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Abstract: Common Audiological Functional Parameters (CAFPAs) were previously introduced as
abstract, measurement-independent representation of audiological knowledge, and expert-estimated
CAFPAs were shown to be applicable as an interpretable intermediate layer in a clinical decision
support system (CDSS). Prediction models for CAFPAs were built based on expert knowledge and
one audiological database to allow for data-driven estimation of CAFPAs for new, individual patients
for whom no expert-estimated CAFPAs are available. Based on the combination of these components,
the current study explores the feasibility of constructing a CDSS which is as interpretable as expert
knowledge-based classification and as data-driven as machine learning-based classification. To test
this hypothesis, the current study investigated the equivalence in performance of predicted CAFPAs
compared to expert-estimated CAFPAs in an audiological classification task, analyzed the importance
of different CAFPAs for high and comparable performance, and derived explanations for differences
in classified categories. Results show that the combination of predicted CAFPAs and statistical
classification enables to build an interpretable but data-driven CDSS. The classification provides good
accuracy, with most categories being correctly classified, while some confusions can be explained by
the properties of the employed database. This could be improved by including additional databases
in the CDSS, which is possible within the presented framework.

Keywords: CDSS; audiology; precision medicine; interpretability; machine learning; expert knowledge

1. Introduction

Clinical decision support systems (CDSS) provide the potential to improve objectivity
in clinical decision-making, e.g., by providing clinical experts with probabilities for medical
findings or diagnoses which are based on large amounts of patient data [1,2]. However,
CDSS are not yet widely adopted because they lack integration into the decision-making
process of clinical experts [3], act as black boxes whose functionality cannot be interpreted
by the experts [1], or lack integration of different clinical data sources [4]. Therefore, CDSS
need to be developed in collaboration with experts [5–7]. An ideal CDSS should provide
interpretability to experts [1,4,8] and must exploit data from different clinical databases.

A CDSS developed in collaboration with experts can combine the advantages of
expert knowledge and automatic prediction or classification [7,9]. If an expert is highly
experienced, her or his knowledge is highly developed from previous patients, and many
connections between different patient cases may be implicitly available. However, it takes
time, work experience and effort to obtain a high degree of experience, and subjective
influences are possible. In contrast, CDSS perform “objective” clinical decision making,
i.e., their decision making depends on how the system was trained and which data were
available for training [2]. By using large amounts of data, precise classifications become
possible that rely on better statistics than a human expert could achieve with a limited
number of seen patients. In addition, new relationships in the data could be discovered
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which the human expert did not know before [10]. A disadvantage is that the CDSS
can only represent what it has learned in training, and therefore, it could miss some
special cases. In addition, CDSS are not able to use subjective impressions about patients.
If a system provides interpretability, e.g., in terms of explanations of how the system
works, appropriate visualizations or uncertainty measures, experts can gain trust and
acceptance [1,3,11,12]. Therefore, the interplay between human experts and CDSS should
provide optimal benefits towards precision medicine.

To further the usage and exploitation of “Big Data” for achieving high accuracy, clinical
data distributed over different local databases and with potentially different content—e.g.,
different parameters or measurements being collected at a respective clinic—need to be
jointly analyzed and combined. This could be achieved by introducing a common data
format, as suggested, for example, in [2]. Even in one medical discipline, this would involve
adapting all databases to a defined format (and selection of measurements) on which every
location agrees, which is difficult to realize on the basis of single projects. Coordinated
initiatives such as HiGHmed [13] work towards standardized data formats and data
integration centers for medical data. By separating knowledge and information, as well as
technical and domain content, interoperable information systems can be obtained [13,14].
The domain knowledge is incorporated in so-called archetypes, which need to be defined for
different medical fields and applications [14]. This approach was, for example, successfully
implemented in infection control, where data could be jointly analyzed in a multicentre
study after transforming it to archetypes [15].

In the field of audiology, the aim is to characterize patients’ hearing impairment (e.g.,
sensorineural, conductive, or mixed hearing loss) and to suggest an appropriate treatment
(e.g., provision with a hearing aid (HA) or implantation of a cochlear implant (CI)) to
compensate for the hearing loss [16,17]. For this purpose, audiological measurements are
conducted; these measurements differ across clinics but also depend on the target group of
the respective institution. For example, audibility is assessed by a pure-tone audiogram
in most databases, but communication abilities are assessed by the use of different speech
tests based on words or sentences. According to German clinical guidelines [18], hearing
device indication criteria are based on the Freiburg monosyllabic speech test [19]. For
the assessment of speech understanding in noise or hearing aid benefit, sentence tests in
noise such as the matrix sentence test [20–23] or the Goettingen sentence test (GÖSA; [24])
are used.

With respect to machine learning methods for characterizing hearing impairment or
suggesting a treatment in the direction of a CDSS, few approaches exist for audiology. For
example, Sanchez-Lopez et al. [25,26] investigated the classification of hearing-impaired
patients into auditory profiles describing distortions related to audibility or not based
on previously-published research data sets. In addition, different approaches of CDSS
exist that consider single aspects of audiology, such as, for example, a CDSS for tinnitus
diagnosis and therapy [27], for idiopathic sudden hearing loss [28], or for the selection
of in-the-ear (ITE) vs. behind-the-ear (BTE) hearing aids [29]. Moreover, [27] considered
the aspect of interpretability and both [27,28] worked with data from (country-specific)
electronic health records. To the best of our knowledge, no CDSS is available in the field
of audiology that attempts to cover a broad range of audiological findings and treatment
recommendations (diagnostic cases) as well as of test batteries of audiological measures
conducted in different clinics.

To facilitate a CDSS for audiology representing the audiological decision-making
process, including interpretability of the system and integration of different audiological
databases, Buhl et al. [30] introduced the Common Audiological Functional Parameters
(CAFPAs) as abstract and interpretable representations of audiological knowledge. The
CAFPAs were defined in discussions with experts; in the CAFPAs, ten functional aspects
describe the human auditory system independent from the exact choice of audiological
measures. The CAFPAs are designed to cover all relevant aspects which are important
to characterize hearing loss or suggest a treatment recommendation. Figure 1A gives
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an overview of the definition of CAFPAs. The CAFPAs were designed to be used as an
intermediate layer between measures and diagnostic cases in the CDSS.

For the purpose of linking the CAFPAs to audiological data (measurements and diag-
nostic cases), Buhl et al. [31] conducted an expert survey. Thereby, CAFPAs and diagnostic
cases were estimated for given patient cases from a pre-clinical database from Hörzentrum
Oldenburg. Based on this data set, Buhl et al. [32] showed that a similar classification
performance is obtained using expert-estimated CAFPAs, compared to directly using the
audiological measurements (cf. Figure 1B, left and middle part). However, the classification
of [32] has, thus far, not been applicable to patients other than those contained in the expert-
labeled data set, because no quantitative link between measurement outcomes and CAFPAs
has been available. Hence, CAFPAs could not be estimated for new patients. Therefore, as
a next step towards a CDSS operable for individual patients, Saak et al. [33] established
regression models that allow automatic prediction of CAFPAs given the measurement
outcomes (cf. Figure 1B, middle and right part). Three different models (lasso regression,
elastic net, and random forest) were investigated in [33], and it was shown that all models
provide adequate to good predictive performance. In addition, measurements employed in
the prediction of CAFPAs were analyzed by means of feature importance, which provided
interpretability of the CAFPA prediction and revealed audiologically plausible relationships
between measurement outcomes and CAFPAs [33].
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Figure 1. (A) Definition of CAFPAs. From left to right, increasing frequency is represented, and from
top to bottom, peripheral to central aspects are represented. (B) Relationships between previous work
and current study. Black arrows represent a classification, light green (dashed) arrows represent expert
knowledge, and light blue, blue, and green arrows represent different CAFPA prediction models
(lasso regression, elastic net, and random forest, respectively). Buhl et al. [32] compared classification
into diagnostic cases based on measures vs. CAFPAs (left and middle part). Saak et al. [33] derived
regression models for CAFPA prediction based on the expert link between measures and CAFPAs
(middle and right part). The current study (grey box) investigates the application of predicted
CAFPAs in the CDSS as compared to classification based on expert-estimated CAFPAs.

Therefore, by combining these previous steps [32,33], the current study aims at explor-
ing whether a CDSS can be constructed for audiology which is as interpretable as expert
knowledge-based classification and as data-driven as machine learning-based classification.
In the CDSS, CAFPAs are to be estimated from the available audiological measurements,
and classification of diagnostic cases (audiological findings or treatment recommendations)
needs to be performed based on predicted CAFPAs (cf. Figure 1B, right part). In addition,
the interpretability of the CDSS needs to be assured, which can partly be combined from
the interpretability aspects from the classification of [32] and CAFPA prediction of [33].

The research hypothesis of the current paper is that the combination of CAFPAs and
statistical classification enables an interpretable but data-driven CDSS to be built. To test
this hypothesis, the following steps were taken:

1. Model-predicted and expert-estimated CAFPAs were investigated to determine whether
they could provide equivalent classification performance;
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2. The classification approach and evaluation was extended to applicability for individ-
ual patients, and;

3. The interpretability of the obtained CDSS was investigated.

2. Materials and Methods
2.1. Common Audiological Functional Parameters (CAFPAs)

The Common Audiological Functional Parameters (CAFPAs) were introduced by
Buhl et al. [30] as an abstract and common data format for describing the hearing status
of patients. The ten CAFPAs describe different functional aspects of the human auditory
system (cf. Figure 1A), which were defined from literature and by discussion with experts.
The CAFPAs CA1 to CA4 describe audibility for different frequency ranges. CU1 and CU2
describe supra-threshold deficits for low and high frequencies; that is, they relate to speech
intelligibility and loudness perception. Binaural, neural, and cognitive properties of the
auditory system are represented by CB, CN , and CC, and the socio-economic status of
patients is described by CE. From left to right in Figure 1A, increasing frequencies are
represented by CAFPAs, while from top to bottom, peripheral to central aspects of hearing
loss are represented. CAFPAs are defined as continuous variables in the interval [0 1]
with 0 representing “normal” and 1 representing “maximally impaired”. CAFPAs are
graphically represented using a traffic-light color scheme from green to red. CAFPAs
are to be estimated from audiological measures available in a respective clinical database
while being independent of the exact choice of tests and thus providing the potential to
integrate different databases [30]. Therefore, the CAFPAs are suitable as interpretable,
intermediate representation between audiological measurements and diagnostic cases in a
clinical decision support system for audiology [31,32].

2.2. Data Set

The analysis is based on a data set from Hörzentrum Oldenburg GmbH, which was
described by [34]. The data set contains the following audiological measures for 595 pa-
tients with mild to moderate hearing loss: pure-tone audiogram, Goettingen sentence
test (GÖSA; [24]), adaptive categorical loudness scaling (ACALOS; [35]), DemTect [36]
for characterizing cognitive abilities, a verbal intelligence test (“Wortschatztest”; [37]), the
Scheuch–Winkler Index (SWI; [38]) for describing socio-economic status, and subjective
information about hearing problems in quiet and in noise as well as tinnitus, gender,
and age. Hence, this data set contains appropriate information to estimate CAFPAs from
these measures. In an expert survey, Buhl et al. [31] collected expert labels for 240 of the
595 patients (in total, 287 cases were labeled, because for an analysis of agreement, some
patients were shown to several experts [31]). Given the measures for individual patients,
the experts’ task was to estimate CAFPAs and to tick audiological findings and treatment
recommendations from a given list. For details, please refer to [31]. The labels for diagnostic
cases are assumed as the ground truth for classification in the following. For patients where
multiple expert CAFPAs are available from the expert survey, CAFPAs from one expert
were randomly chosen.

2.3. Prediction of CAFPAs

For the purpose of providing a quantitative link between audiological measures and
CAFPAs, Saak et al. [33] established regression models based on the data set [34] and the
expert-estimated CAFPAs from [31]. To incorporate different degrees of interpretability
vs. flexibility of the models, the regression was performed using lasso regression, elastic
nets and random forests [39]. Separate models were estimated for each CAFPA. Lasso
regression and elastic net perform feature selection as defined by a penalty term; that is, not
all audiological measures are used to predict CAFPAs. For lasso regression, some features
are shrunken to zero, while for elastic net, irrelevant features are shrunken towards zero
and correlated features are grouped together [39]. For random forest, multiple decision
trees are combined which each consider a limited number of features. Within a decision
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tree, recursive binary splitting of the feature space (the audiological measures) is performed
according to the respective largest error reduction. The prediction is defined as the mean of
remaining features in the resulting region of the feature space. For details on the models,
please refer to [33].

Overall, a good predictive performance was obtained, with very similar performance
observed across different models and larger performance variation observed across different
CAFPAs. The audibility-related CAFPAs CA1 to CA4 were the best predicted, while the
worst predictive performance was obtained for the supra-threshold CAFPAs CU1 and CU2.
Analysis of feature importance revealed which audiological measurements were used by
the models for prediction of CAFPAs, and thereby contributed to the interpretability of the
predictions. Some differences across models occured, but the features commonly used by
all models were plausible from an audiological interpretation point of view [33].

In the following, classification will be performed on CAFPAs predicted by all three
models. To generate predictions for all 240 patients that were labeled in the expert survey
of [31], a 5-fold cross-validation was performed. The model-building according to the
procedures from [33] was conducted five times on the respective 80% of the data, and then
the remaining 20% of the patients were predicted.

2.4. Classification
2.4.1. Expert-Estimated vs. Model-Predicted CAFPAs (Comparison Sets)

To compare performance between expert-estimated and model-predicted CAFPAs,
first, the classification is performed using a Bayes classifier [40] as in [32]. There, classi-
fication was performed in five binary comparison sets (CS) of two respective categories
which were derived from the lists of diagnostic cases in the expert survey of [31]. These
comparison sets are depicted in grey in Figure 2. For each category of each comparison
set, training distributions were estimated in [31]. For the expert CAFPAs corresponding
to the respective category, beta distributions were calculated (using a leave-one-out cross-
validation) for each CAFPA. Figure 3A/B shows examples of training distributions for
normal hearing vs. hearing impaired (CS I) for CA1 (audibility for low frequencies) and CN
(neural CAFPA).

Tree set IITree set I

Tree set III

Audiological findings

Normal hearing

(NH)

Hearing impaired

(HI)

High-frequency
hearing loss (all)

(Others)

Only high-
frequency

hearing loss
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+ conductive
hearing loss

(high+cond)

Only high-
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CS II CS III

Treatment recommendations

None Hearing device
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aid

(HA)

Cochlear
implant
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CS V

Figure 2. Schematic representation of comparison sets (CS) and tree sets. Different arrow line styles
belong to different comparison sets of two respective categories, as described in [31,32]. Different
colors show the comparison of categories performed in the respective tree set, which were derived by
combination of comparison sets. Abbreviations as introduced in parentheses are used throughout the
paper. This figure was adapted from Figure 2 of [31].
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A B C

Figure 3. (A) Training distributions for CA1 in CS I (normal hearing (magenta) vs. hearing impaired
(blue)), and corresponding certainty value for different input pCAFPA values (orange, dashed). (B) As
(A), for CN . (C) Classification threshold pCAFPA values for all five comparison sets (rows). Thresholds
correspond to intersections of training distributions, as well as to the minimum of certainty as shown
in (A,B). Colors represent different pCAFPA values. Values lower than threshold are classified into
the first category, and higher values are classified into the second category. Fields marked with “x”
provide an expected value of certainty of ≤ 0.65 (averaged over the complete pCAFPA range).

In this study, the classification of expert-estimated as well as predicted CAFPAs is
based on these expert training distributions, because in the use case of a CDSS, new patients
would be classified using a previously trained system. For each CAFPA, the classified
category is estimated by calculating the maximum of two training distributions for a
given pCAFPA value (x-position in Figure 3A,B). Figure 3C shows resulting classification
thresholds (Bayes decision boundary, [40]) for all CAFPAs and comparison sets, i.e., lower
pCAFPA are classified to the first and higher pCAFPA are classified to the second category of
the respective comparison set. Especially in comparison sets II and III, some CAFPAs show
relatively low average certainty; that is, the training distributions for the two compared
categories are similar. For classification based on all CAFPAs, the maximum is calculated
based on a weighted sum of probability density values for different CAFPAs. All binary
combinations of CAFPAs are used as weights for classification; that is, 210 − 1 = 1023
combinations of the different CAFPAs being included or not are investigated. For details,
please refer to [32].

The classification performance is evaluated using the Youden index Y as in [32]. The
Youden index is calculated from sensitivity and specificity according to Equation (1), and is
defined in the interval [0 1]. Sensitivity and specificity describe the proportion of correctly
classified patients with respect to the first or second category of each comparison set. For all
CAFPAs (expert-estimated and predicted), the expert labels are assumed as true diagnostic
cases. Note that for the calculation of Y, only those patients that were uniquely associated
by experts to the first or second category (and not to both) were taken into account.

Y = Sens + Spec− 1 (1)

For the comparison of expert-estimated and predicted CAFPAs, a criterion is defined
that allows the investigation of CAFPA combinations (weights) that lead to high and similar
performance between expert-estimated and predicted CAFPAs at the same time. This is
assumed for weight vectors fulfilling Y ≥ 0.90 ·max(Y), that is, those CAFPA combina-
tions that obtain a classification performance of at least 90% compared to the maximum
performance of expert-estimated or predicted CAFPAs in the respective comparison set
(denoted as Y90 combinations in the following). The common high performance is then
analyzed based on overlapping combinations between the expert-estimated and predicted
CAFPAs of the respective model. From the relative frequency of CAFPAs in the combina-
tions fulfilling the criterion, additional weights are derived by normalization, which are
additionally used for classification (denoted as rel-model). Similarly, weights leading to high
and common performance across CAFPAs estimated by experts and predicted by all models
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are investigated and additionally used for classification (denoted as rel-all). In summary,
classification is performed in the dimensions of 5 comparison sets, 3 + 1 models/expert,
1023 + 2 weights, and 240 patients.

2.4.2. Individual Patients (Tree Sets)

To achieve a CDSS applicable for individual patients, the classification was adapted in
three aspects. First, the comparison sets were combined such that a classification would, for
example, not stop with “hearing impaired”, but continues with finer-grained classification
of the type of hearing impairment (and correspondingly for treatment recommendations).
Three “tree sets” were defined this way, which are depicted in different colors in Figure 2.
Second, weights of CAFPAs needed to be chosen, which happened based on the analysis
performed in comparison sets (cf. Section 3.1). Third, a certainty measure was introduced
for the purpose of allowing a potential user of a CDSS (expert) to interpret the classification
in a statistical sense and to decide how far she or he would trust the system.

For the classification in tree sets, the classification within each comparison set was
the same as described before, but in the “second layer” (comparison sets II, III, and V),
only those patients were used that had been classified to the appropriate previous category
before; that is, the binary decision was propagated through the tree. Thereby, within each
tree set, a decision between three categories was performed (cf. Figure 2).

To investigate whether the weights derived for high and comparable classification
between expert-estimated and predicted CAFPAs (cf. Section 2.4.1) were appropriate,
confusion matrices and accuracy were calculated. For confusion matrices, the numbers
of patients that were classified into the different categories by expert or respective model
CAFPAs were estimated. Accuracy was derived from that according to Equation (2),
indicating the proportion of correct classifications of all classifications, with N denoting
the number of patients per group and c the index of the classified category. For graphical
representation, the confusion matrices were normalized with respect to expert categories,
such that the proportion of correctly classified patients can be intuitively compared across
columns (cf. Section 3.2).

Acc =
∑3

c N(cclass,expert = cclass,predicted)

∑3
c ∑3

c′ N(cclass,expert, c′class,predicted)
(2)

The certainty measure within each comparison set is defined according to Equation (3),
i.e., it describes the probability of the respective classified category c in relation to the
sum of training distributions for given pCAFPA (Bayes error rate, [40]). The certainty
(1-error) depends both on the training distributions (i.e., general ability to discriminate the
two categories using one CAFPA) and the individual CAFPA value pCAFPA (i.e., relative
to classification threshold as given by training distributions). The former describes the
expected value of maximum certainty that can be obtained with the respective training
distributions. It can be estimated by averaging the certainty across the pCAFPA axis [40].
Examples for CA1 and CN in comparison set I are shown in Figure 3A,B. For the combination
of CAFPAs, the certainty is weighted in analogy to the probabilities used for classification
(all binary combinations of CAFPAs). The certainty for tree sets is estimated by propagating
it through comparison sets as defined for the classification. Therefore, the certainties for the
three categories of each tree set sum to 1 by definition. Due to the definition of tree sets, the
certainties can be interpreted as the probability of the classified category being correct, but
with a chance level of 0.5 for the respective first and 0.25 for the second and third category
(e.g., for normal hearing, the “classification path” is already terminated, while for hearing
impaired, a second comparison set follows).

Certc(pCAFPA) =
pc(pCAFPA)

∑2
c′ pc′(pCAFPA)

(3)
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3. Results
3.1. Expert-Estimated vs. Model-Predicted CAFPAs (Comparison Sets)

In the first part of the analysis, classification was performed in comparison sets to in-
vestigate if good and comparable classification performance can be obtained by employing
the model-predicted CAFPAs from [33] as compared to expert-estimated CAFPAs from [31],
and to derive weights of CAFPAs to use in Section 3.2.

Figure 4 shows the classification performance in terms of the Youden index Y for all
1023 binary combinations of CAFPAs. Rows depict different prediction models compared
to expert-estimated CAFPAs, and columns depict different comparison sets. In the scatter
plots, the diagonal represents comparable performance between expert-estimated and
predicted CAFPAs, and the best performance is located in the top-right corner. Across
models, the general distribution of performance is similar, while larger differences across
comparison sets occur, especially in terms of the maximal possible performance, which is
in line with [32].

Comparison
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high vs. high+cond
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Figure 4. Youden index scatter plots for all 1023 binary combinations of CAFPAs. Rows and colors
depict results for different CAFPA prediction models, while columns depict comparison sets. In
each panel, the Youden index Y for predicted CAFPAs is plotted against the Youden index Y for
expert-estimated CAFPAs. Red data points represent Y90 combinations.

Some bias between expert-estimated and predicted CAFPAs (for all models) occurs
in comparison sets III and V. In comparison set III, predicted CAFPAs achieve lower per-
formance than expert-estimated CAFPAs, while in comparison set V, predicted CAFPAs
achieve higher performance. For all models and comparison sets, large performance varia-
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tions across CAFPA combinations (defined by weights) occur regarding best performance
but also comparability between expert-estimated and predicted CAFPAs. Therefore, an
appropriate choice of CAFPAs is important for the application of CAFPA predictions in a
clinical decision support system.

For the purpose of investigating the importance of different CAFPAs for different
models and comparison sets, the contribution of different CAFPAs to high classification
performance (Y90 combinations, red data points in Figure 4) was analyzed. Figure 5
shows the relative frequency of CAFPAs in combinations that are common between the
expert-estimated CAFPAs and the respective model-predicted CAFPAs, as well as common
between experts and all models. For all models, all CAFPAs contribute to high performance
in at least one comparison set, and the combinations within comparison sets are similar
across models.

Differences between models are visible in the number of included CAFPA combina-
tions. For comparison set I, a medium number of Y90 combinations was found for lasso
regression and elastic net, while about half of all combinations show a high performance
for random forest. In all of these combinations, CA4 is included, and all remaining CAFPAs
are included in half of the Y90 combinations. This means that CA4, describing audibility for
high frequencies, could also be used alone for classification when CAFPA prediction is done
with random forest (in comparison set I) and all other CAFPAs occur in varying combina-
tions; hence, the exact choice among them is not important. In contrast, lasso regression and
elastic net seem to represent distinctive information from different CAFPAs, as their relative
importance differs across CAFPAs. For these models, the choice of CAFPAs is more crucial
but more interpretable. However, all models agree that CA4 (and CA2) are most important
for this comparison set, which is plausible because an audiogram at high frequencies is
well able to discriminate between normal hearing and hearing-impaired cases, especially
for high-frequency hearing loss, which is frequent in the considered data set.

In comparison set IV (none vs. hearing device), a noticeable high number of Y90
combinations is present for all models. Here, again, different CAFPAs contribute to high
performance, but their relative importance differs, and the agreement across models is
very high.

In comparison sets II and III, very few combinations are best-performing and common
with experts for all models. Compared to Figure 4, this can be explained with the general
lower performance of model-predicted CAFPAs as compared to expert-estimated CAFPAs.
In these comparison sets, no common weights between all models were found. In this case,
the best CAFPA combination of the respective model was estimated.

For the purpose of representing the importance of different CAFPAs in the classifi-
cation of individual patients (cf. Section 3.2), the relative frequency of CAFPAs common
between models and expert was normalized and then used as additional weights (rel-model)
in the classification with the respective model (in addition to all binary combinations as
shown before). In comparison sets II and III, the weights of best performance were used if
no common combination between expert-estimated and predicted CAFPAs was available.
Furthermore, the weights derived from common CAFPA combinations across all models
were also used in the classification (purple in Figure 5, rel-all).

To provide an overview of classification performance in all dimensions (comparison
sets, CAFPA prediction models, different combinations of CAFPAs as given by weights)
and to validate classification performance using rel-model and rel-all weights derived for
different models, Figure 6 summarizes the Youden index obtained for different (groups
of) weights.
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Figure 5. Relative frequency of CAFPAs included in Y90 combinations, common for expert-estimated
CAFPAs and respective models (first three panels, colors for different models). The last panel (purple)
shows the relative frequency of CAFPAs common to experts and all models. If no common weights
were found, the best CAFPA combination of the respective model is depicted (lighter colors).



Diagnostics 2022, 12, 463 11 of 23

For all comparison sets, the maximum performance as already described is depicted
to provide comparability to the other conditions. The median of Y90 performance is
slightly lower than the maximum performance, which is plausible due to the design
of the Y90 criterion including CAFPA combinations that lead to more than 90% of the
maximum performance. The performance of different weights is depicted to investigate
their applicability in the classification. Uniform weights—which are considered to be the
baseline—achieve the lowest performance of all conditions. Comparing across weights,
the model-specific rel-model weights achieve the highest performance in all comparison
sets, as well as comparable performance to the Y90 condition. In comparison sets IV and V,
the performance of rel-all weights is similarly high, but here, the rel-model weights of the
different models are very similar, as seen in Figure 5. However, the expert performance
in these cases differs across weights and is highest for rel-model weights. Furthermore,
the usage of generalized weights across models (rel-all) depends on the robustness of
their estimation, i.e., if and how many common CAFPA combinations across weights are
available. Therefore, rel-all weights are not very robust in comparison sets II and III.

Differences across models are comparison set- and weight-dependent, as, for example,
random forest performing similarly to expert-estimated CAFPAs and better than lasso
regression and elastic net in comparison sets I and II; however, in comparison set IV,
all models performed similarly. In comparison set V, the models even achieved higher
performance than expert-estimated CAFPAs.

Comparison
set I

NH vs. HI

Comparison
set II

high vs. high+cond

Comparison
set III

high vs. high+recr

Comparison
set IV

None vs. device

Comparison
set V

HA vs. CI

Figure 6. Youden index Y depicted for different comparison sets (panels), groups of CAFPA com-
binations (x-axis), as well as expert-estimated and model-predicted CAFPAs (colors, as introduced
in Figure 4). Conditions on the x-axis comprise the maximum performance in the respective com-
parison set and model, median performance in Y90 combinations (red data points in Figure 4), and
performance using uniform, rel-model, and rel-all weights. For classification based on expert-estimated
CAFPAs, rel-model and rel-all weights were estimated based on Y90 combinations for expert classifica-
tion alone; hence, these are not common weights between expert and model, as depicted in Figure 5,
but are depicted in addition.

In summary, predicted CAFPAs by all regression models achieve a comparable per-
formance to expert-estimated CAFPAs. However, a comparable and high performance
for expert-estimated and predicted CAFPAs depends on the choice of weights defining
the employed CAFPAs. In the following, the model-specific weights derived from rela-
tive frequency of CAFPAs in Y90 combinations (rel-model) will be considered as the most
promising and robust candidate for the classification of individual patients and will be
compared to a baseline of using uniform weights, as well as to common weights for all
models (rel-all).

3.2. Individual Patients (Tree Sets)

For the evaluation of individual patients, the comparison sets were combined to three
tree sets, and classification was propagated through trees. Figure 7 shows median pCAFPA
values for patients classified into the different categories of tree set III (none vs. hearing aid
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vs. cochlear implant) based on expert-estimated CAFPAs as well as on CAFPAs predicted
by all models, and using rel-model weights. For all categories, plausible CAFPA patterns
were obtained, with increasing pCAFPA values from the first to third category and with
more central CAFPAs being more and more affected. Between CAFPA prediction models,
the patterns are highly similar, while partly showing lower median pCAFPA as compared to
expert-estimated CAFPAs in the cochlear implant category.

None Hearing aid Cochlear implant
Tree set III

rel-model
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Figure 7. CAFPA patterns (median and interquartile ranges) of patients classified in tree set III for
expert and all models (rows) using rel-model weights. N indicates the number of included patients.
CAFPAs for tree sets I and II and different weights are provided in the Supplemental Materials.
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In addition, the number of patients classified into the categories differ between expert-
estimated CAFPAs and different models; that is, for some patients the classification was
different. The median CAFPAs for different categories of the other tree sets and weights are
provided in the Supplemental Materials. Within all tree sets, distinguishable and plausible
patterns were found, and different weights lead to some small differences in the numbers
assigned to each category.

To further investigate the differences between the expert-estimated and predicted
CAFPAs used for classification, Figure 8 displays confusion matrices for all models and
tree sets using rel-model weights. In each plot, the absolute numbers of patients as classified
by expert-estimated or predicted CAFPAs are represented, while the color is normalized in
columns; that is, they represent the relative amount of patients classified into categories
as given by expert-estimated CAFPAs. By comparing across tree sets, it can be seen that
different confusions occur most often. For tree set I, patients classified to all categories
using expert-estimated CAFPAs were most often classified as high-frequency hearing loss
using predicted CAFPAs. For tree set II, most high-frequency hearing loss patients (expert-
estimated CAFPAs) were classified as high-frequency hearing loss + recruitment by the
models. For tree set III, the most prominent confusion happened between the classifications
of cochlear implant (expert) and hearing aid (predicted).

Between models, confusions by lasso regression and elastic net are very similar, while
random forest shows slightly reduced numbers of the most prominent confusions in each
tree set as described before.

This is also reflected in the accuracies listed in Table 1, which are very similar across
models (for rel-model weights) in tree sets I and II, while being highest for random forest
in tree sets I and III. Compared across weights, accuracy is in general higher for rel-model
and rel-all weights (compared to uniform), but in tree sets I and II, the common weights
across models (rel-all) were estimated by very few CAFPA combinations that are not even
common for all models (as described above and depicted in Figure 5).

For a more detailed explanation for the observed confusions, Figure 9A,B shows the
expert-estimated and predicted CAFPAs (lasso regression) which lead to confusion between
cochlear implant and hearing aid in tree set III. By calculating the difference in classification
thresholds ∆pCAFPA, the CAFPAs can be considered relative to the classification threshold.
For expert-estimated CAFPAs, more pCAFPA are above the classification threshold (positive
differences) and therefore classified as CI, while predicted pCAFPA values are mainly below
the classification threshold. This explains the confusion of these categories, and shows at
the same time a limitation of the current CAFPA prediction; hence, less extreme CAFPAs are
predicted by lasso regression in this case. Similarly, all other confusions can be explained,
as the classification is based on maximum probabilities of two compared categories, and
therefore, the classification threshold determines the classified category.

Table 1. Accuracy for different tree sets, weights, and CAFPA prediction models. Numbers in
parentheses indicate that the choice of weights was not based on Y90 combinations but on one single
CAFPA combination (cf. Figure 5).

Weights Model Tree Set I Tree Set II Tree Set III

uniform Lasso regression 0.67 0.58 0.70
uniform Elastic net 0.67 0.57 0.69
uniform Random forest 0.66 0.60 0.71

rel-model Lasso regression (0.64) (0.59) 0.75
rel-model Elastic net (0.64) 0.61 0.75
rel-model Random forest (0.67) (0.62) 0.78

rel-all Lasso regression (0.74) (0.59) 0.78
rel-all Elastic net (0.73) (0.58) 0.77
rel-all Random forest (0.71) (0.58) 0.78
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Figure 8. Confusion matrices of classified categories based on expert-estimated CAFPAs vs. predicted
CAFPAs by the different prediction models. Numbers of patients (per expert category) are normalized
within each column (represented by the grey scale), while absolute numbers are depicted as text.
Different columns of the overall plot represent different tree sets, while different rows represent
different CAFPA prediction models. Results are depicted for rel-model weights. Results for the
remaining weights are provided in Table A1.

Finally, certainty for all categories and models in tree set III (rel-model weights) is
depicted in Figure 10. Each bar displays the median and interquartile ranges of patients
that were classified into the respective category based on CAFPAs predicted by the different
models. For all categories, all (also individual) certainties are above the chance rate, which
is 0.5 for the first and 0.25 for the second and third category, as HA and CI are classified
from patients that were previously classified as needing a hearing device (two subsequent
comparison sets). For the none category, the median for experts and random forest is
slightly higher than for lasso regression and elastic net, but the corresponding interquartile
range is also larger. Similar certainty relationships were found for all tree sets and weights
(cf. Table A2). In all cases, the certainty values depend on the expert training distributions
of two categories in each comparison set, as well as on the individual values relative to
the classification threshold. That is, higher certainty for one model as compared to the
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others is due to the distribution of pCAFPA values as predicted by the model. In the current
classification scheme, certainty could be improved if training distributions were narrower
or with higher distance of the means of the distributions. With more (balanced) data in
training, this could change; however, the training distributions can also be a property of
the data set if the data set is already representative.

A B

Figure 9. Differences ∆pCAFPA between CAFPAs employed for classification and classification
thresholds for all patients classified as CI by predicted CAFPAs (lasso regression) and classified
as HA by expert-estimated CAFPAs in tree set III using rel-model weights (N = 22 as depicted in
Figure 8, top-right panel). Median and interquartile range are depicted. Positive values indicate
classification as CI and negative values indicate classification as HA. Classification thresholds (for
comparison set V, from Figure 3C) are displayed in the bottom row in the typical CAFPA color-coding.
(A) Classification based on expert-estimated CAFPAs. (B) Classification based on predicted CAFPAs
(lasso regression).

Figure 10. Median and interquartile ranges for certainty of classification in tree set III. Certainties
of single CAFPAs are combined according to rel-model weights and propagated through the tree of
comparison sets. Each bar represents patients that were classified to their respective category using
expert-estimated or predicted CAFPAs (color-coded). Table A2 summarizes certainty results for the
remaining tree sets and weights.

In summary, the classification in tree sets performs well, but needs to be improved
towards use in clinical context. Depending on the tree set (and different underlying data
properties), confusions between compared categories happen, but can be explained with
the classification procedure and especially the data employed for training, which should
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include more severe hearing losses in the future. Only small differences occur between
weights; therefore model-specific (rel-model) weights are most plausible to use because
the knowledge about the importance of CAFPAs for classification is included and the
generation approach should generalize to future estimation of model-specific weights
when larger data sets are used. Regarding the choice of CAFPA prediction models, some
differences were identified, but all work plausibly, and a decision should be kept until a
larger, more balanced data set is included.

4. Discussion

The current study explored the feasibility of constructing a clinical decision support
system (CDSS) for audiology based on Common Audiological Functional Parameters (CAF-
PAs) which is as interpretable as expert knowledge-based classification and as data-driven
as machine learning-based classification. The feasibility of using predicted CAFPAs as com-
pared to expert-estimated CAFPAs was investigated, which is an important prerequisite
for the application of the CDSS to individual patients. The classification performance was
evaluated in terms of comparable performance between expert-estimated and predicted
CAFPAs, as well as in terms of the interpretability of the obtained classification.

4.1. Classification Based on Expert-Estimated vs. Model-Predicted CAFPAs

All three regression models for prediction of CAFPAs [33] performed generally similar
to expert-estimated CAFPAs in the classification task, and can therefore be used in the CDSS.
However, high and comparable performance between expert-estimated and predicted
CAFPAs depends on the respective choice of weights defining the combination of CAFPAs.
Hence, it is crucial to employ plausible weights in the classification. The criterion for
investigating these weights (Y90 combinations) was chosen to represent a robust amount of
CAFPA combinations, i.e., not only relying on one best performing combination, but also
not on too many combinations. The resulting numbers ranged between a single CAFPA
combination and nearly half of all possibilities (comparison set I for common weights of
expert and random forest, cf. Figure 5), which is due to the definition of the criterion based
on relative performance instead of a fixed number of best combinations. The former should
provide better comparability between different prediction models and comparison sets.

The importance of CAFPAs for different comparison sets (as defined by Y90 criterion)
is similar across the different prediction models, but different across comparison sets.
This resulted in plausible CAFPAs in these diagnostic decisions, regarding the definition
of CAFPAs but also the underlying measurements used in the model-building process
for different CAFPAs in Saak et al. [33]. There, plausible relationships between CAFPAs
and measurements were found by analysis of feature importance. In total, all CAFPAs
contribute to high performance in at least one comparison set, which again confirms
the choice of CAFPAs (as found in [31,32]). However, different subsets of CAFPAs also
show similar performance, that is, it cannot be said that all CAFPAs provide additional
information in all cases. However, by including more CAFPAs in the choice of weights
for application to individual patients (cf. Section 3.2), the classification should be more
robust towards changes in single CAFPAs. Therefore, the relative frequency of CAFPAs in
common weight combinations between expert-estimated and predicted CAFPAs (rel-model)
was chosen as the weights to be used in the classification, which also resulted in high
classification performance.

4.2. Classification of Individual Patients

To classify individual patients with the CDSS, the comparison sets were combined to
tree sets, and the weights from the first part were used to combine CAFPAs. In this setup,
the classification was evaluated in terms of CAFPA patterns, differences between expert-
estimated and predicted CAFPAs (accuracy), and certainty. While the overall performance
was good, different classified categories based on expert-estimated or predicted CAFPAs
occured in some cases. All results can be explained with the properties of the data, the
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classification method with its underlying training distributions, and the properties of the
CAFPA prediction. According to Saak et al. [33], less extreme CAFPAs were predicted as
compared to expert-estimated CAFPAs. In the classification task considered here, this effect
was less pronounced due to the comparison of only two respective categories, but played a
role for CAFPAs near the classification threshold [40]. Effectively, a shift of classification
threshold (corresponding to using training distributions derived from the respective model-
predicted CAFPAs) could compensate for that, but this would exploit knowledge that is
not available in the real use case of a clinical decision support system. Instead, the accuracy
should be increased if more training data for a larger and more balanced group of patients
are available in the future [41]. This data could be employed in the derivation of CAFPA
prediction models as well as in the estimation of the training distributions. Both aspects
could also influence certainty of the CDSS’ decision: the former in terms of individual
pCAFPA values being more correct relative to the classification threshold, and the latter when
training distributions are more representative of real data, which could lead to narrower
distributions and therefore better-separable categories and higher certainty. However, the
current certainty could also be a property of the data if training distributions do not change
with more training data.

In the use case of the CDSS applied to an individual new patient, the system would
output its estimated category from every tree set, along with individual certainty. In
addition, CAFPAs for the current patient would be displayed, which have been predicted
based on the same input data from measurements that the expert has available for his or
her own conclusion about the patient.

4.3. Interplay between Experts and CDSS and Interpretability

The interplay of experts and CDSS should provide optimal benefits towards precision
medicine. Experts can draw their own conclusions and are, in addition, supported by
the automatic decision and certainty provided by the CDSS, which can add objectivity
backed up by data [1,2]. To trust the system, interpretability was stated as important, e.g.,
by [1,4]. In the current system, interpretability was considered in several aspects. First, the
system was developed based on expert knowledge [5–7], the definition of CAFPAs was
discussed with experts [30], and expert CAFPAs were estimated to provide a first link to
audiological data [31] and to compare classification of CAFPAs to measurements [32]. The
regression models of Saak et al. [33] were also established based on this expert knowledge.
Second, the classification and prediction procedures allow insights into different steps and
explanations regarding how results were generated [1,3,11,12], such as, for example, the
analysis of expert-estimated vs. predicted CAFPAs relative to the classification threshold
shown in the current paper, the analysis of CAFPAs important for classification (weights),
or the analysis of measurements underlying the CAFPA predictions (feature importance)
by [33]. Third, the final tool provides interpretability when applied to individual patients,
for example by visualization [1].

In this use case, in addition to the general output, such as classified category and
certainty, different interpretable components could be presented to the expert user. The
CAFPAs are not only used as an intermediate layer for classification, but are also provided
as a visualization to give an abstract overview of the current patient’s auditory system. By
looking at the measurement results and comparing it to the shown CAFPAs, the expert
can estimate on his/her own if the CAFPAs are plausible. This could be further supported
by presenting importance (by means of weights) of different CAFPAs along with their
relationship to the measurements, for example also presenting only those measurements
that contributed most to the current classification.

4.4. CDSS for Audiology Based on CAFPAs

In summary, the presented CDSS based on predicted CAFPAs was shown to be
feasible in terms of functionality for individual patients, and it provides good classification
performance as well as interpretability. However, potential for improvement lies in the
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integration of additional clinical-audiological databases, on the one hand to generally
increase the number of included patients towards "Big Data", and on the other hand
to better represent severe patient cases in the CDSS. It is expected that the approach
generalizes to other data sets, and if the number of patients increases in the future, it could
be investigated if more sophisticated machine learning methods improve classification
performance. For example, Mousavi et al. [42] developed a classification approach that can
deal with CAFPAs as continuous input variable, as well as with multiple findings being
true for a patient. On the basis of the current CDSS framework, the integration of additional
databases can be evaluated.

4.5. Towards Integration of Clinical Databases

To enable integration of additional clinical databases into the CDSS based on CAFPAs,
every new database needs to be linked to CAFPAs; hence, CAFPAs need to be estimated
for patients based on the respective clinical test battery of audiological measurements. The
current prediction by Saak et al. [33] only includes measurements from the database of
Hörzentrum Oldenburg as described in [34]. This prediction can be updated to cover only
those measurements that are common between the current and a to-be-included database,
and then be applied to predict CAFPAs based on this information. For additional measure-
ments, such as, for example, the Freiburg monosyllabic speech test [19], which is commonly
used for indication of hearing devices according to German clinical guidelines [18], or the
matrix sentence test [20–23], additional expert knowledge could be collected to link these
measurements to CAFPAs. Compared to the expert survey of [31], only a limited number
of distinct patient profiles could be shown to the experts to increase efficiency, and the
experts could be asked to update the predicted CAFPAs based on fewer measurements
instead of estimating CAFPAs from scratch. As an additional consistency check indepen-
dent from the CAFPA concept, consistency between databases could be investigated by the
use of models, for example in the context of speech intelligibility, where different tests are
used for different purposes or in different countries. If data standards for audiology get
established in the future, for example, in the context of the HiGHmed initiative [13] and
open electronic health records (openEHR), the integration of additional databases would
be facilitated. However, such a process takes time and different measurements could still
be performed in different clinics, which makes a combination of the CAFPA concept with
data standardization approaches most promising for obtaining a largest-possible data basis
for a clinical decision support system for audiology.

5. Conclusions

The main conclusion of this work is that it is feasible to obtain an interpretable yet data-
driven clinical decision support system for audiology. This was achieved by combining
previous approaches of audiological classification based on expert-estimated CAFPAs and
regression models for prediction of CAFPAs, which were built based on expert knowledge.
Including the data-driven prediction of CAFPAs in the CDSS allows classification of new,
individual patients, which represents the typical use case of a CDSS, and was not possible
before combining classification and data-driven prediction of CAFPAs.

Predicted CAFPAs are valid to be used in the CDSS, and classification performance
is high except for some differences between classification based on expert-estimated vs.
predicted CAFPAs, which can be explained by properties of prediction and the employed
database. The CDSS is interpretable in terms of providing insights into the classification
process as well as during application by experts, especially by the use of CAFPAs as an
interpretable intermediate layer.

The current system will be used in the future as an evaluation framework for the
integration of additional clinical databases. In the long run, the classification procedures
itself could be further investigated and potentially improved.
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BTE Behind-the-ear hearing aid
c Classified category (index)
CAFPAs Common Audiological Functional Parameters
CA1-CA4 Hearing threshold-related CAFPAs
CU1-CU2 Supra-threshold CAFPAs
CB Binaural CAFPA
CN Neural CAFPA
CC Cognitive CAFPA
CE Socio-economic CAFPA
CDSS Clinical decision support system
Cert Certainty
CI Cochlear implant
cond Conductive hearing loss
CS Comparison set
Device Any hearing device
GÖSA Goettingen sentence test
HA Hearing aid
HI Hearing impaired
high High-frequency hearing loss
HiGHmed Heidelberg–Göttingen–Hannover Medical Informatics
ITE In-the-ear hearing aid
N Number of patients
NH Normal hearing
None No hearing device
openEHR Open electronic health record
p Probability
pCAFPA CAFPA value [0 1]
recr Recruitment
rel-all Weights common for all models
rel-model Weights derived for different prediction models
Sens Sensitivity
Spec Specificity
SWI Scheuch–Winkler index
uniform Uniform weights
Y Youden index
Y90 Youden index criterion, values higher than 90 % of max(Y)
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Appendix A

Appendix A.1. Confusion Matrices for All Weights

Table A1. Confusion matrices (absolute numbers) for all tree sets and weights. For each weight, the
data are organized as in Figure 8. Category numbers correspond to the respective categories of each
tree set.

Tree Set I Tree Set II Tree Set III
Weights Model Category Category (Expert)

(Predicted) 1 2 3 1 2 3 1 2 3

uniform

Lasso regression
3 1 20 37 16 61 98 0 7 17
2 31 99 21 16 14 4 29 79 23
1 26 5 0 26 4 1 71 14 0

Elastic net
3 2 20 37 17 62 98 0 7 17
2 30 99 21 15 13 4 29 77 23
1 26 5 0 26 4 1 71 16 0

Random forest
3 1 30 37 17 64 100 0 9 22
2 21 86 21 5 8 2 28 77 18
1 36 8 0 36 7 1 72 14 0

rel-model

Lasso regression
3 2 8 24 13 55 100 0 4 17
2 26 102 44 15 14 9 21 100 22
1 28 6 0 28 5 1 62 14 0

Elastic net
3 1 5 21 11 53 102 0 4 18
2 27 105 47 17 16 7 20 99 21
1 28 6 0 28 5 1 63 15 0

Random forest
3 2 23 39 15 53 100 0 6 25
2 19 86 29 6 14 10 18 96 14
1 35 7 0 35 7 0 65 16 0

rel-all

Lasso regression
3 2 17 37 19 60 96 0 4 18
2 24 112 13 7 17 6 20 101 19
1 29 6 0 29 2 4 68 10 0

Elastic net
3 2 17 35 21 62 97 0 5 18
2 26 112 15 7 15 5 20 100 19
1 27 6 0 27 2 4 68 10 0

Random forest
3 2 26 36 15 61 92 0 8 23
2 19 101 14 6 14 10 18 95 14
1 34 8 0 34 4 4 70 12 0
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Appendix A.2. Certainty for All Tree Sets and Weights

Table A2. Certainty (median and interquartile range) for all tree sets and weights. For each weight,
the data are organized as in Figure 10. Category numbers correspond to the respective categories of
each tree set.

Classified Category
Tree Set Weights Model 1 2 3

Median [Interquartile Range]

I

uniform

Expert 0.66 [0.57 0.71] 0.33 [0.30 0.36] 0.44 [0.40 0.48]
Lasso regression 0.60 [0.55 0.62] 0.34 [0.32 0.37] 0.42 [0.39 0.44]

Elastic net 0.59 [0.55 0.62] 0.34 [0.32 0.37] 0.42 [0.39 0.45]
Random forest 0.64 [0.59 0.66] 0.34 [0.31 0.36] 0.42 [0.40 0.47]

rel-model

Expert 0.67 [0.56 0.73] 0.33 [0.31 0.37] 0.42 [0.38 0.46]
Lasso regression 0.60 [0.55 0.65] 0.36 [0.32 0.40] 0.39 [0.38 0.42]

Elastic net 0.60 [0.54 0.64] 0.36 [0.32 0.39] 0.41 [0.38 0.43]
Random forest 0.67 [0.59 0.69] 0.43 [0.41 0.46] 0.53 [0.44 0.63]

rel-all

Expert 0.66 [0.57 0.72] 0.42 [0.38 0.47] 0.65 [0.48 0.74]
Lasso regression 0.59 [0.54 0.65] 0.42 [0.39 0.45] 0.47 [0.42 0.60]

Elastic net 0.60 [0.55 0.65] 0.42 [0.39 0.45] 0.47 [0.43 0.62]
Random forest 0.65 [0.59 0.68] 0.43 [0.40 0.47] 0.52 [0.42 0.62]

II

uniform

Expert 0.66 [0.57 0.71] 0.31 [0.27 0.34] 0.40 [0.33 0.43]
Lasso regression 0.60 [0.55 0.62] 0.27 [0.26 0.29] 0.40 [0.33 0.43]

Elastic net 0.59 [0.55 0.62] 0.27 [0.26 0.29] 0.40 [0.33 0.43]
Random forest 0.64 [0.59 0.66] 0.27 [0.27 0.30] 0.41 [0.34 0.44]

rel-model

Expert 0.67 [0.56 0.73] 0.32 [0.30 0.38] 0.42 [0.34 0.45]
Lasso regression 0.60 [0.55 0.65] 0.30 [0.29 0.31] 0.43 [0.37 0.47]

Elastic net 0.60 [0.54 0.64] 0.32 [0.30 0.32] 0.45 [0.38 0.50]
Random forest 0.67 [0.59 0.69] 0.29 [0.29 0.31] 0.43 [0.36 0.46]

rel-all

Expert 0.66 [0.57 0.72] 0.35 [0.32 0.43] 0.40 [0.34 0.46]
Lasso regression 0.59 [0.54 0.65] 0.29 [0.28 0.42] 0.41 [0.35 0.45]

Elastic net 0.60 [0.55 0.65] 0.29 [0.28 0.40] 0.41 [0.35 0.45]
Random forest 0.65 [0.59 0.68] 0.29 [0.28 0.31] 0.42 [0.36 0.45]

III

uniform

Expert 0.59 [0.54 0.69] 0.36 [0.34 0.37] 0.46 [0.41 0.52]
Lasso regression 0.58 [0.54 0.64] 0.37 [0.36 0.38] 0.43 [0.40 0.48]

Elastic net 0.57 [0.53 0.64] 0.37 [0.36 0.38] 0.43 [0.41 0.47]
Random forest 0.60 [0.53 0.67] 0.37 [0.36 0.38] 0.45 [0.39 0.46]

rel-model

Expert 0.66 [0.55 0.74] 0.39 [0.36 0.42] 0.47 [0.40 0.53]
Lasso regression 0.60 [0.55 0.68] 0.39 [0.37 0.41] 0.46 [0.41 0.49]

Elastic net 0.60 [0.54 0.68] 0.39 [0.37 0.41] 0.46 [0.42 0.50]
Random forest 0.65 [0.53 0.72] 0.39 [0.38 0.41] 0.47 [0.42 0.50]

rel-all

Expert 0.63 [0.54 0.72] 0.38 [0.36 0.39] 0.49 [0.43 0.53]
Lasso regression 0.60 [0.55 0.67] 0.38 [0.37 0.40] 0.46 [0.42 0.50]

Elastic net 0.60 [0.54 0.68] 0.38 [0.37 0.40] 0.47 [0.42 0.50]
Random forest 0.64 [0.53 0.71] 0.39 [0.37 0.40] 0.47 [0.42 0.50]

References
1. Belle, V.; Papantonis, I. Principles and Practice of Explainable Machine Learning. Front. Big Data 2021, 4, 688969. [CrossRef]

[PubMed]
2. Shortliffe, E.H.; Cimino, J.J. Biomedical Informatics: Computer Applications in Health Care and Biomedicine; Springer: London, UK, 2014.
3. Shibl, R.; Lawley, M.; Debuse, J. Factors influencing decision support system acceptance. Decis. Support Syst. 2013, 54, 953–961.

[CrossRef]
4. Bietenbeck, A.; Streichert, T. Preparing Laboratories for Interconnected Health Care. Diagnostics 2021, 11, 1487. [CrossRef]
5. Spreckelsen, C.; Spitzer, K. Wissensbasen und Expertensysteme in der Medizin: KI-Ansätze zwischen klinischer Entscheidungsunter-

stützung und medizinischem Wissensmanagement; Vieweg + Teubner|GWV Fachverlage GmbH: Wiesbaden, Germany, 2008.

http://doi.org/10.3389/fdata.2021.688969
http://www.ncbi.nlm.nih.gov/pubmed/34278297
http://dx.doi.org/10.1016/j.dss.2012.09.018
http://dx.doi.org/10.3390/diagnostics11081487


Diagnostics 2022, 12, 463 22 of 23

6. Sandryhaila, A.; Moura, J.M. Big data analysis with signal processing on graphs: Representation and processing of massive data
sets with irregular structure. IEEE Signal Process. Mag. 2014, 31, 80–90. [CrossRef]

7. Medlock, S.; Wyatt, J.C.; Patel, V.L.; Shortliffe, E.H.; Abu-Hanna, A. Modeling information flows in clinical decision support: Key
insights for enhancing system effectiveness. J. Am. Med. Inform. Assoc. 2016, 23, 1001–1006. [CrossRef]

8. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019,
8, 832. [CrossRef]

9. Galvin, K.L.; Featherston, R.J.; Downie, L.E.; Vogel, A.P.; Hamilton, B.; Granger, C.; Shlonsky, A. A Systematic Review of
Interventions to Reduce the Effects of Cognitive Biases in the Decision-Making of Audiologists. J. Am. Acad. Audiol. 2020, 31,
158–167. [CrossRef]

10. Rüping, S. Big Data in Medizin und Gesundheitswesen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015, 58,
794–798. [CrossRef]

11. Walter, Z.; Lopez, S.M. Physician acceptance of information technologies: Role of perceived threat to professional autonomy.
Decis. Support Syst. 2008, 46, 206–215. [CrossRef]

12. Khairat, S.; Marc, D.; Crosby, W.; Al Sanousi, A. Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical
Analysis. JMIR Med. Inform. 2018, 6, e24. [CrossRef]

13. HiGHmed. HiGHmed Medical Informatics. Available online: https://www.highmed.org/ (accessed on 12 November 2021).
14. Beale, T. Archetypes: Constraint-based domain models for future-proof information systems. In Proceedings of the OOPSLA

2002 Workshop on Behavioural Semantics, Seattle, WA, USA, 4–8 November 2002; Volume 105, pp. 1–69.
15. Wulff, A.; Baier, C.; Ballout, S.; Tute, E.; Sommer, K.K.; Kaase, M.; Sargeant, A.; Drenkhahn, C.; Schlüter, D.; Marschollek, M.;

et al. Transformation of microbiology data into a standardised data representation using OpenEHR. Sci. Rep. 2021, 11, 10556.
[CrossRef]

16. Lenarz, T.; Boenninghaus, H.G. Hals-Nasen-Ohren-Heilkunde; Springer: Berlin/Heidelberg, Germany, 2012.
17. Lehnhardt, E.; Laszig, R. Praxis der Audiometrie; Georg Thieme Verlag: Stuttgart, Germany, 2009.
18. Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V. (DGHNO-KHC). S2k-Leitlinie Cochlea-

Implantat Versorgung. AWMF-Register-Nr. 017/071. 2020. Available online: https://www.awmf.org/uploads/tx_szleitlinien/01
7-071l_S2k_Cochlea-Implantat-Versorgung-zentral-auditorische-Implantate_2020-12.pdf (accessed on 15 November 2021).

19. Hahlbrock, K.H. Über Sprachaudiometrie und neue Wörterteste. Eur. Arch. Oto-Rhino-Laryngol. 1953, 162, 394–431. [CrossRef]
20. Wagener, K.; Kühnel, V.; Kollmeier, B. Development and evaluation of a German sentence test I: Design of the Oldenburg sentence

test. Z. Audiol. 1999, 38, 4–15.
21. Wagener, K.; Brand, T.; Kollmeier, B. Development and evaluation of a German sentence test Part II: Optimization of the

Oldenburg sentence test. Z. Audiol. 1999, 38, 44–56.
22. Wagener, K.; Brand, T.; Kollmeier, B. Development and evaluation of a German sentence test part III: evaluation of the Oldenburg

sentence test. Z. Audiol. 1999, 38, 86–95.
23. Kollmeier, B.; Warzybok, A.; Hochmuth, S.; Zokoll, M.A.; Uslar, V.; Brand, T.; Wagener, K.C. The multilingual matrix test:

Principles, applications, and comparison across languages: A review. Int. J. Audiol. 2015, 54 (Suppl. 2), 3–16. [CrossRef]
24. Kollmeier, B.; Wesselkamp, M. Development and evaluation of a German sentence test for objective and subjective speech

intelligibility assessment. J. Acoust. Soc. Am. 1997, 102, 2412–2421. [CrossRef]
25. Sanchez-Lopez, R.; Bianchi, F.; Fereczkowski, M.; Santurette, S.; Dau, T. Data-Driven Approach for Auditory Profiling and

Characterization of Individual Hearing Loss. Trends Hear. 2018, 22, 233121651880740. [CrossRef]
26. Sanchez-Lopez, R.; Fereczkowski, M.; Neher, T.; Santurette, S.; Dau, T. Robust Data-Driven Auditory Profiling Towards Precision

Audiology. Trends Hear. 2020, 24, 233121652097353. [CrossRef]
27. Tarnowska, K.A.; Dispoto, B.C.; Conragan, J. Explainable AI-based clinical decision support system for hearing disorders. In

Proceedings of the AMIA Annual Symposium, San Diego, CA, USA, 30 October–3 November 2021; Volume 2021, p. 595.
28. Liao, W.-H.; Cheng, Y.-F.; Chen, Y.-C.; Lai, Y.-H.; Lai, F.; Chu, Y.-C. Physician decision support system for idiopathic sudden

sensorineural hearing loss patients. J. Chin. Med. Assoc. 2021, 84, 101–107. [CrossRef]
29. Naveed Anwar, M.; Philip Oakes, M. Decision Support System for the Selection of an ITE or a BTE Hearing Aid. Int. J. Comput.

Appl. 2013, 76, 37–42. [CrossRef]
30. Buhl, M.; Warzybok, A.; Schädler, M.R.; Lenarz, T.; Majdani, O.; Kollmeier, B. Common Audiological Functional Parameters

(CAFPAs): Statistical and compact representation of rehabilitative audiological classification based on expert knowledge. Int. J.
Audiol. 2019, 5, 231–245. [CrossRef] [PubMed]

31. Buhl, M.; Warzybok, A.; Schädler, M.R.; Majdani, O.; Kollmeier, B. Common Audiological Functional Parameters (CAFPAs) for
single patient cases: deriving statistical models from an expert-labelled data set. Int. J. Audiol. 2020, 59, 534–547. [CrossRef]
[PubMed]

32. Buhl, M.; Warzybok, A.; Schädler, M.R.; Kollmeier, B. Sensitivity and specificity of automatic audiological classification using
expert-labelled audiological data and Common Audiological Functional Parameters (CAFPAs). Int. J. Audiol. 2021, 60, 16–26.
[CrossRef]

33. Saak, S.K.; Hildebrandt, A.; Kollmeier, B.; Buhl, M. Predicting Common Audiological Functional Parameters (CAFPAs) as Interpretable
Intermediate Representation in a Clinical Decision-Support System for Audiology. Front. Digit. Health 2020, 2, 596433. [CrossRef]

http://dx.doi.org/10.1109/MSP.2014.2329213
http://dx.doi.org/10.1093/jamia/ocv177
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.3766/jaaa18096
http://dx.doi.org/10.1007/s00103-015-2181-y
http://dx.doi.org/10.1016/j.dss.2008.06.004
http://dx.doi.org/10.2196/medinform.8912
https://www.highmed.org/
http://dx.doi.org/10.1038/s41598-021-89796-y
https://www.awmf.org/uploads/tx_szleitlinien/017-071l_S2k_Cochlea-Implantat-Versorgung-zentral-auditorische-Implantate_2020-12.pdf
https://www.awmf.org/uploads/tx_szleitlinien/017-071l_S2k_Cochlea-Implantat-Versorgung-zentral-auditorische-Implantate_2020-12.pdf
http://dx.doi.org/10.1007/BF02105664
http://dx.doi.org/10.3109/14992027.2015.1020971
http://dx.doi.org/10.1121/1.419624
http://dx.doi.org/10.1177/2331216518807400
http://dx.doi.org/10.1177/2331216520973539
http://dx.doi.org/10.1097/JCMA.0000000000000450
http://dx.doi.org/10.5120/13318-0936
http://dx.doi.org/10.1080/14992027.2018.1554912
http://www.ncbi.nlm.nih.gov/pubmed/30900518
http://dx.doi.org/10.1080/14992027.2020.1728401
http://www.ncbi.nlm.nih.gov/pubmed/32091289
http://dx.doi.org/10.1080/14992027.2020.1817581
http://dx.doi.org/10.3389/fdgth.2020.596433


Diagnostics 2022, 12, 463 23 of 23

34. Gieseler, A.; Tahden, M.A.; Thiel, C.M.; Wagener, K.C.; Meis, M.; Colonius, H. Auditory and Non-Auditory Contributions for
Unaided Speech Recognition in Noise as a Function of Hearing Aid Use. Front. Psychol. 2017, 8, 219. [CrossRef]

35. Oetting, D.; Brand, T.; Ewert, S.D. Optimized loudness-function estimation for categorical loudness scaling data. Hear. Res. 2014,
316, 16–27. [CrossRef] [PubMed]

36. Kalbe, E.; Kessler, J.; Calabrese, P.; Smith, R.; Passmore, A.P.; Brand, M.A.; Bullock, R. DemTect: A new, sensitive cognitive
screening test to support the diagnosis of mild cognitive impairment and early dementia. Int. J. Geriatr. Psychiatry 2004, 19,
136–143. [CrossRef]

37. Schmidt, K.-H.; Metzler, P. Wortschatztest; Beltz: Göttingen, Germany, 1992.
38. Winkler, J.; Stolzenberg, H. Adjustierung des Sozialen-Schicht-Index für die Anwendung im Kinder-und Jugendgesundheitssurvey (KiGGS)

(No. 07/2009); Wismarer Diskussionspapiere: Wismar, Germany, 2009.
39. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &

Business Media: New York, NY, USA, 2009.
40. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning (Bd. 103); Springer: New York, NY, USA, 2013.

[CrossRef]
41. Wei, Q.; Dunbrack, R.L. The Role of Balanced Training and Testing Data Sets for Binary Classifiers in Bioinformatics. PLoS ONE

2013, 8, e67863. [CrossRef]
42. Mousavi, H.; Buhl, M.; Guiraud, E.; Drefs, J.; Lücke, J. Inference and Learning in a Latent Variable Model for Beta Distributed

Interval Data. Entropy 2021, 23, 552. [CrossRef]

http://dx.doi.org/10.3389/fpsyg.2017.00219
http://dx.doi.org/10.1016/j.heares.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25058812
http://dx.doi.org/10.1002/gps.1042
http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1371/journal.pone.0067863
http://dx.doi.org/10.3390/e23050552

	Introduction
	Materials and Methods
	Common Audiological Functional Parameters (CAFPAs)
	Data Set
	Prediction of CAFPAs
	Classification
	Expert-Estimated vs. Model-Predicted CAFPAs (Comparison Sets)
	Individual Patients (Tree Sets)


	Results
	Expert-Estimated vs. Model-Predicted CAFPAs (Comparison Sets)
	Individual Patients (Tree Sets)

	Discussion
	Classification Based on Expert-Estimated vs. Model-Predicted CAFPAs
	Classification of Individual Patients
	Interplay between Experts and CDSS and Interpretability
	CDSS for Audiology Based on CAFPAs
	Towards Integration of Clinical Databases

	Conclusions
	
	Confusion Matrices for All Weights
	Certainty for All Tree Sets and Weights

	References

