDT cannot use images when
these images are represented at the pixel level (at least,
not with current conventional computers). Instead,
a user needs to make assumptions about what types
of high-order visual features might be important
to observers (e.g., orientation, color, size) and then
develop an abstract, low-dimensional representation for
images based on these features. This is the strategy that
we used in many of the simulations reported below.

Fortunately, however, researchers studying deep
neural networks (DNNs) have developed DNNs that
approximately solve the RDT constrained optimization
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problem, often with excellent results, even when
images are represented at the high-dimensional pixel
level. Consequently, these DNNs are referred to as
“image-computable” models. An advantage of these
models is that the user does not need to make any
assumptions about high-order visual features that
observers might be using. Below we present simulation
results using an image-computable DNN.

Relation to previous theories of
attentional capacity limits in visual
search

Previous theories of visual attention in the context
of visual search often conjecture that visual processing
is capacity limited. Critically, however, these theories
have failed to identify a benchmark for optimal
capacity-limited performance, which makes it difficult
to know when performance in a task is efficient (or
at least “good”). This matters because claims about
efficiency are central to theories of capacity limits in
visual search (Wolfe & Pashler, 1998).

All current behavioral approaches to assessing
capacity limits in visual search involve measuring
performance as a function of task demands. Consider,
for instance, the “workload” approach to visual
attention. In a single-target visual search task, the
number of distractor items (or workload) can be
varied. It is found that an increase in the number of
distractors often leads to worse performance (higher
search times, lower accuracy), but not always (Wolfe &
Pashler, 1998; Eckstein, 2011). When performance is
constant as a function of load for some stimulus set,
it is often said that capacity limits did not play a role.
This interpretation of capacity limits fits naturally with
notions of parallel versus serial computation—when
computation is parallel, it is efficient and therefore
“unlimited capacity.”Formal mathematical models have
been developed along this line of thinking to predict
response-time distributions as a function of processing
architecture (Townsend & Nozawa, 1995).

The workload approach to assessing capacity
limits has had limited success. Researchers have found
interactions between set size and performance (response
times or accuracy) to vary greatly depending on the
particular stimuli involved, and results do not map
neatly onto a strict parallel versus serial processing
dichotomy in which “primitive” features are encoded in
parallel across the visual field and composite features
or objects are encoded in a more laborious, serial
manner (Treisman & Gelade, 1980; Hochstein &
Ahissar, 2002). As a result, it has proven difficult to
quantitatively predict search efficiency on novel stimuli.
However, it is worth noting that some progress has been
made within the isolated domain of simple stimuli on

making quantitative predictions of performance as
a function of workload. This line of work assumes
that perceptual processing of each feature or stimulus
is limited by a fixed number of noisy samples (or
recruitable, statistically independent neurons), which
can be distributed to different locations in the display
as needed (Palmer et al., 1993; Eckstein et al., 2009).
These models can be related to our approach, but
they fundamentally differ in that they rely on a priori
assumptions about perceptual noise distributions that
are generally suboptimal from the standpoint of RDT.

Attentional bottlenecks have also been investigated
within the “dual-task” paradigm (related to our
two-target condition in Experiment 1; Han et al., 2003;
Liu et al., 2009; Menneer et al., 2009; Moore & Osman,
1993; Palmer et al., 2020; Pastukhov et al., 2009; Stroud
et al., 2012; Sperling & Melchner, 1978; VanRullen
et al., 2004). In these tasks, experimenters ask subjects
to report on two values (i.e., “tasks”) concurrently and
try to predict which task pairs will interfere with each
other. If performance on one task is degraded by adding
another concurrent task, then it is assumed that both
tasks share a common, limited resource. For example,
it is generally found that reporting feature values from
two separate objects or regions within a display is more
difficult than reporting from just one but that attention
can be split to varying degrees between the two (e.g.,
Sperling & Melchner, 1978).

Researchers can diagnose the degree of interference
for two simultaneous reports by plotting what is
known as the attention operating characteristic (AOC)
(Gottlob et al., 1999; Pastukhov et al., 2009; Sperling
& Melchner, 1978). The AOC plots the performance
on one task against performance on the other. When
two tasks interfere (and thus presumably compete for
the same limited resource pool), greater accuracy on
one will come at the expense of lower accuracy on the
other. These bottlenecks may occur at the perceptual
stage or some later processing stage. However, while
plotting psychometric curves such as the AOC can
diagnose when two dimensions or tasks draw on the
same resource pool, it has proven difficult to generalize
results using previous theories. That is, simply knowing
how two tasks interfere does not allow us to make
quantitative predictions about interference in other
pairs of tasks.

The RDT framework suggests several culprits for the
difficulties just reviewed. For one, workload variables
(e.g., number of distractor objects, similarity between
objects) are task specific and experimenter defined,
and their correspondences with relevant quantities
in the visual system are unclear (Kantowitz, 1987).
As already mentioned, major theories of attentional
capacity limits claim that “easy” tasks are capacity
unlimited while “hard” tasks are capacity limited. But
they lack an objective baseline of comparison to know
what is easy or hard for a capacity-limited agent. In
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RDT analyses, by contrast, the unit of information
(i.e., bits) provides a task-agnostic unit of measure
that allows cross-task comparisons. Specifically, RDT
models consider the number of bits that must be
transmitted in order to achieve the observed level
of performance in a task. According to RDT, this
measure, in turn, critically depends on what stimulus
distribution a subject is optimized for and how well
their behavioral goals align with the experimental task.
For instance, if goals (see Figure 3) or stimulus statistics
(see discussion of parameter τ , below) are poorly
aligned, the experimenter will find inefficient search
performance. Once a subject’s goals and environments
are specified (or well approximated), it is possible (in
principle) to predict performance in any perceptual
task with no changes to the RDT model (see below).
In this sense, the RDT approach is completely task
independent.

A related difficulty with previous theories is that
they make assumptions about which high-order visual
features (e.g., orientation, spatial frequency, color, size,
shape) exist in people’s representations of (natural)
images (Duncan, 1984, 1993; Duncan & Nimmo-Smith,
1996; Hochstein &Ahissar, 2002; Liu et al., 2009; Scholl,
2001; Treisman & Gelade, 1980). Formed primarily on
intuition, these assumptions seem problematic in the
context of natural images and ecological tasks (Orhan
& Jacobs, 2014). Alternatively, image-computable
DNNs trained to analyze (pixel-level) images have
become increasingly popular as models of biological
processing (Jacobs & Bates, 2019; Kriegeskorte, 2015;
Yamins & DiCarlo, 2016), at least in part because they
do not make these assumptions. Instead, they discover
complex visual features, often difficult to interpret and
not necessarily intuitive, during their learning process.
Because the RDT approach can be implemented using
image-computable DNNs, this approach does not need
to make representational assumptions. In principle,
DNNs implementing RDT can make predictions about
which visual features an optimal capacity-limited agent
should develop.

Relation to previous optimal
models

Like other models of optimality, such as Bayesian
models, RDT models can be regarded as “ideal
observers.” In general, ideal observers are useful for
at least two reasons. First, they provide a benchmark
by defining optimal task performance. By comparing
human performance with this optimal benchmark,
we can reason about whether human performance
is good, poor, or something in between. Second, if
we make the assumption that human observers are
(approximately) efficient—that is, they understand

the nature of their task and they know and use the
task-relevant statistical regularities of their visual
environment—ideal observers can make predictions
that researchers can use as working hypotheses about
people’s visual representations and operations.

Despite these commonalities, Bayesian and RDT
models rely on analogies to different kinds of human-
engineered systems. For instance, consider a particular
class of Bayesian models, namely, Bayesian-consistent
signal detection models. These models are analogous
to sensing devices, which are unlimited capacity but
whose measurements are corrupted by some degree of
internal noise. For example, a large array of identical,
noisy detectors could be applied to a search display in
order to detect the presence of a target. As the number
of locations where the target could appear is increased,
the amount of information transmitted by the sensor
array (as measured in bits) increases unboundedly.
Consequently, task performance may still remain high
(though performance could worsen due to the risk of
false alarms; see Huang & Pashler, 2005).

The RDT framework, by contrast, is based on an
analogy to a noisy communication channel, which is a
capacity-limited device. All information-transmitting
devices (such as neural circuits) have a maximum
bit rate associated with them. This maximum bit
rate (or capacity) can be approached using carefully
designed codes (including neural codes). When RDT
models assume that human observers are efficient, they
assume that people achieve information-transmission
rates close to their capacity.2 With this assumption,
experimenters can use RDT models to predict what
information in visual stimuli is being prioritized by
experimental subjects.

Because communication channels are limited
capacity, their accuracy declines as informational load
is increased. To continue the example above, as the
number of possible target locations in a display is
increased, the information-processing requirements (in
bits) will generally increase, and therefore detection
accuracy will decline monotonically as soon as the
channel capacity is exceeded.

Importantly, the signal detection and communication
channel analogies embody different assumptions about
the nature of neural noise. Bayesian models assume
there is some fixed amount of sensory noise inherent to
the system. This noise hinders task performance but
imposes no capacity limit. In contrast, RDT models
assume that sensory noise is largely the result of capacity
limits. In other words, as the amount of processing
resources (i.e., bits) devoted to a task increases, the
noise in the sensory response decreases. Moreover,
RDT assumes we can design the noise distributions to
be optimally suited to our needs (through evolution,
development, or learning). For example, for optimal
capacity-limited systems, some kinds of correlated
noise may actually be advantageous, and in many cases
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the optimal sensory response should be statistically
biased (Bates et al., 2019). These properties contrast
with i.i.d. (independent and identically distributed)
assumptions typical in Bayesian models.

To this point, we have compared conventional
Bayesian models, which lack limitations on information
processing, with RDT models, which include processing
constraints. Admittedly, however, there are Bayesian
models in the vision sciences literature that include
information-processing limitations. They may include,
for example, a sensory stage, which is designed to have
limitations resembling those of humans, followed by
a Bayesian decision-making stage, which computes an
optimal behavioral response based on the output of the
sensory stage.

To us, there are at least two drawbacks to these types
of models. First, the portions of these models with
information-processing limitations tend to be task or
domain specific. That is, they make representational
or processing assumptions (for example, assumptions
about the response profiles of visual neurons) that
depend on the specific task to which the model
is applied. Therefore, models for different tasks
or domains often have little in common. Second,
these models separate processing limitations and
optimization. Due to this separation, these models do
not address the optimal allocation of limited processing
resources.

In contrast, RDT successfully addresses both of
these points. In regard to the former, RDT constitutes
a completely task-independent baseline for achievable
performance, and this result follows from the theorems
of information theory. Its task independence is what
allows a RDT-based modeling framework to be applied
to a broad range of perceptual and cognitive domains.
In regard to the latter, because RDT comprises a
constrained optimization problem with capacity as
its constraint, it computes the optimal allocation of
limited processing resources.

Which approach—Bayesian or RDT—is best for
understanding human visual perception? When using
simple stimuli and tasks, such as those commonly
found in the vision sciences literature, Bayesian and
RDT models often make similar predictions. However,
an increasing number of researchers are studying
more realistic scenarios. Given the complexity of
these scenarios, and given experimental evidence that
perception can flexibly allocate its limited resources in
a sensible (perhaps optimal) way, we argue that RDT
models provide a particularly promising direction for
future research.

Uncued visual search

This section reports the results of an experiment
in which subjects were asked to perform an uncued

Figure 1. Example stimulus from the one-target condition. In
the two-target condition, the two targets were always 180◦

apart, and the direction of the tilt for each target was chosen
randomly.

visual search task. It also describes classes of RDT and
unlimited-capacity Bayesian models and reports the fits
of these models to our experimental data.

Stimuli and procedure

We gave subjects a visual search task with either
one or two search targets. Displays consisted of N = 8
objects evenly spaced on a circle centered relative to a
fixation cross. “Distractors” were vertically oriented
Gabor-like objects,3 whereas targets were tilted a small
fixed amount in the clockwise or counterclockwise
direction relative to vertical. (We chose 7.5 degrees
based on pilot data to achieve approximately 70–80%
correct on single-target search.)

The stimulus on a given trial was generated as
follows. First, a set of tilt values and locations was
chosen for each target (either one or two). If there was
just one target, the location was picked at random over
the N possible locations. If there were two targets, the
location of the first target was picked at random over
allN locations, but the second target was constrained to
be 180◦ apart on the circle. Thus, there were 8 × 2 = 16
equiprobable unique stimuli in the one-target case,
and in the two-target case, there were also 4 × 4 = 16
equiprobable unique stimuli. Figure 1 shows a sample
stimulus from the one-target condition. Subject
responses in the two-target condition were constrained
such that it was impossible to choose two locations that
were not 180◦ apart. Subjects were also informed of this
constraint in the instructions.

In the two-target case, the placement constraint
for the second target was introduced to disincentivize



Journal of Vision (2021) 21(5):3, 1–23 Bates & Jacobs 8

anticipatory saccades away from the stimulus center and
toward the ring of objects. Placement of objects along
the circle ensured that visual acuity was approximately
equal for all eight objects (assuming subjects maintained
fixation at the stimulus center).

Amazon Mechanical Turk subjects were randomly
assigned to the one-target condition (40 subjects) or the
two-target condition (41 subjects). In both conditions,
subjects were instructed to fixate on the cross in the
center of the screen, which came on for 500 ms prior to
the stimulus. The stimulus remained on the screen for
150 ms, and was followed by a response screen, where
subjects used the mouse to select the location(s) and
tilt(s) of the target(s). The response screen contained
initially blank circles surrounding all the previous
Gabor locations. When the subject clicked on a blank
location, a right-tilted line immediately appeared that
extended the diameter of the circle. If the subject
clicked on the same location a second time, the line
was immediately replaced with a left-tilting one. If
the subject clicked on a location for a third time, the
location was immediately made blank again and the
cycle reset. The degree of tilt of the lines matched that
of the Gabors. In the two-target condition, selection
of the first location did not automatically make a line
appear in the obligatory second location. However,
clicks on invalid secondary locations (i.e., ones that
were not 180 degrees away from the initially selected
location) were ignored. In both conditions, subjects
were paid $6.00 to complete 500 trials. Most subjects
took approximately 20–30 min to complete the task.
Below we analyze only the last 200 trials.

Models

We compared two classes of models to subjects’
responses: RDT and Bayesian. Both model classes
shared the same (optimal) decision rule but differed
in how they calculated the sensory response. The
Bayesian models assumed sensory responses were
drawn from a von Mises (circular Gaussian) likelihood
given the stimulus, while the RDT models assumed
sensory responses were the outputs of an optimal lossy
information channel (see Sims, 2016). We assumed
subjects had exact knowledge of how their own sensory
responses were produced given a stimulus and that
they had accurate knowledge of the stimulus prior
distribution in the task when making a decision.

Decision rule: For both RDT and Bayesian models,
the decision rule is given by

p(yθ , yloc|x̂) =
∑
x

p(yθ , yloc, x, x̂)/p(x̂) (3)

where

• yθ is either a scalar (in the one-target condition) or
two-element vector (in the two-target condition)
indicating the angle(s) of the target(s).

• yloc indicates the location index (or indices) of the
target(s).

• x represents the visual stimulus. Because the
stimulus consists of eight Gabor patches, x is a
vector with eight elements. Each element indicates
the angle of its corresponding patch.

• x̂ is a model’s (noisy) sensory response, code, or
representation of x. For tractability, our models
assumed restrictions on the space of possible
vectors. In particular, our models placed zero
probability on sensory responses that would
correspond to the wrong number of targets (i.e.,
greater than 1 in the one-target condition and
not equal to 2 in the two-target condition) or tilt
values other than the three encountered in the
experiment (vertical, left, right). For simplicity, we
parameterized x̂ in the same way as x. That is, x̂
was also a vector of eight dimensions, where each
element was a tilt value.

The joint distribution can be factorized as
p(yθ , yloc, x, x̂) = p(yθ )p(yloc)p(x|yθ , yloc)p(x̂|x). Note
that p(x|yθ , yloc) is deterministic, since the stimulus
was always identical given values of target angle(s) and
location(s).

RDT models: For the RDT models, p(x̂|x) was given
by the solution to the RDT-constrained optimization
problem defined above (Equation 1). Optimal solutions
were found using the RateDistortion package in R
(see Sims, 2016). The exact form of the loss function
(penalizing mismatches between x and x̂) is described
below.

Bayesian models: For the Bayesian models, p(x̂|x)
was given by

p(xs|x) =
∏N

i e
1
σ
cos(x(i)s −x(i) )

∑
x′

∏N
i e 1

σ
cos(x′(i)−x(i) )

(4)

where i indexes over items in the display, and

x̂ = argmin
x′

Ep(x|xs )L(x, x′). (5)

That is, in the Bayesian models, sensory measurement
xs has a discretized von Mises distribution (again, for
tractability and to be consistent with the RDT models)
where noise is i.i.d. between items i, and sensory
response x̂ is chosen to minimize the expected loss
given xs.

One-parameter models: We first tried modeling
experimental data with simple, single-parameter
models: capacity C for RDT models (Equation 1) and σ
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for Bayesian models (Equation 4). The loss function for
both was given by

L(x, x̂) = ‖x̂ − x‖2. (6)

However, neither of these models provided good fits
with our experimental data. Consequently, we extended
the models with two additional free parameters.

Full (three-parameter) models: First, in the two-target
condition, it seems plausible that subjects cognitively
understood that the two targets were 180◦ apart but
that this understanding did not influence their low-level
sensory responses. In the models, we implemented
this intuition by using the 180◦-apart constraint in
the decision-making part of a model (Equation 3; for
example, the constraint was used when calculating
p(yloc)). However, the full (three-parameter) models did
not use this constraint in the sensory part of a model.
Calculating Equations 1 and 5 requires consideration
of a prior distribution over sensory displays. A “legal”
display is one in which the two targets are 180◦ apart,
and an “illegal” display violates this constraint. In
the full models, we set the prior probability of an
illegal display, pillegal (x), to be based on a value
denoted τ . This was implemented so that if τ = 0,
then no probability mass was assigned to illegal values
(corresponding to use of the 180◦-apart constraint),
and if τ = 1, then the distribution over all displays
(illegal and legal) was a uniform distribution.

Second, recall that subjects in our experiment
indicated both the target location(s) and direction(s) of
tilt on each trial. It seems plausible that subjects may
have regarded either target location or tilt direction
as more important than the other. In particular, our
data indicated that subjects were more accurate at
identifying target location. Define the following two
loss functions, denoted LSE and Lloc, as follows:

LSE (x, x̂)= ‖x̂ − x‖2
maxx′‖x′ − x‖2 (7)

Lloc(x, x̂)=
∑N

n=1 1(xn, x̂n)
Ntargets

(8)

where n indexes over target locations, Ntargets is the
number of targets, and 1(xn, x̂n) is an indicator function
that equals 1 when a subject’s response incorrectly
identifies the Gabor at location n as a target. LSE is
the square-error loss between x and x̂, whereas Lloc
measures error based solely on subjects’ estimates of
target location. The full models used the loss function

L = (1 − α)LSE + αLloc (9)

where α is a parameter governing how much the loss is
based on both target location and tilt direction versus
target location alone.

In summary, the full RDT models have three
parameters (C, τ , and α), and the full Bayesian models
also have three parameters (σ , τ , and α).

Parameter fitting: For each model, we estimated its
maximum likelihood parameter values based on trials
from (i) the one-target condition, (ii) the two-target
condition, and (iii) both conditions combined, using the
optim function in the R programming environment.
The likelihood of a model was given by

L(φ) =
∏
t

pyθ ,yloc|x
(
x(t)
resp|x(t)

)
(10)

where φ is the set of model parameters, t indexes over
trials, and x(t)

resp is a subject’s response on trial t. The
probability pyθ ,yloc|x is the probability of the decision
under a model and was given by a probability matching
rule (i.e., responses were chosen with frequency
proportional to the probability they are correct; Da
Silva et al., 2017; Wozny et al., 2010; Craig, 1976).

Visualizing the optimal noisy channel: Figures 2 and 3
qualitatively visualize basic predictions of the optimal
lossy channel. Figure 2 shows how channel output
probabilities p(x̂|x) vary as a function of capacity. In
particular, more probability mass is concentrated on
x = x̂ as channel capacity is increased. Figure 3 shows
how the same probabilities vary as a function of what
information is emphasized in the loss function for a
fixed capacity. The top row corresponds to α = 0, which
penalizes the squared distance between the stimulus
and response in angle space and thus assumes subjects
care about both tilt and location. The bottom row
corresponds to α = 1, which only penalizes location
errors and thus assumes subjects only care about
location. Intermediate values of α would interpolate
between the top and bottom rows.

Results

To assess the models, we compared their predicted
response accuracies to subjects’ response accuracies.
We examined overall accuracy (both location and
tilt correct), as well as location and tilt accuracies,
independently (Figure 4). We found that subjects
performed about 20 points worse in the two-target
condition in terms of overall (both target location and
tilt direction) accuracy (79% versus 60% correct; see
Figure 4, left panel). The full RDT model provides an
excellent quantitative fit to this experimental finding.
By contrast, the one-parameter RDT predicts identical
performance in both conditions (since the stimulus
entropy is identical across conditions), and the full and
one-parameter Bayesian models predict a large increase
in accuracy in the two-target condition. Intuitively,
this prediction can be understood as a result of the
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Figure 2. Cartoon visualizing how sensory response probabilities p(x̂|x) vary as a function of capacity. Bar plots depict the probabilities
for a subset of possible responses x̂ given the stimulus x depicted on the left, where images along the horizontal axis depict the
members of that subset. As capacity increases, more mass is concentrated on the correct sensory response (x = x̂). Red rectangles
indicate target location and were not present in the experiment. Gabor spacing in the figure is more condensed than in the real
stimuli.

Figure 3. Cartoon visualizing how sensory response probabilities p(x̂|x) vary as a function of what information is emphasized by the
loss function. Bar plots depict the probabilities for a subset of possible responses x̂ given the stimulus x, where images along
horizontal axis depict the members of that subset. Top row corresponds to α = 0 (equivalent to pixel square error). Bottom row
corresponds to α = 1 (no penalty for tilt errors, only location errors). In this case, the first four bars are equal because the target
locations are the same as in the stimulus. Red rectangles simply indicate target location and were not present in the experiment.
Gabor spacing in the figure is more condensed than in the real stimuli.

constraint that the second target is fixed relative to
the first. Many sensory measurement errors can be
“cleaned up” given the constraint on target locations,
since measurements that would result in a constraint
violation can be ignored. As a result, the Bayesian
models incorrectly predict better performance in the
two-target condition relative to the one-target case.

We found that the full RDT model gave the best
fit to the overall accuracies, predicting subjects’ mean

performance nearly perfectly. Neither one-parameter
model could explain the data very well. The one-
parameter RDT model clearly outperformed the
one-parameter Bayesian model when parameter fits
were based on all data, though the one-parameter
Bayesian model had an advantage in likelihood when
parameters were fit separately for each condition. Both
models matched overall human performance well when
allowed to fit data from each condition separately.



Journal of Vision (2021) 21(5):3, 1–23 Bates & Jacobs 11

Figure 4. Model predictions and experimental data (overall accuracy, location accuracy alone, and tilt accuracy alone). The percentage
of correct responses is plotted in each condition and compared to two versions of model predictions. The simpler version of the
model has only one fitted parameter (capacity or sensory noise magnitude). The full model includes three fitted parameters.

C σ α τ Log likelihood (all trials) Log likelihood (one condition)

RDT (both) 3.1 — 0.36 0.81 −22,435 —
RDT (one-target) 3.1 — 0.38 — — −85,77
RDT (two-target) 2.4 — 0.24 0.00001 — −13,776
Bayesian (both) — 0.145 ≥0.7 <0.5 −23,545 —
Bayesian (one-target) — 0.126 ≥0.0 >0.0 — −8,890
Bayesian (two-target) — 0.172 ≥0.35,≤ 0.65 >0.5 — −13,934

Table 1. Inferred model parameter values for full models.

C σ Log likelihood (all trials) Log likelihood (one condition)

RDT (both) 2.6 −23,862 —
RDT (one-target) 3.0 — −8,939
RDT (two-target) 2.3 — −14,583
Bayesian (both) — 0.148 −24,032 —
Bayesian (one-target) — 0.126 — −8,890
Bayesian (two-target) — 0.181 — −14,179

Table 2. Inferred model parameter values for one-parameter models.

The middle panel of Figure 4 presents the same
models as the left panel, except that only location
accuracies are presented (that is, the percent of
responses that indicated the correct target locations,
even if the tilt directions were reported incorrectly).
We find that the full RDT model better predicts the
location accuracies (compare blue and pink lines for
one-parameter and full RDT models, respectively).
Because α in the full RDT model was estimated to
be greater than zero, it seems that subjects may have
been slightly more concerned with locating targets
than identifying their tilt directions. Similarly, we find
that the tilt accuracies are well accounted for by the
full RDT model but not the full Bayesian model (right
panel).

Tables 1 and 2 report the results of our maximum
likelihood fits for the full and one-parameter models,

respectively. We find that when comparing the full
models, the log-likelihood values favor the RDT
model over the Bayesian model when considering all
experimental trials and also when considering only the
one-target or two-target trials.

Comparing parameter values fit to one-target
trials versus two-target trials versus both sets of trials
provides an opportunity for important sanity checks.
Ideally, a single set of parameter values should be able
to explain data in all conditions, as it is unrealistic to
presume that, for instance, channel capacity or sensory
noise magnitude changes across conditions. For the full
RDT model, we found that C and α had very similar
values regardless of whether these values were fit to
one-target trials or all trials (recall that τ does not
play a role in one-target trials). We found somewhat
unexpected values when fitting the full RDT model to
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the two-target condition alone, as they should ideally be
close to the values found when fitting both conditions
together and when fitting the one-target condition
alone. We believe this can be explained in part by the
finding that there was higher intersubject variance
in the two-target condition and performance was
nonnormally distributed with a long tail toward poorer
performances. As a result, the optimizer required many
more optimization steps to converge and the gradients
were very small.

For the Bayesian models, we found a higher value for
noise parameter σ in the two-target condition relative
to the one-target condition when fitting a model to each
condition separately. When fitting to both conditions,
the most likely value was found to be between those
values.

A blank entry in a table indicates that a parameter did
not impact model predictions for the given model (e.g.,
τ in the one-target condition) or was not applicable. In
addition, in some cases, tables specify a range of values
for the Bayesian model parameters. This is due to the
“min” operator in those models, which results in ranges
of parameter space that give identical predictions. We
used a grid search over starting values of parameters
used by the optimizer to compensate for the fact that
gradients are flat in those areas.

Discussion

In summary, subjects in our experiment performed
an uncued visual search task when stimuli contained
either one or two targets. Fits of Bayesian and RDT
models to the experimental data show that Bayesian
models overestimated task performance, particularly
when information-processing demands were high (e.g.,
the two-target experimental condition), whereas RDT
models provided highly accurate accounts of subjects’
responses. We conclude that capacity constraints played
a significant role in limiting subject performance when
information-processing demands were high. We also
conclude that our RDT framework provides a useful
computational formalism for characterizing subjects’
allocation of attention in the presence of capacity
constraints.

We found that while the full RDT model in our
uncued search experiment strongly benefited from
two added parameters, the Bayesian model was not as
sensitive to these parameters. Future work could search
for other possible parameterizations that benefit the
Bayesian model, although this comes with the drawback
that it becomes more difficult to compare the RDT and
Bayesian approaches as their assumptions diverge.

Cued visual search
In this section, we model behavioral data from

experiments using cued visual search tasks. These

experiments were originally presented in Shimozaki
et al. (2003) and Shimozaki et al. (2012). In both
experiments we will analyze, subjects were presented
with displays containing multiple locations and were
asked to detect the brief appearance of a target at one
of the locations. The target only appeared on half of the
trials and was formed by adding a “Gaussian disk” to
the white-noise background, resulting in brighter pixels
at the selected location. The variance of the background
noise relative to the disk brightness determined task
difficulty. Subjects did not need to report the location
of the target. For purposes of analysis, trials were
categorized as “valid,” “invalid,” or “target-absent.”
Valid trials were trials in which the target was present
and occurred at the location that was cued. Invalid trials
were trials in which the target was present but occurred
at a location that was incongruent with the cue. The
studies differed primarily in number of locations, and
therefore the details of our model change very little
across the two studies.

We chose these two studies because they examine
behavior under a range of cueing conditions. While
the experiment we analyze in Shimozaki et al. (2003)
had just two locations in the display and high cue
validity, like many classic cueing studies, Shimozaki
et al. (2012) was more complex with eight locations
and had a lower cue validity. An “effective setsize”
(see below) was established using a set of secondary
cues, which informed the subject about the set of
locations they could safely ignore. Both the primary and
secondary cue locations varied randomly from trial to
trial.

In both studies, we had access to summary
performance statistics but not the raw subject responses.
For this reason, our analyses will remain qualitative,
and our primary goal will be to demonstrate both the
plausibility and feasibility of a modeling approach
based on efficient lossy compression, rather than to
adjudicate definitively between Bayesian and RDT
predictions in the present cueing experiments. We will
leave to future work more extensive and quantitative
model comparisons.

We note that the Bayesian models originally
presented in Shimozaki et al. (2003) and Shimozaki
et al. (2012) were able to achieve closer fits to the
empirical data than our own models, because they
opt to fit parameters at the individual subject level,
while we opt to fit only at the aggregate level. For a
visual comparison of our results to theirs, we refer the
interested reader to the original studies.

To model how subjects take advantage of the precues
on each trial, we employ a crucial assumption: Subjects
respond to a cue by changing how they weight the
importance of each of the locations in the display,
allocating more resources to locations where the target
is more likely to occur. In modeling terms, this amounts
to the assumption that subjects’ visual communication
channels are conditioned on the cue. Thus, the set of
conditional probabilities p(x̂|x) is instead written as
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p(x̂|x,C), where C is a vector representing the cue
location(s). The channel conditioned on someC is the
channel that has been optimized for a vector of weights
ω = f (C) over locations in the loss function (see
below). Intuitively, these weights determine how much
errors in transmission are penalized at each location
in the display. To be optimal, ω should assign higher
weight to cued locations and lower weight to uncued
locations, as long as the cues are positively correlated
with target locations.

We present two kinds of models below. First, we
model subject responses using the same framework
as before (“idealized model”). That is, we abstract
the stimuli into vectors containing the average pixel
intensity at each target location (discretized into
bins) and operate on these abstract low-dimensional
vectors, rather than the true vector of pixel values.
As above, we use the Blahut algorithm to find the
optimal lossy channel, as this algorithm is tractable in
low-dimensional spaces and guarantees a global optimal
solution. Next we will demonstrate the scalability of
our approach by modeling the experiment in Shimozaki
et al. (2003) at the pixel level, using a deep neural
network that approximates optimal lossy compression
(“image-computable model”).

Idealized model

Models for the cued search tasks were highly similar
to those used with the uncued search experiment. The
principle differences are that (i) the decision variable
in the model for the cued visual search studies was
a binary variable, denoted z, where the probability
that z equals 1 is the probability that the target
was present in the display at any location, and (ii)
the channel distributions were conditioned on the
cue C. Specifically, we used the joint distribution
p(x, x̂, z|C) = p(z) p(x|z,C) p(x̂|x,C), where x and x̂
are the stimulus and sensory response, respectively, and
z is the binary variable representing target presence,
which is independent of the cue. The decision rule is
given by

p(z|x̂,C) =
∑
x

p(z, x, x̂|C)/p(x̂|C). (11)

For the purposes of the visual communication
channel p(x̂|x,C), the space of possible stimuli
was discretized. A stimulus x was represented by
an N-dimensional vector, where N is the number
of potential target locations. The stimulus value
corresponding to a location could be one of K evenly
spaced values ranging from 0 to ν, where ν represented
the strongest possible signal. For nontarget locations,
this value was set to 0. It was nonzero for the target
location. The sensory response x̂ was represented in the

same way. The value of K (determining the number
of discrete bins; 50 in Shimozaki et al. [2003], 8 in
Shimozaki et al. [2012]) was chosen to strike a balance
between realism and computational tractability.

As in the uncued experiment, we assumed that at
decision time, subjects employed veridical knowledge of
both the task and their sensory response distributions
but that their sensory responses were not necessarily
optimal for the task. Accordingly, computation of
p(z|x̂,C) (computed during the decision stage of the
model) assumed x and z to follow the true, experimental
stimulus prior. In contrast, p(x̂|x,C) (computed during
the sensory stage) was the solution to a constrained
optimization problem, as defined by RDT. This
optimization problem requires the specification of a
visual prior distribution and a loss function, defined
next.
Visual prior. For the visual prior distribution p(x),
we assumed a uniform distribution over all possible
target-absent and target-present stimuli.
Loss function. The loss function was a weighted
squared error:

L(x, x̂,C) =
∑
i

ωi(xi − x̂i)2 (12)

where i indexes over locations, ωi is the weight given to
location i,

∑
i ωi = 1, and ωi ≥ 0∀i.

The values of the weights ω = {ωi} were computed on
each trial based on the trial’s primary and secondary cue
locations (again, see below). Consequently, these weight
values can be interpreted as specifying an allocation of
attention to different locations. We assumed that people
are only able to reallocate some of their cognitive
resources to the cued locations on each trial, and we
captured the degree of reallocation in the parameter
ε ≥ 0, which controls the amount of smoothing and
fully determines ω. Precisely,

ω̂i =

⎧⎪⎨
⎪⎩

cvε + 1 if i ∈ C1
(1−cv )ε

|C2| + 1 if i ∈ C2

1 otherwise

ωi = ω̂i/
∑
j

ω̂ j (13)

where cv = 0.5 is the primary cue validity; i and j index
over locations; C1 and C2 are the set of primary and
secondary cue locations, respectively; and |C2| is the
number of secondary cues (i.e., the effective setsize
minus 1). This smoothing scheme was chosen such that
weights approach their task-optimal values as ε goes
to infinity and become uniform over all locations as ε
goes to zero. These equations ensure that the weights
are strictly positive and sum to 1, which are necessary
conditions for stability during optimization.
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Image-computable model

Modeling optimal lossy compression at the level
of image pixels is computationally intractable due to
the cost of solving the RDT-constrained optimization
problem. Therefore, it is necessary to use approximate
methods. Here, we used a deep neural network
architecture (see Bates & Jacobs, 2020) to approximate
p(x̂|x,C), where x comprised real stimulus images
(i.e., pixel values). Our architecture can be considered
a variant of β-variational autoencoders (β-VAEs; see
Kingma & Welling, 2013; Higgins et al., 2017) and
comprises two main components.

First, the encoder network qφ (with parameters
φ) is stochastic and learns a mapping from pixel
values x to a probability distribution over abstract,
latent vector representations, denoted y. It is assumed
that p(y|x,C) is a normal distribution with diagonal
covariance matrix, and the network produces the
mean and variance for each element of y. Given
these means and variances, samples y are drawn.
These samples can be viewed as analogous to neural
responses.

Next, a deterministic decoder network fθ (with
parameters θ ) is used. Unlike typical decoders, our
decoder does not attempt to reconstruct stimulus x.
Instead, it attempts to reconstruct a low-dimensional
representation of x. Let x denote a vector of average
pixel intensities in each potential target region for a
particular stimulus. Then, the decoder network maps
samples y (obtained from the encoder network) to
corresponding estimates of x, denoted x̂. Both encoder
and decoder are trained using standard gradient descent
methods.

Finally, to approximate p(z|x̂,C), we train an
additional decision network that takes an input x̂ from
the first (i.e., pretrained β-VAE) network and outputs
the probability of target presence.

It is important to highlight a conceptual difference
between this neural network model and the idealized
(Blahut algorithm) model presented above. While in
the idealized model, we took x̂ to be the output of the
channel, here we introduce an intermediate variable
y. Mathematically, these assumptions are equivalent
(by the information-processing inequality since fθ
deterministically maps from y to x̂), but the inclusion
of the intermediate variable y, which is an abstract
latent code, affords a more direct analogy to neural
implementation.

In general, directly implementing a rate-distortion
objective in neural networks is a difficult problem,
since estimating mutual information is notoriously
hard. Here, we have chosen β-VAEs as the backbone
of our approach because they can be interpreted as
approximating a rate-distortion objective (Alemi et al.,
2016, 2017; Ballé et al., 2016; Burgess et al., 2018) and

are easy to implement. While their solutions are in
general not strictly rate-distortion optimal, they achieve
state-of-the-art performance in many applications
and exhibit a systematic trade-off between rate (or
capacity) and distortion (or error), and therefore serve
our present purposes.

In β-VAEs, “β” refers to an optimization parameter
that controls the trade-off between information content
of the network and distortion or accuracy on the task
objective. In our case, β controls the information rate
of latent code y. A larger value for β forces y to be less
informative, and therefore training loss will generally be
higher. Conversely, a lower β value puts less constraint
on y, and thus the network can generally be more
accurate on the task.

Specifically, the objective is given by

L(x, x̂,C) =
∑
i

ωi(xi − x̂i)2 − β KL[p(y|x,C) || p(y)].

(14)

In this equation, the first term is analogous to the loss
function used by the idealized model (Equation 12),
where the weights ω = {ωi} are based on the cue C in
the same manner as in the idealized model (Equation
13). The second term acts as a capacity regularizer
(or constraint on information capacity) by controlling
the difference between the posterior distribution
qφ (x) = p(y|x,C) over latent variable y and its prior
distribution p(y). Specifically, this term is calculated
as the Kullback-Leibler (KL) divergence between the
probability of the compressed neural code y given the
input x and cueC (the conditional channel distribution)
and the prior (marginal) probability of the code.
Intuitively, if the code is constrained to have a posterior
distribution near its prior, then it cannot store as much
information about the input, and thus its information
rate will be limited. The marginal p(y) is assumed to
be a spherical Gaussian (i.e., p(y) = N (0, I )), as is
common in the VAE literature. This assumption affords
an analytical expression for the KL divergence term and
its gradients. During training, a β-VAE uses an iterative
stochastic gradient descent algorithm, often requiring
thousands or millions of iterations, to adjust its weights
(φ and θ ) to minimize Equation 14.
Network details. The encoder network qφ comprised
two standard convolutional layers, with 32 and 64 filters
in the first and second layers, respectively. The second
layer fed into a fully connected layer (2,000 units,
rectified-linear activation), which in turn fed into the
latent layer representing p(y|x,C) (500 units for the
mean values of the latent variables and 500 units for
their variances). All convolutional layers had a stride
of 2 and kernel size of 3 and used rectified-linear
activations. The decoder network fθ mapping from y
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to x̂ was a fully connected layer with linear activation
function. The decision network mapping from x̂ to
binary decision z (denoting model response, either
target present or target absent) was a two-layer
multilayer perceptron where the hidden layer had
100 units and rectified-linear activations, and a one-unit
output layer with sigmoid activation function to keep
output values, representing p(z|x̂,C), between 0 and 1.
Visual stimuli. Training images were 64 × 64 pixels and
were constructed in a two-step process. First, an image
was initialized with white (Gaussian) background noise.
That is, each pixel value was drawn from a normal
distribution with mean zero and standard deviation
σnoise. Next, if a target was present, a “Gaussian disk”
was added to the image at one of the potential target
locations. A Gaussian disk is produced by calculating
the probability density function of a two-dimensional
Gaussian whose mean coincides with the center of the
target location. The value to be added at each pixel is
given by that pixel’s vector distance from the mean,
plugging that vector into the expression for probability
density. Stimuli were randomly generated throughout
training. Figure 7 depicts two example stimulus images.

Study 1: Shimozaki et al. (2003)

The experiment we analyze from Shimozaki et al.
(2003) used displays with just two locations. Subjects
saw a precue on every trial, which correctly indicated the
location of the subsequent target 80% of the time. The
pixels at the target location were lighter (more white)
on average than those in other areas of the image. The
experimental manipulation was the signal-to-noise ratio
(SNR), or roughly how much lighter the target location
was than nontarget locations. As the SNR increased, it
became easier for subjects to detect the target.

As we did not have access to the raw subject
responses, our analyses remain qualitative. In analyses
below, our primary goal is to demonstrate the
plausibility of a modeling approach based on RDT
or lossy compression, rather than to adjudicate
definitively between Bayesian and RDT predictions in
the present cueing experiment. We demonstrate that
(i) the idealized and image-computable models are
qualitatively consistent in their predictions, suggesting
that the image-computable model is a reasonable
approximation of the idealized model; (ii) both models
capture important trends in how averaged human hit-
and false-alarm rates varied with SNR; and (iii) our
models suggest subjects likely allocated some but not all
of their attention to the cued location. We also find,
however, that our idealized model does not seem to fit
the exact shape of the empirical cueing-effect curves,
suggesting further investigations are needed to diagnose
the reasons for this mismatch. Our image-computable
model results in a somewhat better qualitative match.

Modeling details. In both models, we assumed people’s
visual channels p(x̂|x,C) were designed to communicate
a larger range of target intensities than seen in the
experiment. The maximum intensity that a channel can
communicate is denoted ν, ν∗ denotes a target intensity
on a particular trial, and ν∗

max denotes the largest target
intensity in the experiment.4

In analyses using the idealized model (in which
representations of stimuli were discretized), we assumed
that stimulus symbols to the sensory communication
channel represented the mean pixel intensity at the
two potential target locations. Parameter values were
chosen or inferred as follows. First, we set ν = 50, a
large enough value so that the discretization of the
stimulus space was a reasonable approximation of
the underlying continuous space. We regard C and
ν∗
max as the only free parameters of the model, and
we set ν∗

max = 8 and C = 1 bit.5 The parameter ν∗
max

determined the range of intensities that the channel
is designed to handle compared to what was seen in
the experiment (for our choice of parameter values,
this ratio was 8/50 = 0.16). The values for ν∗

max and C
were chosen by visual inspection so that the idealized
model’s predictions coarsely matched the overall shape
of the experimental data. Given these model parameter
settings, we then varied ε (used to calculate location
weights ω in Equation 13) to infer how much subjects
reallocated their attention in response to cues.

The image-computable model used continuous
rather than discrete variables. Therefore, we set ν = 1
arbitrarily and found reasonable results when setting
ν∗
max = 0.4 and β = 0.0025.
In both models, the true decision (stimulus-present)

prior used during inference, p(z|x̂,C), assigned a
probability of 0.5 to the target-absent stimulus, a
probability of 0.4 to the event in which the target
occurs at the cued location, and a probability of 0.1
to the event in which the target occurs at the uncued
location.

Results
Idealized model. To assess the idealized model, we
qualitatively compared its predictions to the summary
data reported in Figure 7 of Shimozaki et al. (2003)
(replotted here in Figure 5, left panel). These data
present hit rates within valid and invalid trials,
respectively, and false-alarm rates. Of greatest interest is
how cueing effect varies with SNR. The cueing effect is
the difference between hit rates for the valid and invalid
trials.

The primary goal of our analysis is to assess
approximately how much subjects likely reallocated
their attention in response to cues on average. In
the middle and right panels of Figure 5, we show
model predictions for ε = 0.5 (corresponding to
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Figure 5. Comparing human performance data (hit rates and false-alarm rates) from Shimozaki et al. (2003) to idealized RDT models
for two representative parameter settings. Human data are averaged over three subjects.

Figure 6. Comparing human performance data (hit rates and false-alarm rates) from Shimozaki et al. (2003) to image computable RDT
models for two representative parameter settings. Human data are averaged over three subjects.

ω = [0.56, 0.44], where the first number is the weight
on the cued location) and ε = 0 (no reallocation). We
found that the model exhibited a cueing effect (hit-rate
valid minus hit-rate invalid), even when there was no
reallocation in response to the cue (ε = 0). This is
expected behavior, since the number of invalid-cue
trials was less than the number of valid-cue trials, so
inference under uncertainty should be biased toward
the cued location. By visual inspection, we find that an
ε > 0 provides a better explanation of the data and that
the cueing effect becomes clearly larger than the human
data for values greater than about 0.5, across the range
of SNRs.
Image-computable model. As shown in Figure 6,
the results with the image-computable model are
similar to those with the idealized model. The left
panel replots the human data, the middle panel
corresponds to a 60/40 reallocation given the cue,
and the right panel corresponds to no reallocation.
By visual inspection, we find that the size of subjects’
cueing effect as a function of SNR is best accounted
for by the degree of reallocation in the middle
panel.

Figure 7 visualizes how the behavior of the 60/40
reallocation model varies with SNR. The leftmost
panels are the stimulus images input to the encoder, and
the remaining panels are outputs of the decoder (i.e.,
approximately optimal reconstructions x̂ of the stimulus
x). Each sample image corresponds to an independent
sample of x̂ conditioned on x. Reconstructions in the
top row show that for relatively low SNRs, the latent
code y exhibits less certainty about what stimulus was
observed. Reconstructions in the bottom show higher
certainty. On average, the pixel square error in the cued
location (here, left) is lower than in the uncued location
in this model. Since the cued location is left and the
target location is right, both rows show an invalid-cue
trial.

Study 2: Shimozaki et al. (2012)

Here, we model the single-fixation condition from
Shimozaki et al. (2012). This experiment used eight
locations and two kinds of cues—a primary cue that
cued a single location and a set of secondary cues
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Figure 7. Visualization of neural network model behavior in a two-location cueing task. On the trial illustrated here, the left location
was cued, but the target appeared at the right location (i.e., this is an invalid-cue trial). Top and bottom rows correspond to low and
high signal-to-noise ratios, respectively. Leftmost panels are the stimulus image and remaining panels are random samples from a
decoder network (trained separately for visualization purposes) that produces maximum likelihood images x̂ given noisy latent
representation y. Pixel values were normalized separately for each row to span the entire range of values (from 0 to 255).

that established the “effective setsize” by indicating
the subset of locations where it was possible for the
target to appear. The primary cue was 50% valid
and the secondary cues (numbering 1, 2, 4, or 7)
were collectively 50% valid. That is, the primary cue
indicated the target location half the time, and the
set of secondary cues indicated the set of alternative
locations where the cue could appear the other 50%
of the time. For example, if the number of secondary
cues was two, then there were a total of three locations
where the target could appear, with probability 0.5
that it appeared at the primary cued location and
probability 0.25 that it appeared at either of the
remaining locations. The locations of the primary and
secondary cues were chosen randomly on each trial and
thus could have any nonoverlapping configuration.
Calculating the true prior. This calculation was slightly
different from the other cueing experiment because
there were secondary cues in addition to the primary
cue. For each possible arrangement of cues (i.e., which
locations were cued by primary and secondary cues), we
assigned 0.5 probability to the stimulus value for which
ν∗ occurred at the primary cue location and 0.5/|C2|
probability to each stimulus value for which ν∗ occurred
at one of the secondary cue locations. All other stimuli
were assigned zero probability. We set ν∗/ν to be as
close as possible to the value in the previous experiment.
(The ratio could not be exactly equal between studies
because the denominator ν differed.)
Fitting model to data. As we did not have access to
the raw subject response data, we fit the models so as
to make similar hit and false-alarm rate predictions
to the aggregate data. We minimized the sum of

absolute errors with respect to the valid-trial hit rates,
invalid-trial hit rates, and false-alarm rates (averaged
over subjects) with equal weighting on each data point.
As above, we compared results for ε = 0.5 and ε = 0.
For both ε values, we searched for the optimal C using
R’s optim function to conduct model fits. Note that we
should not expect the capacity in this study to match
the previous study. This is because in the two-location
study, we only measure how much information people
stored about two locations in the display, instead of
eight. Thus, what we find in the first study should be a
more severe underestimate of capacity.

Results
Figure 8 shows a comparison of averaged human

data (four subjects; replotted from Shimozaki et al.,
2012) and our idealized model’s predictions for ε = 0.5
and ε = 0. As was the case with the previous study,
we find a cueing effect even with no reallocation.
Importantly, we again find that the experimental data
are better accounted for by an amount of reallocation
given by ε = 0.5. Prediction error was lower when
ε = 0.5 (0.35) compared to when ε = 0 (0.41). We find
ε = 0.5 to yield quite good predictions, despite the fact
that it was chosen based on results from the previous
study. In fact, we refit our model treating ε as a free
parameter along with capacity but found a very similar
value (0.51). Our estimate of capacity was 4.83 bits,
which was larger than our estimate of 1 bit from the
previous study, as expected. Overall, we find that the
idealized model does an adequate job of capturing
changes in hit and false-alarm rates and cueing effect
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Figure 8. Comparing performance (hit rates and false-alarm rates) between humans and RDT models from the single-fixation
condition in Shimozaki et al. (2012). Human data are averaged over four subjects.

size as a function of setsize, despite only having a single
free parameter (capacity C).

Discussion

In this section, we presented an idealized RDT
model and used it to account for subjects’ responses
in two experiments using cued visual search tasks.
We also presented an image-computable RDT
model and used it to account for data from the first
experiment. Our results indicate that, qualitatively,
these models provide adequate accounts, indicating
that capacity constraints may have played significant
roles in limiting subject performance. In addition, our
results with the image-computable model suggest that
deep neural networks may provide useful models of
capacity-constrained visual performance in real-world
settings (i.e., using pixel values instead of simplified
features handcrafted by researchers).

While the authors of the studies we just examined
fit Bayesian models to individual subject data, here
we have opted to analyze subject averages. Shimozaki
et al. (2012) explained the subject-level variability
in their eight-location experiment by allowing the
decision criterion to vary by both subject and setsize.
Similarly, in Shimozaki et al. (2003), the authors fit
their models within-subject and allowed d ′ sensitivity to
vary as a linear function of SNR in addition to fitting a
parameter for how much the prior was weighted. Here,
we have opted not to try to model decision-making
idiosyncrasies at the levels of subject and condition.

In comparing the idealized and image-computable
models on Shimozaki et al. (2003), we found that
the image-computable model qualitatively captured
some aspects of the data better. For example, the
valid-trial hit rates appeared strictly concave in shape
in the image-computable model, whereas in the
idealized model, there was an inflection point. One
possibility is that this difference reflects suboptimalities

in the neural network model. If so, then future work
could investigate whether these suboptimalities are
a plausible explanation of people’s behavior. More
generally, as compared to the idealized model, our
image-computable modeling framework allows for
more easily exploring sources of suboptimality in
perceptual tasks, as they can be viewed as instantiating
a “process” model, which seeks to identify specific
biological mechanisms driving behavior (McClelland
et al., 2010).

General discussion

We motivated our experimental and modeling work
by noting the large diversity of experimental and
theoretical approaches to the study of visual attention
in the vision sciences literature and arguing that
this diversity arises, at least in part, from the field’s
inability to unify differing theoretical perspectives. In
particular, the field has been hindered by a lack of a
principled theoretical framework for simultaneously
thinking about both optimal (Bayesian) attentional
processing and capacity-limited attentional processing.
Here, we have presented such a framework based on
rate-distortion theory and optimal lossy compression.

Taken as a whole, our results suggest that
visual attention may be both capacity limited and
approximately optimal. That is, performance in any task
is limited by capacity, but vision’s limited computational
resources are efficiently allocated, leading to behavioral
signatures that can often look similar to a noisy
Bayesian observer. In the uncued search experiment,
our RDT models provided a better overall explanation
of the data than the Bayesian models, because their
capacity limits result in more sensitivity to stimulus
entropy. In the cued search experiments, we found
our models explained the hit and false-alarm rates
well with only one or two free parameters. Our results
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suggest that subjects likely reallocated some of their
computational resources in response to cues but did not
completely adapt to the task.

In our studies here, we made relatively few
assumptions specific to human vision. But future
work could seek to incorporate known constraints
of the visual system into RDT models. For example,
we initially explored a version of the cued-search
model that included a smoothness constraint on
spatial reallocation of attention. This constraint
controlled how “jagged” or discontinuous the spotlight
of attention could be. Higher smoothing meant that
adjacent locations needed to be more similar to each
other, resulting in a more smooth and continuous
spotlight. Another constraint we explored was a
capacity limit on top-down executive control of
allocation. However, we found these additional model
components had little effect on the present results and
therefore omitted them.

Finally, an important conceptual contribution of
our work is the idea of a “conditional” communication
channel. We employed this idea to model attentional
shifts in response to cues, but the idea can be applied to
any kind of attentional shift. For example, someonemay
wish to reallocate their attention to color features within
a scene at one moment but later attend to shape features
or particular locations (Ehinger et al., 2009). A key
strength of our idea is that it can be easily incorporated
into image-computable models, like those we presented
here and previously in Bates and Jacobs (2020) to model
pop-out effects in search. Image-computable models
of attention have the potential to be extremely fruitful
because such models are capable of implementing
nonlinear image filters, mathematical constructs
borrowed from electrical engineering that have been
highly productive both in understanding computations
in the visual system and designing computer vision
systems (Olshausen & Field, 1996; Carandini et al.,
2005; Simoncelli & Olshausen, 2001; Torralba et al.,
2010). Importantly, we anticipate that conceptualizing
attention in terms of task-optimized (nonlinear) filters
will allow for more concrete, computational hypotheses
about the mechansims distinguishing different kinds of
attentional allocation (e.g., spatial versus feature-based
attention; see Galashan & Siemann, 2017).

Keywords: visual attention, visual search, cueing,
rate-distortion theory, resource rationality, information
theory, Bayesian modeling, computational modeling
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Footnotes
1Some researchers would consider our two-target condition to fall into
a separate category of task, known as “dual tasks” (e.g., Han et al.,
2003; Liu et al., 2009; Sperling & Melchner, 1978), in which people’s
performance is sometimes found to be capacity limited. However, we
argue that our modeling paradigm provides a general framework that
easily incorporates a wide range of tasks, without the need for significant
modifications for seemingly special classes of tasks.
2Note that RDT itself does not specify the computations needed to
approach the rate-distortion bound. Furthermore, exactly achieving the
bound requires infinite code-block lengths, something that is infeasible
for real systems, which cannot afford to wait for infinite time to receive
a message. Nonetheless, the decades since the theorems of information
theory were first presented have seen remarkable progress in finding
practical coding schemes that operate surprisingly close to the bound
(Cover & Thomas, 2006). However, more efficient coding schemes
generally come at the cost of requiring greater compute when mapping
to and from code space. Thus, an important but challenging target of
research going forward should be to determine how close to the bound
neural codes can feasibly operate.
3Gabors patches were generated using a standard two-dimensional Gabor
filter that was rectified so that values below zero were set to zero, where
white was assigned to zero and black was assigned to the maximum value.
4If x was a vector of pixel values, SNR was defined as

(∑
i x

2
i /σ

2)1/2,
where noise pixel values were sampled independently from a zero-mean
normal distribution with variance σ 2. Because the idealized model does
not use pixel values, SNR for this model was computed using a proxy
measure, namely, ν∗/ν.
5Note that the choice of ν impacts the choice of capacity. For instance,
if ν is large, then stimulus entropy will be higher and therefore capacity
would need to increase to maintain a fixed accuracy.
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