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Abstract

Scientific workflows integrate data and computing interfaces as configurable, semi-automatic 

graphs to solve a scientific problem. Kepler is such a software system for designing, executing, 

reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables 

high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses 

and chromosomes. Imaging investigations produce large datasets. For instance, in Electron 

Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection 

image including 4096 by 4096 pixels. When we use serial sections or montage technique for large 

field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the 

data size may be in terabyte range. Demands of mass data processing and complex algorithms 

require the integration of diverse codes into flexible software structures. This paper describes a 

workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the 

tracking process of IMOD, and realizes the main algorithms including filtered backprojection 

(FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional 

(3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology 

researchers with the advantage of logical viewing, easy handling, convenient sharing and future 

extensibility.
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1 Introduction

Many scientific applications are now data and information driven, and structured as 

pipelines or workflows with a large number of distinct computations. In general, workflow 

applications put together data sets from one or more data sources, transform the data into a 

format amenable for processing, analyze the data to produce useful results, and store the 

data and results in a repository which scientists can access [1]. Many of the steps in the 

processing and the data sets accessed are distributed across different execution sites, 

requiring data to be moved across a network for subsequent processing by the next step(s) in 

the workflow. Thus, scientific workflows are graphs of analytical steps that may involve, 

e.g., database access and querying steps, data analysis and mining steps, and many other 

steps including computationally intensive jobs on high performance cluster computers [2]. 

Kepler [2]-[4], as one of the main workflow management systems, provides a visual 

interface that can be used to define and build the processing required in a workflow, and 

generally raise the level of abstraction employed in a workflow application solution. 

Scientists working in many computation-intensive domains, ranging from astronomy to 

bioinformatics, have adopted workflows successfully by integrating large-scale, distributed 

and heterogeneous resources.

In the field of medicine, the head of National Institutes of Health (NIH) has pointed out that 

genomics has ushered in a new era of personalized medicine. In order to exploit the 

advances of genomics and molecular biology new research tools will be created, with a 

major input from the computational side. Relevant to this effort, there are historical 

similarities with the scientific discovery of antibiotics and their introduction into medicine. 

We are about half way through similar developments originating from the discovery of the 

structure of DNA-a stage comparable to the scientific development of antibiotics in the early 

1900s. The next step is to explore advances in genomics and molecular biology. Startups 

such as Celera and Human Lorgevity, Inc herald the next phase of this activity.

One major challenge is to relate the molecular science to cellular structure. Much remains to 

be done. Siting or partitioning of the metabolic network, signaling, and transport all have 

many unsolved issues. For the future, in order to relate the molecular science to cell 

structure, we must operate across many spatial scales, employ several types of microscopy 

and work in diverse scientific disciplines. Digital codes for image processing, structure 

determination and modeling of biological processes will all play a role. This will require the 

integration of diverse codes into flexible software structures.

Key to much of this effort, Electron tomography (ET) is a powerful technology providing 

three-dimensional (3D) imaging of cellular ultrastructure. These structures are reconstructed 

from a set of micrographs taken at different sample orientations, and the final volume is the 

solution of a general inverse problem. Large-field high-resolution ET facilitates 

visualization and understanding of global structures, such as the cell nucleus, extended 

neural processes, or even whole cells on scales approaching molecular resolution. There are 

many electron microscope tomography packages, such as TxBR[5]-[10], IMOD[11], 

Xmipp[12][13], EMAN[14] and so on.
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This paper describes an “Electron Tomography Programs in Kepler” (EPiK) workflow 

which is a response to the need to include TxBR and other codes in this stream of 

development. It combines several processes including tracking, alignment and 

reconstruction. We have tested the 3D reconstruction process using EPiK on an ET dataset. 

We demonstrate that EPiK workflow can provide a semi-automatic platform to obtain the 

3D structure of components.

EPiK facilitates ET image processing because the algorithms are complex and often consist 

of multiple processing steps. Complicating this situation, there are many ET research groups 

from different areas in the world. Scientists at each site may develop and use their own 

resources and codes to perform their research. Contrary to published claims, it is difficult or 

impossible to make fair comparisons of different algorithms on common data sets. EPiK can 

integrate many packages and make it possible to compare and cooperate on methods that are 

proposed by different research groups.

The need for high-resolution tomography of complex biological specimens gives rise to the 

requirement for large reconstructed files. This requires extensive use of computational 

resources and considerable processing time [5]. In response to this requirement, TxBR 

which is in production use has been adapted for various parallel computers, computer 

clusters and processors with multiple graphical processor unit (GPU) boards. By using fast 

recursion algorithms and other parallel processing with GPU for algorithms such as 

backprojection, TxBR can achieve significant speed-ups on relatively inexpensive hardware 

that can be put together using commercial off-the-shelf components[6]. EPiK can also give 

users different choices of available resources according to the demand of different sizes of 

datasets.

2 Description of EPiK

In this section, the main structure and components of EPiK are introduced. The details will 

be explained respectively for each step including tracking, alignment and reconstruction.

2.1 Introduction of Components in EPiK

In ET, a 3D structure reconstruction of a sample is obtained from series of projection images 

recorded in a microscope by imaging a sample in various discrete orientations [15]. 

Generally the sample is tilted around one or more axes to produce the various orientations. 

In the process of 3D reconstruction, there are three main modules in EPiK: tracking, 

alignment and reconstruction.

In order to reconstruct the 3D structure of a sample, we need to know the relationship 

between an object and its projections. Ideally, all images should be aligned so that each 

represents a known projection of a 3D object at a known projection angle[16]. In the process 

of preparing a sample, the researchers may add a number of gold particles on both sides of 

the sample before the images are collected. Those particles provide fiducial markers that are 

used to derive the relationship between the sample and its projections.
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The general interface of EPiK is shown in Figure 1 (a). First, tracking is carried out by 

IMOD [11][17]. This produces markers for alignment. Second, images alignment is 

completed using the bundle adjustment algorithm in TxBR [5]-[10]. TxBR was originally 

developed to compensate for curvilinear trajectories, sample warping and provide better 

alignment and reconstruction quality. The final step is to normalize the gray scales and 

reconstruct the specimen.

2.2 Tracking

As the first part of EPiK, fiducial tracking is carried out by IMOD package [11][17]. In 

order to make the workflow more simple and convenient, a composite actor of tracking that 

contains four main steps as shown in Figure 1 (b) substitutes the interface of IMOD.

1. Erase—The first preprocess is to erase X-ray artifacts arising from high-energy electron 

collision as well as defects and fiducial markers in microscope images from CCD cameras 

by looking for “peaks” or pixels whose intensity deviate from the surrounding pixels.

2. Cross-Correlation—As a preliminary alignment step, cross-correlation (CC) is used to 

find an initial translational pre-aligned stack between successive images of a tilt series. This 

is a marker-free coarse alignment step, which adjusts the images pairwise to align the series 

of images well enough for the automatic tracking of fiducial markers.

3. Select—After a coarse alignment map is obtained by cross-correlation, it is necessary to 

select a number of fiducial markers in order to get more precise projection. In EPiK, when 

the image stack is firstly shown by IMOD, it is required to select fiducial markers to 

generate a seed model. In order to obtain a precise alignment, markers must be located on 

both sides. Furthermore, the more markers that are selected, the more precisely the 

alignment model will be. After a sufficient number of seeds are selected, the seed model is 

saved.

4. Track—The last step is to track the selected fiducial gold beads on a series of images 

with different tilt views. In EPiK, after the seed model is saved, a new image stack will 

appear. This stack contains all the projected images and the positions of the selected 

fiducials that are calculated by the previous coarse alignment. Users need to fill the gaps and 

correct the position errors of the fiducials if necessary by using the bead helper which is in 

the pull-down menu of “Special”.

Finally, after all the selected markers are tracked, a “.fid” file will be generated in the 

directory defined by the “dataDir” workflow parameter. This fiducial file will be trans 

mitted into the alignment step.

2.3 Alignment

Alignment of the individual images of a tilt series is a critical step in obtaining high-quality 

electron microscope reconstructions. Electrons moving in a magnetic field will generally 

orbit the magnetic field lines, thus, they will move along helical trajectories. TxBR was 

developed to compensate for curved trajectories by using a high order polynomial projection 
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map[5]-[10]. The alignment is completed on the platform of MATLAB, which is shown as 

the second actor in Figure 1 (a).

Alignment provides a 3D model of marker projections for which is consistent over all tilt 

projections and provides a separate projection model for each tilt image. TxBR employs 

nonlinear bundle adjustment simultaneously calculating marker positions and projection 

maps via conjugate gradient optimization[5].

Alignment is via conjugate gradient optimization using mean square reprojection error as the 

objective function, as shown in Eq. (1) for a general polynomial projection model.

(1)

Where C is the projection map whose highest order is defined by users through the interface 

of EPiK. (xml, yml) is the projected coordinate of XlYlZl on the mth tilt angle.

Various alternative models are possible for the alignment including polynomial functions, 

ratios of polynomials and mixed trigonometric-polynomial projection maps. We have 

implemented polynomial projection maps to 5th degree in our previous work[5]-[10].

Two output files will be generated automatically after the alignment process. One is a figure 

file that gives the coordinates of markers in 3D volume. The other file is a text file that will 

be used in the following reconstruction processing. It contains the coefficients of polynomial 

projection map from a 3D object to its 2D projections.

2.4 Reconstruction

2.4.1 Normalization—After alignment process, we can reconstruct the 3D structures. 

Because image statics should follow the cosine law, raw projection data should be 

normalized before being used to reconstruct, as shown in Figure 1 (a). In process of 

normalization, we adopt the following functions to readjust the gray value of each projection 

image.

1. Adjust grey scale to make all distributions equal in variance;

2. Adjust grey scale to make all distributions equal in mean;

3. Adjust distributions to follow cosine law;

4. Log transform image pixel values.

After that, we will get a “.st” file that has been normalized by the functions mentioned 

above.

2.4.2 Reconstruction Workflow—We have implemented two common reconstruction 

methods in EPiK. The first general method is filtered backprojection (FBP) which is 

relatively simple robust and fast. FBP is widely used in ET softwares such as IMOD [17] 

and TxBR. Iterative methods is the other reconstructed algorithm used in EPiK which is 

constituted by a class of alternatives to FBP in 3D reconstruction of ET. These methods both 

give good performance in handing incomplete, noisy data. In general, iterative methods are 
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real-space reconstruction algorithms that formulate the 3D reconstruction problem as a large 

system of linear equations, as shown in Eq. (2).

(2)

Iterative methods begin with an initial u(0) and repeat the iterative processes [18]. Here, we 

use an FBP solution as an initial value, which will generally improve the convergence rate, 

as simple backprojection is subject to a high degree of smoothing which obliterates the 

details, and in place of the starting point further from an actual solution. In each iteration 

cycle, the residuals, i.e. the differences between the actual projections ν and the computed 

projections ν’ of the current approximation u(k) (k is the iterative number), are calculated and 

then u(k) is updated by the backprojection of these discrepancies. Thus, the algorithm 

produces a sequence of N-dimensional column vectors u(k). Eq. (3) below gives a typical 

iteration step.

(3)

In EPiK workflow, the generic iterative reconstructing process is described as follows:

1.
Initialization: calculate initial value for  by FBP;

2. Reprojection: estimate the projection data ν based on the current approximation 

;

3. Backprojection: backproject the discrepancy Δν between the experimental ν and 

calculated projections ν’, and refine the current approximation u by incorporating 

the weighted backprojection Δu.

2.4.3 Parallel Executio—Three-dimensional reconstruction in ET entails large 

computational costs and resources that are a function of the computational complexity of the 

reconstruction algorithms and the size of the projection images involved. This is especially 

true for wide-field tomography. Traditionally, high-performance computing has been used to 

address such computational requirements by means of parallel computing on 

supercomputers [19], large computer clusters [20], and multicore computers [21].

In EPiK workflow, we also use a parallel strategy to complete reconstructions on clusters. 

Our method permits the decomposition of the reconstruction problem into independent slabs 

along the Z - axis and makes the process well suited for parallelization. We have a natural 

choice for a parallel computation, in which the reconstruction along each Z-slice is 

calculated on a different processor. Thus, we can implement a parallel strategy where the 

sub-reconstruction along each Z-slice is calculated at the same time. This strategy makes use 

of message passing interface (MPI), standard in parallel programming. We can also apply a 

single program multiple data (SPMD) approach to perform the parallelization of the 

reconstruction on each Z-slice. The 3D volume is decomposed into several slabs with equal 

heights along the Z-axis. These slabs are assigned and reconstructed on an individual node 

on a cluster. The number of slabs equals to the number of nodes. Here, we adopt several 
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actors including “SSH Session”, “SSH File Copier” and “GenericjobLauncher” to 

implement the parallel reconstruction strategy discussed above, as shown in Figure 1 (c).

3 Experiment

In this section, we report results of the reconstruction technique described in the previous 

sections.

In order to show the improvement of reconstruction by multiple tilt series, we collected 16 

fold tilt series projection images and reconstructed the same sample by single tilt data and 16 

tilt series data respectively. The sample is from the electric organ of an eel. The electric 

organ generates a large voltage pulse for defense of the eel. The reconstruction of its 

structure can greatly help biologists to understand its physiological functions, for example, 

the trans migration of ions across cell membranes in synchrony to san to large pulses.

The micrographs were taken in a 300kV FEI Titan TEM. The tilt series in this example is 

composed of 121 micrographs, each micrograph being 1024×1024. The size of 

reconstructions is 1035 × 997 × 66. The specimen is tilted from −60 to +60 degree in one-

degree increment for each tilt. And the angle increment for two adjacent rotation tilts is 

11.25 degree.

To get the reconstruction by EPiK, users just need to set the parameters shown in the 

interface and choose the reconstruction method. Subsequently, the processes will be 

automatically completed. EPiK has greatly facilitated the users to test and compare the 

results with different raw data and by different algorithms. In addition, it is convenient for 

developers to extend EPiK with new algorithms or functions.

Figure 2 shows one X-Y slice of the reconstruction along Z-axis. Figure 2 (a) is one X-Y 

section of the volume reconstructed by ASART after 5 iterations; and Figure 2 (b) is the 

section of the volume reconstructed by 16 fold tilt series. Chromatin coils are clearly visible 

in the second image.

The results show that by using EPiK, the 3D structure of the eel sample can be reconstructed 

successfully. From both figures, we can recognize different components of the sample, such 

as nucleus and filaments in the cytoplasm. Compared to Figure 2 (a), information is more 

widely distributed on the Orloff sphere[22], the reconstruction has higher quality in Figure 2 

(b).

Note that multiple tilt series reconstruction requires more computational resources. For 

instance, the size of a 16 fold tilt series is about 65 Gigabyte with each projection image 

including 4096 by 4096 pixels. If we use higher resolution images collection or more tilt 

series data to reconstruct a sample, the data size may be in terabyte range.

Furthermore, serial sectioning is generally employed to reconstruct thicker samples. 

Montaging is commonly employed to increase the effective field of view. A montage 

consists of images of regions of the specimen that overlap in order to generate a larger map 
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[9][10]. With montaging, the dataset will be even larger. Right now, montages has already 

been implemented within TxBR.

4 Conclusion and Future Work

We implemented an electron tomography workflow EPiK that includes three basic steps: 

tracking, alignment and reconstruction. With Kepler, EPiK provides a visual language that 

can organize the processes of electron tomography in a workflow, and generally raises the 

level of abstraction in a complicated computation instance. EPiK can achieve the 

reconstruction of a sample from its microscope tilt series images effectively, and it makes 

things easier for the users. In addition, parallel computation is used in reconstruction in the 

current version of EPiK. Finally, both data sets and final reconstructions have increased by 

many orders of magnitude over the past two decades. EPiK provides means for handwork-

independent implementation of improved parallelization. Therefore, EPiK will be a 

potentially useful tool in ET for biologists or any other researchers in different areas.

Future plans include: (1) Production of functionality to create a realistic phantoms with the 

following: realistic object, random markers, multiple tilt axes, off-center tilt axes, 

projections including helicity, warping and noise. This will yield a “ground truth” on which 

to evaluate and compare algorithms. (2) Incorporate alternative approaches to tracking, 

alignment and reconstruction. (3) Implementation of pre and post processing, for example, 

integrate other alignment such as marker-free alignment algorithm[23] to EPiK, and the 

nonlinear post processing for artifact reduction [24]. EPiK provides a framework for 

different kinds of algorithms comparison and graceful incorporation of improvements.

With EPiK, it is convenient for developers to extend the process with new algorithms. EPiK 

provides a simple means to compare and test the error using realistic phantoms and common 

examples of tilt series obtained in the lab. In line with development of TxBR, the montage 

function can also be added to EPiK for large field ET[9]. Finally, the process may be scaled 

up by parallel processing with supercomputers, large computer clusters and multicore 

computers.
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Figure 1. 
EPiK Workflow. (a) The main interface of EPiK. It includes three main parts: tracking, 

alignment and reconstruction. Normalization is a pre-reconstruction step to insure that the 

grey-scale statistics are correct. (b) Main composition of tracking. IMOD is used for coarse 

tracking, and TxBR is used for fine tracking. All of the steps are integrated as a composite 

actor in EPiK. (c) Composition of reconstruction. There are parallel computings in this step. 

Multiple nodes in a cluster are used for large data sets.
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Figure 2. 
Reconstruction results of a cell nucleus from the electric organ of an eel sample. (a) The 

reconstruction by single tilt images; (b) The reconstruction by 16-fold tilt series images. 

With multiple tilt series images, the quality of volume reconstruction is greatly improved.
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