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Abstract

Although shown to have a great utility for a wide range of neuroscientific and clinical applications, 

diffusion-weighted magnetic resonance imaging (dMRI) faces a major challenge of low signal-to-

noise ratio (SNR), especially when pushing the spatial resolution for improved delineation of 

brain’s fine structure or increasing the diffusion weighting for increased angular contrast or both. 

Here, we introduce a comprehensive denoising framework for denoising magnitude dMRI. The 

framework synergistically combines the variance stabilizing transform (VST) with optimal 

singular value manipulation. The purpose of VST is to transform the Rician data to Gaussian-like 

data so that an asymptotically optimal singular value manipulation strategy tailored for Gaussian 

data can be used. The output of the framework is the estimated underlying diffusion signal for 

each voxel in the image domain. The usefulness of the proposed framework for denoising 

magnitude dMRI is demonstrated using both simulation and real-data experiments. Our results 

show that the proposed denoising framework can significantly improve SNR across the entire 

brain, leading to substantially enhanced performances for estimating diffusion tensor related 

indices and for resolving crossing fibers when compared to another competing method. More 

encouragingly, the proposed method when used to denoise a single average of 7 Tesla Human 

Connectome Project-style diffusion acquisition provided comparable performances relative to 

those achievable with ten averages for resolving multiple fiber populations across the brain. As 

such, the proposed denoising method is expected to have a great utility for high-quality, high-

resolution whole-brain dMRI, desirable for many neuroscientific and clinical applications.
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1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) (Le Bihan et al., 1986, 1988) 

provides a unique, non-invasive means for the in-vivo mapping of the brain’s microstructure 

(Basser and Pierpaoli, 1996), tractography (Basser et al., 2000; Wedeen et al., 2012; Xue et 

al., 1999), and connectome (Craddock et al., 2013; Harms et al., 2018; Sporns et al., 2005; 

Van Essen et al., 2013). In its standard form, dMRI utilizes a pulsed-gradient, spin-echo 

sequence (Tanner and Stejskal, 1968) for data acquisition in which MR signals are sensitized 

to the diffusion of water molecules along different directions in biologic tissues. Since the 

multidimensional pattern of water diffusion is reflective of the surrounding microscopic 

environment, the dMRI signals carry the information that can be used to infer the 

microstructural and connective features of the biologic tissues. Although shown to have a 

great utility for a wide range of neuroscientific (Behrens et al., 2003a; Bullmore and Sporns, 

2009; Catani et al., 2002; Snook et al., 2007; Thiebaut de Schotten et al., 2011) and clinical 

(Hugg et al., 1999; Krabbe et al., 1997; Lutsep et al., 1997; Werring et al., 1999) 

applications, dMRI faces various challenges (Jones and Cercignani, 2010; Tournier et al., 

2011).

A major challenge for dMRI is the intrinsically low signal-to-noise ratio (SNR), especially 

when pushing the spatial resolution or increasing the diffusion weighting or both. It has been 

shown that dMRI with higher spatial resolutions can help improve the delineation of brain’s 

fine structure (McNab et al., 2013; Miller et al., 2011; Sotiropoulos et al., 2016; Uǧurbil et 

al., 2013). The use of higher diffusion weightings (i.e., higher b-values) for dMRI 

acquisition can help increase the angular contrast (Fan et al., 2014; Frank, 2001; Jensen et 

al., 2005), promoting the estimation of fiber crossing (Behrens et al., 2007; Descoteaux et 

al., 2009; Fan et al., 2016). However, increasing spatial resolutions and/or diffusion 

weightings will lead to decreased SNR, rendering the quantitative analysis of diffusion 

unreliable (Dietrich et al., 2001; Huang et al., 2004; Jones and Basser, 2004; Lori et al., 

2002) and making the interpretation of the quantitative results difficult (Jones et al., 2013). 

The SNR can be increased by averaging. The averaging can be performed during image 

reconstruction (Eichner et al., 2015) or through diffusion model fitting, that is, to fit the 

model to more data measurements (or repetitions), which is shown to also help reduce the 

negative impact of noise on parameter estimations (Behrens et al., 2007; Jones, 2004). 

However, averaging usually demands prolonged scan time, limiting its utility in practice 

given the time constraint associated with dMRI acquisition. Therefore, it is more desirable to 

use a postprocessing method such as denoising that can improve the SNR without imposing 

an increase in scan time.

To date, a large variety of methods have been proposed for denoising of dMRI. Some 

methods are devised to minimize the effect of noise on diffusion parameter mapping by 

either incorporating an appropriate noise model during (Clarke et al., 2008; Fillard et al., 

2007) or filtering the results after (Chen and Hsu, 2005; Coulon et al., 2004; Goh et al., 

2011) the parameter estimation process. Meanwhile, many denoising methods are 

introduced to filter the diffusion images prior to any diffusion parameter estimation. These 

methods have been developed using algorithms based on nonlinear smoothing (Becker et al., 
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2014; Ding et al., 2005; Duits and Franken, 2011; Parker et al., 2000), non-local means 

(Manjon et al., 2010; Wiest-Daessle et al., 2008), wavelet transform (Nowak, 1999; 

Wirestam et al., 2006), Principle Component Analysis (PCA) (Bydder and Du, 2006; 

Manjon et al., 2013), maximum a posteriori formulation (Basu et al., 2006; Lam et al., 

2014), LMMSE estimation (Aja-Fernandez et al., 2008), sparsity (Patel et al., 2011), 

regularized joint reconstruction in k-space (Haldar et al., 2013), higher order singular value 

decomposition (Rajwade et al., 2013; Zhang et al., 2017) and many others. Most notably, 

image denoising methods based on PCA (which can be viewed as a special case of a general 

low-rank model based denoising framework (Lam et al., 2012)) have recently gained 

increasing popularity in a large part because they leverage the data redundancy inherent to 

diffusion acquisition (Tristan-Vega and Aja-Fernandez, 2010). A PCA-based denoising 

method typically accomplishes the task of denoising by involving three steps: 1) perform the 

singular value decomposition (SVD) of the noisy data to obtain a principle component basis 

and associated singular values, 2) manipulate the singular values to minimize the impact of 

noise, and 3) reconstruct the denoised data by combining the original principle component 

basis with the manipulated singular values. The denoising performance of a PCA-based 

method is highly dependent on how the singular values are manipulated in step 2).

One simple yet effective way to manipulate singular values is by thresholding, i.e., 

nullifying all of the singular values less than a threshold. Thresholding is motivated by the 

fact that the principle components associated with the smallest singular values arise from 

noise contamination and the signal in the redundant data is only contained in a few principle 

components associated with the highest singular values. The use of a PCA-based approach 

for denoising of dMRI was pioneered by Manjon et al. (2013), who proposed a local PCA 

(LPCA) method which works by locally thresholding the singular values (i.e., thresholding 

the singular values obtained from the SVD of local patches). Although shown to outperform 

other non-PCA-based approaches when used to denoise magnitude diffusion images, the 

LPCA method requires the threshold to be empirically determined in order to account for the 

Rician bias (Gudbjartsson and Patz, 1995; Henkelman, 1985). Later, Veraart et al. (2016b) 

continued to introduce a Marchenko-Pastur (MP)-distribution-based PCA (MPPCA) 

method, in which the local thresholding of singular values is automatically determined by 

utilizing the knowledge that the eigenvalue spectrum (in its asymptotic limit) of a noise 

covariance matrix follows a universal Marchenko-Pastur distribution (Marčenko and Pastur, 

1967). Despite that the MP distribution in theory is only applicable to Gaussian noises 

(Donoho et al., 2018), the use of MPPCA to denoise magnitude diffusion images where the 

noise are non-Gaussian (Constantinides et al., 1997; Dietrich et al., 2008; Gudbjartsson and 

Patz, 1995; Henkelman, 1985) is shown capable of only removing the variances that arise 

from the thermal noise, thereby providing a better performance of preserving fine structures 

in the images than using other existing methods. However, as will be shown later in this 

article, the use of MPPCA for denoising magnitude diffusion images will become less 

effective when SNR is so low (e.g., SNR < 3) that the data are far from being Gaussian-

distributed (Gudbjartsson and Patz, 1995; Henkelman, 1985).

When the data to be denoised are Gaussian-distributed, it actually becomes straightforward 

to implement a PCA-based method with optimal singular value manipulation, thanks to the 

advances made in the field of matrix recovery (Cai et al., 2010; Eckart and Young, 1936). In 
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the field of matrix recovery, great strides have been made to recover the underlying noise-

free signal matrices from noisy data by developing optimal strategies for singular value 

manipulation. These strategies involve using analytically formulated algorithms that define 

such nonlinear manipulations of the singular values as optimal thresholding (Gavish and 

Donoho, 2014) and optimal shrinkage (Gavish and Donoho, 2017). However, the direct use 

of these optimal strategies to denoise magnitude diffusion images is not straightforward due 

to the data being non-Gaussian.

One way to capitalize on the optimal singular value manipulation strategies when denoising 

magnitude diffusion images is by variance stabilizing transformation (VST). The idea of 

using VST to preprocess the non-Gaussian data that have signal-dependent variances can 

date back to early 2000 (Huber et al., 2002; Rocke and Durbin, 2003) when researchers in 

the field of gene expression attempted to stabilize (or make constant) the variance of the 

microarray data so that a standard statistic method tailored for Gaussian data can be applied 

for data analysis. Later, Foi (2011) introduced this idea to the field of MRI and took the 

effort to derive the recipe of VST to transform Rician-distributed MRI data in a way that 

stabilizes the data variance to unity. Most recently, Zhang et al. (2017) have adopted this 

VST approach when proposing a two-stage denoising method based on the higher order 

SVD (HOSVD) (De Lathauwer et al., 2000; Rajwade et al., 2013). With the help of VST, the 

authors were able to demonstrate that their HOSVD-based method outperformed other 

competing methods when used to denoise magnitude diffusion images. However, like the 

LPCA approach (Manjon et al., 2013), the HOSVD-based denoising method had to rely on 

exhaustive search to empirically determine the thresholding of the singular values associated 

with the HOSVD.

Here, we introduce a comprehensive denoising framework for denoising magnitude dMRI. 

The framework is built based on the variance stabilizing transformation (Foi, 2011) that 

effectively transforms the Rician data to Gaussian-like data with the variance being 

stabilized to around unity. The framework accommodates the use of any standard denoising 

method optimized for denoising Gaussian data and therefore does not require any exhaustive 

search to be conducted to determine how to manipulate the singular values. More 

importantly, the framework is implemented in a patch-based fashion (Katkovnik et al., 

2010), improving the denoising performance and allowing the estimation of spatially 

varying noise. The output of the framework is the estimated underlying diffusion signal for 

each voxel in the image domain. The usefulness of the proposed framework for denoising 

magnitude diffusion is demonstrated using both simulation and real-data experiments. The 

simulation experiment utilized synthetic diffusion-weighted images of a brain-like phantom 

(Maier-Hein et al., 2017a; Neher et al., 2014b) simulated by using Fiberfox (Maier-Hein et 

al., 2017a; Neher et al., 2014b), whereas the real-data experiment acquired in-vivo whole 

brain diffusion data following the 7 Tesla (7T) Human Connectome Project (HCP) diffusion 

protocol (Vu et al., 2015). Our results for both simulation and real-data experiments show 

that the proposed denoising framework can significantly improve SNR across the entire 

brain, leading to substantially enhanced performances for estimating diffusion tensor related 

indices and for resolving crossing fibers when compared to the noisy diffusion data. Further, 

the proposed denoising framework is shown to outperform the MPPCA approach, which 

serves to represent the state of the art. More encouragingly, the use of the proposed method 
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for denoising a single average of in-vivo whole brain diffusion acquisition is found to 

provide comparable performances relative to those achievable with fitting the diffusion 

model to ten averages when resolving multiple fiber populations across the brain.

2. A variance-stabilizing-transformation-based denoising framework

At the heart of the proposed denoising framework (Fig. 1) are sequential applications of four 

operation modules: 1) noise estimation, 2) variance stabilizing transformation (VST), 3) 

denoising, and 4) exact unbiased inverse VST (EUIVST). The goal of the first module is to 

estimate the underlying Gaussian noise level (i.e. the standard deviation (std) of the 

Gaussian noise corrupting the data), which is required as priori knowledge by the subsequent 

VST and EUIVST modules. The noise estimation module can be implemented by 

incorporating any noise estimation method (such as those based on VST (Foi, 2011), 

MPPCA (Veraart et al., 2016a) and median absolute deviation (Coupe et al., 2010)) that can 

estimate the noise level directly from the Rician data.

The purpose of the second module is to stabilize the std of the data by transforming the 

Rician data through VST, such that the transformed data have a std confined to about 1. The 

VST is fulfilled by defining a nonlinear function, f(z), to map a Rican random variable z to 

new values. In his seminal paper (Foi, 2011), Foi presented two such nonlinear functions, 

“VST A″ and “VST B″, both obtained by solving an optimization problem formulated to 

have a main term ensuring accuracy of variance stabilization together with a few penalty 

terms enabling properties needed for practical use of the nonlinear function. The calculations 

of the “VST A″ and “VST B″ functions differ in how those penalty terms are incorporated 

in the optimization. Although leading to different transformed data, both functions appear 

effective for variance stabilization, giving rise to a std (of the transformed data) closer to 1 

than that of the original Rician data, especially for extremely low SNR (i.e., SNR < 2) (Fig. 

S1). After VST, the transformed data behave more like Gaussian distributed and can be 

denoised using any standard denoising algorithm.

The third module in the denoising framework aims to minimize the negative impact of the 

noise on the transformed data by using any standard denoising algorithm tailored for 

reducing the noise variance in Gaussian data. Possible standard denoising algorithms include 

1) truncated singular value decomposition (TSVD) (Eckart and Young, 1936), 2) soft 

thresholding of singular values (Cai et al., 2010), 3) hard thresholding of singular values 

(Gavish and Donoho, 2014), and 4) optimal shrinkage of singular values (Gavish and 

Donoho, 2017). While all of these standard algorithms follow a same multi-step procedure 

(Fig. S2) to estimate the signal matrix through manipulating the singular values of the noise-

corrupted data matrix, they are different from each other in how they manipulate the singular 

values (Fig. S3). After the transformed data are denoised, the denoised data are further 

processed to produce the final denoised images.

The goal of the fourth and final module in the denoising framework is to produce the final 

denoised diffusion images by transforming the denoised data (obtained in the previous step) 

through EUIVST (Foi, 2011). The purpose of the EUIVST is to obtain a maximum 

likelihood estimate of the underlying noise-free MR signal by combining inverse VST with 
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Rician bias elimination. Like VST, EUIVST is also fulfilled by defining a nonlinear 

function, vf(D), to map the denoised data, D, into new values. We note that the nonlinear 

function utilized for EUIVST must be coupled with the nonlinear function that has been 

utilized for VST. Therefore, there are two nonlinear functions (Fig. S4) for EUIVST, 

corresponding to the two functions (i.e., “VST A″ and “VST B″) that can be used for VST.

An important property of the proposed denoising framework is that each of the four 

operation modules aforementioned is implemented with a patch-based approach for 

enhanced performance (Katkovnik et al., 2010). The patch-based approach aims to estimate 

the parameter of interest (e.g., the noise std and the voxel value) at each voxel by 

aggregating multiple estimates of the parameter that have been obtained from a group of 

patches. Specifically, the patch-based implementation of each operation module can consist 

of three steps. The first step is to define a series of 4D patches of size x by y by z by t by 

sliding a 3D kernel (of size x by y by z) across the image field of view (FOV). Here x, y, and 

z denote the patch size (in voxels) in the three spatial dimensions, and t the patch size in the 

time dimension (which is usually set to the number of image volumes). The second step is to 

use each patch to obtain an estimate of the parameter for every voxel that resides within the 

patch, resulting in multiple estimates of the parameter at each voxel. The third and final step 

in the patch-based implementation is to aggregate the multiple estimates at each voxel to 

obtain final estimates of the parameter.

Mathematically, the final estimate, pj, of the parameter for a voxel at location, j, can be 

given by:

pj =
∑k = 1

K wk ⋅ P k j
∑k = 1

K wk
(1)

where K is the number of patches containing the voxel, Pk j  the estimate of the parameter 

for the voxel obtained from the k-th patch, and wk the weight of the k-th patch. We note that 

the definition of the patch weights and the range of the voxel locations depend on which 

module (or which parameter) is under consideration. For all operation modules except for 

the denoising one, the weight can simply be set to unity for every patch, corresponding to 

taking the average of the multiple estimates of the parameter as the final estimate. However, 

for the denoising module, it is desirable to obtain the final estimate of the parameter by 

calculating a weighted average of the multiple estimates. This can be done by defining a 

weight for each patch in a way that reflects the quality of the corresponding estimates. 

Further, the voxel location ranges from 1 to xyz in steps of 1 (i.e., j = 1, 2, …,xyz) for noise 

estimation aimed at estimating the noise std for each voxel only in space, whereas it spans 

from 1 to xyzt in steps of 1 (i.e., j = 1, 2, …,xyzt) for all of the other modules that aim to 

estimate the voxel value for each voxel not only in space but also in time.

3. Methods

We implemented the proposed VST-based denoising method in MATLAB (The Mathworks 

Inc., Natick, MA). The source code is publically available at https://github.com/
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XiaodongMa-MRI/Denoising/releases. To demonstrate the usefulness of the proposed 

method, we performed both simulation and real-data experiments in which the proposed 

method was applied to double-shell diffusion data and the results were compared to those 

obtained without denoising as well as those with denoising but using the MPPCA approach 

(Veraart et al., 2016b). For both simulation and real-data experiments, the process of 

MPPCA denoising was performed by using the implementation in the MRtrix3 package 

(www.mrtrix.org).

3.1. Simulation experiment

We started by conducting a simulation experiment to evaluate the denoising performance of 

the proposed method. The simulated diffusion data including several noisy double-shell 

diffusion imagesets were synthesized by adding Gaussian noise of various levels to a noise-

free imageset. The noise-free and artifact-free imageset (Fig. 2a) was created by simulating 

diffusion signals across a 3D brain-like phantom using Fiberfox (Neher et al., 2014a) 

(www.mitk.org33). The 3D brain-like phantom which was initially designed for the ISMRM 

tractography competition (tractometer.org/ismrm_2015_challenge) (Maier-Hein et al., 

2017b) was synthesized by manually extracting 25 white matter fiber bundles from the 

tractography result for a high-quality 3T HCP dataset and by modeling four brain 

compartments (including intra- and inter-axonal white matter, gray matter and CSF). The 

diffusion model and relevant parameters (such as diffusivity and T2 relaxation values) 

assigned to each brain compartment are listed in Table S1 in the supporting materials. The 

simulation was run at 2-mm isotropic resolutions with a matrix size of 90×108×90, 

producing a total of 61 images including 30 diffusion-weighted (DW) images for b-value = 

1000 s/mm2 (b1k) and 30 DW images for b2k and a single b0 image. The final noise-free 

imageset was formed by inserting a b0 image after every 9-th DW image, resulting in a 

series of 67 images including 7 b0 images interspersed between 60 DW images.

The noisy magnitude diffusion imageset for a given noise level was synthesized by adding 

Gaussian noise to the noise-free imageset:

Indsy r, m = Igt r, m + nre r, m 2 + nim 
2 r, m (2)

where Inoisy(r,m) and Igt(r,m) are the m-th noisy and noise-free images, respectively, and 

nre(r,m) and nim(r,m) are noises added to the real and imaginary channels, respectively. The 

noise terms nre(r,m) and nim(r,m) were independently created, each by drawing from a zero-

mean Gaussian noise model defined as n r = N 0, σ r  where σ(r) denotes the std of the 

Gaussian noise at location r. In the current study, σ(r) was further given by σ(r) = aσ0 (r) 
where the scalar a is the noise level, and σ0(r) is a noise std map normalized to 1 and 

prescribed to mimic a parallel imaging application in which the noise std would vary in 

space. The 3D normalized noise std map σ0(r) was synthesized (Fig. 2b) with characteristics 

of fast variations in x, and slow variations in y and z dimensions. The noise levels 

considered here ranged from 1% to 10% in steps of 1%. The noise level was defined by the 

ratio of the maximum std of the underlying Gaussian noise divided by the maximum signal 

intensity of the noise-free imageset. For example, the noisy imageset with a noise level of 

5% was synthesized by setting the maximum std of the underlying spatially varying 
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Gaussian noise to 5% of the maximum signal intensity (taking place in b0 images) of the 

noise-free imageset.

For each noise level, we evaluated the denoising performance of the proposed method by 

comparing the final denoised images against the noise-free images. In particular, the 

difference between the denoised and the noise-free images were quantified by calculating 

the peak SNR (PSNR),

PSNR = 10 ⋅ log10
1

MSE (3)

where MSE is the mean squared error measuring the deviation of the denoised images from 

the noise-free images. Four PSNR values were calculated, including one “overall” PSNR 

(calculated by considering the entire imageset) and three “b-value-dependent” PSNR values 

(calculated by only accounting for images with a specific b-value). The PSNR values for the 

proposed method were compared against those for the noisy images and for the denoised 

images with the MPPCA approach.

We also conducted diffusion analysis to investigate how the proposed denoising method 

would improve diffusion tensor imaging (DTI) and enhance the performance for estimation 

of fiber crossing. For DTI, the diffusion tensor model was fit to the denoised double-shell 

diffusion data using FSL’s dtifit routine (Jenkinson et al., 2012) to derive such diffusion 

metrics as mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and 

radial diffusivity (RD). For each diffusion metric, the root mean square error (RMSE) was 

evaluated to measure the deviation from the gold standard as obtained by fitting the diffusion 

tensor model to the noise-free imageset.

For estimation of fiber crossing, an extended ball and stick diffusion model (Behrens et al., 

2003b, 2007; Jbabdi et al., 2012) was fit to the denoised double-shell diffusion data using 

FSL’s bedpostx routine (Behrens et al., 2007) to estimate the existence of three fiber 

populations (i.e., the first, the second and the third fibers). For each fiber population, 

diffusion metrics such as the volume fraction, orientation vector and orientation dispersion 

(or uncertainty) were evaluated on a voxel-by-voxel basis and were visualized in FSLeyes 

(https://zenodo.org/record/2630502#.XNA9×45KiUn) to have a qualitative comparison 

against the respective gold standard as obtained by fitting the diffusion model to the noise-

free imageset.

For each fiber population, the diffusion metrics derived were also quantitatively compared 

against the gold standard serving as the reference. In particular, fiber orientation vectors 

were compared by quantifying the angular difference across the brain. The other two 

diffusion metrics (i.e., volume fraction and orientation dispersion) were compared through 

Bland-Altman (BA) analysis (Bland and Altman, 1986) based on region-specific average 

values. For each diffusion metric, region-specific average values were calculated based on 

regions of interest (ROIs) that were defined by a standard atlas. Here, two standard atlases 

(Fig. S10) were considered: the MNI structural atlas (Mazziotta et al., 2001) that defines 

nine anatomic regions across the brain and the JHU white matter atlas (Wakana et al., 2007) 
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that labels 48 white matter tracts. More details of how Bland-Altman analysis was done can 

be found in the supporting materials.

In all cases, the results were compared against those obtained for the noisy images and for 

the denoised images using the MPPCA approach. For estimation of fiber crossing, we only 

considered the noise level of 4% since it led to SNR levels comparable to what was 

estimated for the real data acquisition (see supporting materials for more details on SNR 

estimation).

3.2. Real-data experiment

We also conducted real-data experiment to evaluate the denoising performance of the 

proposed method. This was done by acquiring 7T HCP-style diffusion images in a healthy 

volunteer who signed a consent form approved by the local Institutional Review Board. The 

volunteer was scanned on a 7T MR scanner (Siemens, Erlangen, Germany) equipped with 

the Siemens SC72 body gradient (70 mT/m maximum strength and 200 T/m/s maximum 

slew rate) and 32 receive channels. The Nova single-channel transmit 32-channel receive 

head coil was used for RF transmission and signal reception. For improved transmit RF field 

in lower brain regions, dielectric padding was employed as in the 7T HCP dMRI protocol 

(Vu et al., 2015).

We acquired two datasets: a single average and ten averages. The single average was 

obtained by acquiring the first half of the HCP 7T diffusion acquisition (Vu et al., 2015). 

Briefly, it consisted of a pair of diffusion runs (or acquisitions), each obtained with matched 

imaging parameters and the same q-space sampling. For both runs, the same double-shell q-

space sampling scheme (b-values = 1000 and 2000 s/mm2) was applied to obtain 71 image 

volumes (including 63 DW images plus 8 interspersed b0 images), leading to a total of 142 

images. For either run, whole brain diffusion images were obtained with the following 

imaging parameters: 1.05-mm isotropic resolution, 7000-ms repetition time (TR), 71-ms 

echo time (TE), 3-fold in-plane GRAPPA (iPAT3), 2-fold slice acceleration (MB2), 6/8 

partial Fourier, 132 oblique axial slices, 210 × 210 mm2 field of view (FOV), ½ FOV inter-

slice shift, 0.82-ms echo spacing, 1388 Hz/pixel bandwidth. To allow for correction of EPI 

geometric distortions in the subsequent image preprocessing, the two runs of the single 

average were acquired with opposed phase encoding directions, i.e., one acquired with 

Anterior-Posterior (AP) and the other with PA phase encoding direction. The scan time of 

each run was ~10 min, leading to a total scan time of 20 min for the single average. The ten 

averages were obtained by acquiring 10 times the single average, leading to a total of 1420 

image volumes acquired in 20 runs with a total scan time of ~200 min. The ten averages 

dataset was used as a bronze standard serving as the reference in the subsequent diffusion 

analysis. Note that all images of the ten averages dataset were treated as independent 

volumes with no prior averaging in the image domain when used to fit a diffusion model.

All original diffusion images were reconstructed online using an integrated image 

reconstruction program. The image reconstruction program first reconstructed multi-channel 

images of individual receive channels using the split slice GRAPPA algorithm (Cauley et al., 

2014) to minimize inter-slice signal leakage, and then combined the reconstructed multi-

channel images via the SENSE-1 method (Sotiropoulos et al., 2013) to form the final Rician 
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image with a reduced noise floor. The final images saved in the DICOM format were 

exported for use in subsequent data processing and analysis.

We denoised the single average dataset at the run level, i.e., the two runs (of 71 image 

volumes each) were denoised separately. This was to improve the denoising performance by 

reducing the negative impact of the presence of large opposed distortions when denoising 

two runs together. Further, the background voxels were not included in the denoising process 

for improved computation efficiency.

The denoised single average dataset were then preprocessed by following the HCP pipelines 

(Glasser et al., 2013) to correct for head motion and geometric EPI distortions arising from 

susceptibility and eddy currents. The correction was achieved by combining FSL’s topup 

(Andersson et al., 2003) and eddy (Andersson and Sotiropoulos, 2016) routines. Further, the 

corrected diffusion images were registered to the volunteer’s native structural volume space 

by using the boundary-based registration method (Greve and Fischl, 2009; Jenkinson et al., 

2002). The volunteer’s native structural volume space was defined by acquiring high-

resolution structural T1-weighted (T1w) and T2w images as in our previous studies (Wu et 

al., 2018, 2019). Briefly, both T1w and T2w images were acquired at 0.7-mm isotropic 

resolutions with matched FOV. The T1w image was obtained with an MPRAGE sequence 

(Mugler and Brookeman, 1990), whereas the T2w image with a variable flip angle 3D turbo 

spin echo sequence (Mugler et al., 2000).

Using the preprocessed denoised single average dataset, we performed diffusion analysis to 

derive relevant diffusion metrics related to DTI and estimation of fiber crossing as in the 

simulation experiment. For angular difference evaluation and BA analysis, the results were 

compared against those derived from the ten averages dataset serving as the reference. In all 

cases, the diffusion analysis results for the single average without denoising and denoised 

with the MPPCA approach were also obtained for comparison.

3.3. Implementation of the proposed denoising method

We conducted a pilot study (see supporting materials) to optimize the implementation of the 

proposed denoising method. The purpose of this optimization was to determine what method 

or algorithm to use to implement each of the four operation modules involved in the 

denoising pipeline. For each module, different methods were compared and the one 

providing best performance was chosen. The result of this optimization was a finalized 

implementation utilized to denoise the double-shell diffusion data for both simulation and 

real-data experiments. The specific realization of each module in the finalized 

implementation was as follows.

The noise estimation module opted for the VST-based method with the “VST B” function 

since it appeared constantly effective in estimating the std of the underlying Gaussian noise 

(Fig. S6) in comparison to other noise estimation methods considered here including the 

MPPCA approach and the VST-based method with “VST A″ function. The VST module 

employed the “VST B″ function for transforming noisy diffusion data because it turned out 

to outperform the “VST A″ function in variance stabilization (Fig. S7). For consistency, the 

EUIVST module also utilized the “VST B″ function to estimate the underlying diffusion 
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signal. The denoising module incorporated the standard singular value shrinkage algorithm 

(Gavish and Donoho, 2017) since it appeared to outperform any other standard denoising 

algorithm in reducing the negative impact of noise variance on the final denoised images 

(Fig. S8). Here, the singular value shrinkage was optimized for a cost function formed in the 

Frobenius matrix norm and the priori knowledge on the noise std after VST (as needed for 

data scaling) was estimated using a patch-based extension to the MPPCA method.

We also determined how best to estimate the underlying Gaussian noise given a series of 

double-shell diffusion magnitude images. Using the simulated data, we compared four 

strategies: 1) All: use the entire image set including b0 images; 2) b1k þ b2k: only use DW 

images with non-zero b-values; 3) b1k: only use DW images with b-value = 1000 s/mm2; 4) 

b2k: only use DW images with b-value = 2000 s/mm2. The third strategy using only b1k 

images appeared to outperform other strategies (Fig. S9) and therefore was chosen in both 

simulation and real-data experiments to estimate the underlying Gaussian noise level for use 

in subsequent VST and EUIVST modules.

Further, the patch-based implementation of each operation module involved using patches 

defined by a sliding kernel of size 5 × 5 × 5 (i.e., x = y = z = 5). For the noise estimation 

module, the noise std in each patch was assumed constant and was estimated through VST-

based iterations (Foi, 2011). Each iteration involved two steps: 1) filter the voxel values in 

the patch using a high-pass convolutional kernel (Abdelnour and Selesnick, 2005) and 2) 

calculate the median of the absolute deviations of the filtered voxel values to estimate the 

noise std. The result of the noise estimation module was a noise map with spatially varying 

noise std values across the image FOV. For both VST and EUIVST modules, the data 

transformations in a patch were performed using the average noise std in the patch. For the 

denoising module, each patch was converted into a 2D data matrix of size M by N (where M 
= t and N = xyz) by concatenating the spatial dimensions before being denoised with a 

standard denoising algorithm. As a result, the aspect ratio, β = M
N , (i.e., the only parameter 

defining the singular value manipulation function in a standard denoising algorithm (Fig. 

S3)) was 0.536 in the simulation experiment and 0.568 in the real-data experiment.

Moreover, the patch weights utilized to aggregate multiple estimates of parameters at each 

voxel were set to 1 for all modules except for the denoising module. For the denoising 

module, the weight for the k-th patch was defined by

wk = 1
1 + Rk

(4)

where Rk is the rank (or the number of non-zero singular values) of the denoised data matrix 

(i.e., matrix X in Fig. S2). This was to assign a higher weight to those estimates obtained 

from a denoised data matrix of a lower rank. Such weight definition was used in previous 

studies (Manjon et al., 2012, 2013; Zhang et al., 2017) to improve denoising performance 

and reduce Gibbs artifacts.

We implemented the proposed denoising method by integrating and modifying the source 

codes generously shared by authors of previous works (Foi, 2011; Gavish and Donoho, 
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2014, 2017; Lam et al., 2012; Veraart et al., 2016a; Zhang et al., 2017). In particular, the 

patch-based implementation of each operation module adapted the code shared by Zhang et 

al. (2017) (https://github.com/XinyuanZhang719/gl-hosvd). Along with both VST and 

EUIVST modules, the noise estimation module when using a VST-based noise estimator 

was built by incorporating the code shared by Foi (2011) (http://www.cs.tut.fi/~foi/

RiceOptVST/). The denoising module using a standard denoising algorithm was fulfilled by 

integrating the code shared by Gavish and Donoho (Gavish and Donoho, 2014, 2017) (http://

purl.stanford.edu/kv623gt2817). Further, the proposed denoising method was implemented 

to only process the voxels in a reduced FOV for improved computational efficiency. The 

reduced FOV was determined by creating a brain mask through optimum thresholding 

(Ridgway et al., 2009) to exclude the background voxels.

4. Results

4.1. Simulation experiment

The use of the proposed denoising method to denoise the noisy diffusion data largely 

enhanced image quality and outperformed the MPPCA approach (Figs. 3 and 4). 

Particularly, it improved both overall and b-value-dependent PSNR values across the noise 

levels investigated in this study (Fig. 3). The improvement in all PSNR values increased with 

increasing noise levels, with the greatest improvement observed at the highest noise level of 

10%. At this high noise level, the overall PSNR increased by as high as ~52% (33.3 vs 21.9 

dB) relative to the noisy data and by as high as ~28% (33.3 vs 26.0 dB) relative to the 

MPPCA approach. Similar results were observed for b-value-dependent PSNR values, with 

the greatest improvement in PSNR obtained for b2k images. The PSNR for b2k images at 

10% noise level increased by as high as ~52% (32.6 vs 21.5 dB) relative to the noisy data 

and by as high as ~35% (32.6 vs 24.1 dB) relative to the MPPCA approach.

Visual comparison of denoised images against the gold standard at 4% noise level (Fig. 4) 

further confirmed the effectiveness of the proposed method for noise reduction and revealed 

how the proposed method outperformed the MPPCA approach. The use of the proposed 

method substantially improved image quality when compared to noisy images, producing 

images similar to the gold standard. When compared to the MPPCA approach, the proposed 

method appeared more effective for noise reduction. While improving slightly the b0 

images, the proposed method substantially improved DW images, increasing the PSNR 

values up to 43.2 dB for the b1k, and 42.1 dB for the b2k image. By contrast, the use of the 

MPPCA approach appeared to struggle with reducing the noise, especially for b2k images 

with extremely low SNR, giving rise to images far away from the gold standard as 

immediately identified by comparing the difference images.

The improvement in PSNR with the proposed denoising method directly translated into 

improvement in DTI (Fig. 5). Particularly, the use of the proposed method improved the 

estimation of diffusivity metrics (MD, AD and RD) and FA across the noise levels 

investigated in this study, with the greatest improvement mostly observed at the highest 

noise level of 10%. At this high noise level, the RMSE for estimation of MD, AD, RD and 

FA reduced by ~46%, ~24%, ~52% and ~51%, respectively, when compared to the noisy 
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data, and by ~50%, ~43%, ~50% and ~5%, respectively, when compared to the MPPCA 

approach.

Visual comparison of example diffusion metrics maps at 4% noise level (Fig. 6) further 

confirmed the efficacy of the proposed method for improving DTI and revealed how the 

proposed method outperformed the MPPCA approach. Specifically, all diffusion metrics 

maps (MD, AD, RD and FA) for the proposed method closely resembled the respective gold 

standard, preserving fine structures and tissue contrasts across the brain. By contrast, the 

maps for noisy images were noisy, presenting over- and under-estimation for FA and under-

estimation for both MD and RD across the brain. Although appearing less noisy, the 

diffusivity maps (MD, AD and RD) for the MPPCA approach surprisingly exhibited even 

higher underestimation; the FA map however was visually comparable to that for the 

proposed method, with slightly increased RMSE (~0.06 vs ~0.05) when compared against 

the gold standard. The improvement in DTI with the proposed method was further verified 

by comparing the fitting errors; the whole brain average sum-of-square error for diffusion 

tensor fitting was 7.13 for noisy images, 0.97 for the MPPCA approach, 0.60 for the 

proposed method and 0.47 for the gold standard.

The efficacy of the proposed denoising method was further confirmed by estimation of fiber 

crossing (Fig. 7). For all three fiber populations, the use of the proposed method 

substantially improved the estimation of volume fraction and orientation dispersion and 

outperformed the MPPCA approach, leading to volume fraction and dispersion maps most 

similar to the respective gold standard. The improvement was further quantitatively verified 

by examining the results of BA analysis (Fig. 8). For all three fiber populations, the use of 

the proposed method resulted in volume fraction and dispersion values that on average were 

closest to the respective gold standard. The average difference in volume fraction against the 

gold standard across all ROIs was reduced by ~95% (MNI atlas) and ~98% (JHU WM atlas) 

for first, ~85% (MNI atlas) and ~97% (JHU WM atlas) for second, and ~46% (MNI atlas) 

and ~57% (JHU WM atlas) for third fibers when compared to the noisy images, and by 

~81% (MNI atlas) and ~95% (JHU WM atlas) for first, ~57% (MNI atlas) and ~85% (JHU 

WM atlas) for second, and ~34% (MNI atlas) and ~35% (JHU WM atlas) for third fibers 

when compared to the MPPCA approach. The average difference in dispersion across ROIs 

was reduced by ~97% (MNI atlas) and ~93% (JHU WM atlas) for first, ~95% (MNI atlas) 

and ~95% (JHU WM atlas) for second, and ~92% (MNI atlas) and ~94% (JHU WM atlas) 

for third fibers when compared to the noisy images, and by ~57% (MNI atlas) and ~41% 

(JHU WM atlas) for first, ~65% (MNI atlas) and ~61% (JHU WM atlas) for second, and 

~55% (MNI atlas) and ~61% (JHU WM atlas) for third fibers when compared to the 

MPPCA approach.

Inspecting an exemplar region known to have multiple white matter bundles (Fig. 9), we 

found that the use of the proposed method resulted in orientation vectors that were most 

similar to the gold standard, especially for second and third fibers. Further, the orientation 

vectors for second and third fibers were best aligned with the respective gold standard across 

the brain, reducing the brain average angular differences (Fig. 10). The brain average 

angular difference was reduced by ~44% for second and ~16% for third fibers when 
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compared to noisy images, and ~21% for second and ~12% for third fibers when compared 

to the MPPCA approach.

4.2. Real data experiment

Similar to what was observed with the simulation experiment, the use of the proposed 

method to denoise the HCP-style diffusion largely improved the image quality relative to the 

original data and outperformed the MPPCA approach (Fig. 11). While improving b0 images 

subtly, the use of proposed method substantially improved the DW images as compared to 

the original data, leading to enhanced delineation of tissue boundaries between gray and 

white matters as easily identified across the entire brain. It also appeared more effective than 

the MPPCA approach in reducing noise levels especially for the DW images.

The improvement in image quality with the proposed method immediately translated into 

improved DTI (Fig. 12). Consistent with simulation results, MD, AD and RD values were 

estimated to be higher across the brain (especially for CSF) than those obtained using the 

noisy images or the MPPCA approach. Further, FA values were estimated to be less noisy 

across the brain, especially in low-SNR regions (e.g., lower temporal lobes). The 

improvement of DTI with the proposed method was further confirmed by comparing the 

fitting errors; the whole brain average sum-of-square error for diffusion tensor fitting was 

reduced by as high as ~73% (0.84 vs 3.12) relative to the noisy images and by ~41% (0.84 

vs 1.42) relative to the MPPCA approach.

The efficacy of the proposed denoising method was further confirmed by estimation of fiber 

crossing (Fig. 13). In agreement with simulation results, the use of the proposed method 

reduced orientation dispersion for all three fiber populations and supported more voxels of 

fiber crossing, leading to volume fraction and dispersion maps most similar to the respective 

bronze standard. The improvement was further quantitatively verified by examining the 

results of BA analysis (Fig. 14). For all three fiber populations, the use of the proposed 

method resulted in volume fraction and dispersion values that on average were closest to the 

respective bronze standard. When using the JHU WM atlas, the average difference in 

volume fraction against the bronze standard across all ROIs was reduced by ~92% for first, 

~88% for second, and ~79% for third fibers when compared to the noisy images, and by 

~80% for first, ~75% for second, and ~68% for third fibers when compared to the MPPCA 

approach; the average difference in dispersion was reduced by ~93% and ~79% for first fiber 

when compared to the noisy images and the MPPCA approach, respectively, while 

becoming almost identical to the bronze standard for second and third fibers. Similar results 

were observed for when using the MNI structural atlas, except that the average difference in 

volume fraction was increased (by ~44%) for first fiber relative to the MPPCA approach; for 

all fiber populations, the average difference in dispersion became even smaller than the 

bronze standard.

Examining an exemplar region of the centrum ovale known to have three-way white matter 

bundles (Fig. 15), we found that the use of the proposed method resulted in orientation 

vectors that were most similar to the bronze standard, especially for second and third fibers. 

Correspondingly, the orientation vectors were best aligned with the respective bronze 

standard across the brain, leading to reduced angular differences (Fig. 16). The brain average 

Ma et al. Page 14

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



angular difference was reduced by ~10% for first, ~19% for second and ~25% for third 

fibers when compared to noisy images; when compared to the MPPCA approach, the brain 

average angular difference was reduced by ~7% for second and ~12% for third fibers while 

being comparable for first fiber.

5. Discussion

Here we proposed and demonstrated a denoising method that can be used to effectively 

improve the SNR for magnitude diffusion images. Critical to the efficacy of the new method 

for noise reduction is the realization of a VST-based denoising framework (Fig. 1) that 

synergistically combines various techniques including noise estimation, variance 

stabilization, standard denoising (with optimal singular value shrinkage) and patched-based 

implementation. The effectiveness of the proposed method for reducing the negative impact 

of Rician noise in magnitude diffusion images was demonstrated by performing both 

simulation and real-data experiments. The results of the simulation experiment using 

synthetic multi-shell diffusion images of a brain-like phantom (Figs. 2–10) show that the use 

of the proposed method can effectively estimate the underlying diffusion signals (despite the 

Rician noise characteristics), thereby substantially improving the peak SNR. The SNR 

improvement can in turn enhance DTI and estimation of fiber crossing when compared to 

using the original noisy diffusion images. Likewise, the results of the real-data experiment 

using 7T HCP-style diffusion acquisitions at ~1-mm isotropic resolutions (Figs. 11–16) 

show that the use of the proposed method to denoise a single average of data acquisition can 

largely enhance the SNR for whole brain diffusion images acquired with high spatial 

resolutions and high b values, giving rise to massively improved estimation of diffusion 

metrics in DTI and in resolving fiber crossings. Further, our results suggest that the large 

improvement in estimation of multiple fiber orientations globally is comparable to what is 

achievable with 10 averages (without denoising). In both simulation and real-data 

experiments, our results show that the proposed method outperforms the MPPCA approach 

(a current state of the art method for denoising in diffusion) when directly used to reduce the 

Rician noise in magnitude diffusion images.

Important to the success of the proposed VST-based denoising method are the two 

executions of noise estimation along the denoising pipelines: 1) the noise estimation right 

before the VST (Fig. 1) and 2) the noise estimation right after the VST (Fig. S2). The first 

noise estimation aims to provide the priori knowledge on the underlying Gaussian noises 

that is needed in the subsequent VST and EUIVST operations. For this first noise estimation, 

any method capable of estimating the underlying Gaussian noise levels directly from the 

Rician image data can be considered. Although the VST-based method with the “VST B″ 
function (Foi, 2011) was chosen in the current study because of its robustness for noise 

estimation across a wide range of noise levels (Fig. S6), alternative methods exist including 

the one in (Coupe et al., 2010) that combines the median absolute deviation with Koay’s 

inversion technique (Koay and Basser, 2006)), the method in (Manjon et al., 2015) that 

estimates noise levels based on non-local principle component analysis, and another 

approach in (Koay et al., 2009) which can also be used to identify noise-only voxels. The 

second noise estimation, which is executed after the VST and is also the first step in the 

application of standard denoising (Fig. S2), aims to estimate the noise levels directly from 
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the transformed data in order for data scaling to be fulfilled before optimal singular value 

manipulation. For this second noise estimation, any method tailored for estimating the noise 

level given the Gaussian data can be considered. This includes the use of the MPPCA 

approach as adopted in the current study and alternative methods such as the one in (Gavish 

and Donoho, 2014, 2017) that estimates the Gaussian noise levels based on the median 

singular value of the noise-corrupted data matrix and the median of the Marcenko-Pastur 

distribution. Further, the implementation of both noise estimations follows a patch-based 

approach in order to not only improve the noise estimation performance (by aggregating 

multiple estimates at each image voxel) but also enable estimation of spatially varying noise 

levels (by capturing local noise characteristics around each image voxel). For both noise 

estimations, we note that the ability to estimate spatially varying noise levels is important. 

This is because diffusion images often do not present uniform noise levels across space due 

to the application of parallel imaging for improved acquisition efficiency. This is also 

because the VST is by no means perfect and the std of transformed data does not remain 

unchanged across space (although stabilized to being close to unity) (Fig. S7).

An interesting observation when using only b1k images to estimate the underlying Gaussian 

noise was that the estimation inaccuracy (in terms of RMSE) did not monotonically increase 

with noise levels (Fig. S9) – it decreased at the beginning for low to intermediate noise 

levels (up to ~4%). This can be explained by understanding how the VST-based method 

utilized for noise estimation works. The VST-based method works by estimating the noise 

std after high-pass filtering the image intensities, assuming that the high-frequency 

components of intensity changes across a patch are due to noise contamination. However, 

this assumption is not met at a low noise level, as the high-frequency components of 

intensity changes are mostly attributable to changes in tissue contrast. As a result, the VST-

based method tends to over-estimate the noise std, leading to an increase in estimation error. 

The noise overestimation can readily be appreciated by examining the result at the 2% noise 

level (Fig. S9) and noticing that the noise std was estimated to be higher than the ground 

truth especially in white matter regions where the tissue contrast varies the most from one 

diffusion direction to another. Likewise, noise overestimation was also observed for when 

using only b2k images but now at a higher level as a result of increased variations in tissue 

contrast due to the doubled b-value. Such noise overestimation due to changes in tissue 

contrast is further confirmed by additional simulation using pure noises for noise estimation 

showing that the estimation error largely reduced at low noise levels and overall presents a 

monotonic increase with the noise level across the entire range of noise levels under 

consideration.

Another interesting observation associated with the VST-based noise estimation method is 

that the use of more data by including images of different b-values did not seem to help 

improve the performance for noise estimation in comparison to when using the b1k images 

alone (Fig. S9). This can also be explained by the fact that the changes in tissue contrast 

from image to image can bias the noise estimation. For example, in the case where all 

images (including b0, b1k and b2k images) are used for noise estimation, jumps in tissue 

contrast from one b-value to another would introduce additional bias to a level that 

outweighs the potential improvement provided by the increase in data quantity, thereby 

leading to substantially decreased estimation accuracy across the noise levels. This can be 
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evidenced by comparing the noise estimation results at various noise levels and realizing 

how the use of all images have resulted in higher noise estimation than using only b1k 

images (Fig. S9).

In the current study, we incorporated the optimal singular value shrinkage algorithm (based 

on Frobenius norm) into the denoising module of the proposed framework to manipulate 

singular values. This shrinkage algorithm was found in our pilot study to provide best 

estimation of underlying diffusion signals in the presence of Rician noise when compared to 

other standard singular value manipulation algorithms including truncated SVD, hard 

thresholding and soft thresholding (Fig. S7). This finding is in consistency with the 

theoretical results (Gavish and Donoho, 2014, 2017) showing that the optimal singular value 

shrinkage when used to recover an n-by-n matrix of rank r observed in white noise with level 

σ would guarantee the least asymptotic mean squared error of 2nrσ2 vs 3nrσ2 for hard 

thresholding, 5nrσ2 for truncated SVD, and 6nrσ2 for soft thresholding. We also note that 

the MPPCA method is essentially the same as the truncated SVD when dealing with a 

Gaussian data matrix. This is evidenced by the results of our pilot study, showing that the 

two methods led to nearly identical results (Fig. S7) when integrated into the denoising 

module to estimate the underlying diffusion signals. This can be explained by the fact that 

both methods attempt to recover the signal matrix by nullifying singular values below a 

threshold and the threshold in both cases is determined based on the Marchenko-Pastur 

distribution (Eckart and Young, 1936; Marčenko and Pastur, 1967; Veraart et al., 2016b).

The results of our simulation experiment suggest that the direct use of the noisy magnitude 

diffusion images would lead to inaccurate estimations of diffusion metrics in DTI (Fig. 5). In 

particular, our results (Fig. 6) show that MD appeared under-estimated (due in large part to a 

substantial underestimation in RD), whereas both AD and FA under- and over-estimated 

across the region of interest. These findings are in agreement with the literature (Dietrich et 

al., 2001; Jones and Basser, 2004; Jones and Cercignani, 2010) showing how the presence of 

Rician noise can negatively influence the fitting of a diffusion tensor model. Surprisingly, 

although capable of improving the image quality in terms of PSNR (Figs. 3 and 4), the use 

of the MPPCA approach was found to provide even worse estimation of MD than the direct 

use of the noisy images, mostly due to a large underestimation in AD especially at low SNR 

levels. This can be explained by the fact that the MPPCA approach has the ability to reduce 

the variances in the data, thereby smoothing out the noise floor and increasing the Rician 

bias in the axial direction of the diffusion tensor where the diffusion signal profile presents 

minimum values. Imposing the Rician bias at a similar level in the radial direction of the 

diffusion tensor, the use of the MPPCA approach however leads to largely improved 

estimation of FA as compared to the direct use of the noisy images.

Likewise, the results for our real data experiment (Fig. 12) show that the use of the MPPCA 

approach does not necessarily improve the estimation of MD and may actually provide 

similar MD values to using the original noisy diffusion images. In both cases, the MD tends 

to be underestimated across the brain. By contrast, the use of our proposed denoising 

method effectively reduces the under-estimation of MD and improves the estimation of MD 

across the brain. This improvement can be appreciated by comparing the MD estimations for 

CSF and for subcortical nuclei such as red nuclei. The MD for CSF on average was 
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estimated to increase from ~1.3e-3 mm2/s for using the noisy diffusion images or using the 

MPPCA approach to ~1.8e-3 mm2/s for using the proposed denoising method, which 

becomes closer to the MD value of ~3e-3 mm2/s for CSF reported in literature (Pierpaoli et 

al., 1996). Furthermore, the MD for red nuclei on average was estimated to increase from 

nearly zero for using the noisy diffusion images or using the MPPCA approach to ~0.7e-3 

mm2/s for using the proposed denoising method. This nonzero MD value estimated for red 

nuclei is in line with the findings of previous work aimed at characterizing diffusion tensor 

metrics of red nuclei (Kim et al., 2018).

Both our simulation and real-data experiments show that the use of the proposed denoising 

method can improve the estimation of multiple fiber populations when fitting an extended 

ball and stick diffusion model to double-shell diffusion data, supporting more voxels of fiber 

crossing while increasing the accuracy and decreasing the uncertainty for each fiber 

orientation. These improvements in estimation of fiber crossing are further confirmed by 

comparing the results against a reference chosen to be the gold standard (obtained with 

noise-free images) in the simulation and the bronze standard (obtained with 10 averages 

dataset) in the real-data experiment. In both cases, our results show that the use of the 

proposed method can give rise to estimation results that are closest to the reference and 

outperform the MPPCA approach. Most encouragingly, our results for the real HCP-style 

diffusion at ~1 mm isotropic resolutions show that the use of the proposed method to 

denoise a single average can improve the performances for estimation of fiber crossing to a 

level comparable to what is achievable with 10 averages, enabling us to achieve what is 

attainable with 200-minute scan by only acquiring data for 20 minutes.

When estimating fiber crossing by fitting an extended ball and stick diffusion model to the 

synthetic gold standard dataset, we notice that the results (Fig. 7) (using FSL’s bedpostx 

rountine) support the existence of multiple fiber populations in many voxels in the corpus 

callosum where the existence of a single fiber population seems more plausible. A closer 

comparison of fiber orientations in those voxels reveals that the second and third fibers 

(when present) are mostly aligned with the first fiber (Fig. 9), with the angular differences 

between them being minimum. We consider this to be a feature of FSL’s bedpostx rountine 

which tends to overfit especially at high SNR. We note that this overfitting should not be 

viewed as a big problem for subsequent tractography analysis, since the existence of such 

multiple fiber orientations is still likely to give rise to fiber tracts that follow the pathway of 

the corpus callosum, thereby resembling the underlying ground truth.

To investigate how the proposed method would compare to a non-PCA-based alternative, we 

implemented another denoising approach based on the adaptive non-local means (ANLM) 

filtering (Manjon et al., 2010). We applied the ANLM filtering to the simulated double-shell 

diffusion data and compared the results to those obtained with the proposed method (see 

supporting materials for more details). Our data (Fig. S15) show that the proposed method 

outperformed the ANLM filtering, increasing PSNR and preserving fine brain structures. 

This is in agreement with previous studies (Manjon et al., 2013; Veraart et al., 2016b) 

showing that a PCA-based method usually provides better denoising performances than 

other non-PCA-based methods including the ANLM filtering.
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In the current study, a constant kernel size of 5 × 5 × 5 was utilized for all the operation 

modules along the proposed denoising pipeline.Using the synthesized mouse data, we found 

that using a larger kernel size of 7 × 7 × 7 throughout the denoising pipeline resulted in 

comparable denoising performance, leading to nearly identical PSNR values across a range 

of noise levels. However, the use of a large kernel size would slow down the computation 

due to larger data matrices to deal with. For increased computation efficiency without a 

compromise on denoising performance, we decided to choose the kernel size of 5 × 5 × 5 for 

all of the denoising processes in the current paper. We note that the proposed denoising 

pipeline does not require a constant kernel size for all of its operation modules and in fact it 

allows a different kernel size to be used for each module. Part of our future work would be 

to examine how the kernel size of each module can be optimized and how this module-

specific kernel size optimization would further improve the denoising performance of the 

proposed method. Additionally, for the denoising module (in which a standard denoising 

method is applied), we will consider using more advanced patch definitions (such as those 

through non-local spatial (Buades et al., 2005; Dabov et al., 2007; Maggioni et al., 2013; 

Manjon et al., 2015) and angular (St-Jean et al., 2016) matching and through structure 

adaptation (Bao et al., 2013; Foi et al., 2007)) to form the data matrices to be denoised and 

will explore how the combined use of these more advanced patch definitions would leverage 

the denoising performance of the proposed method by maximizing the information 

redundancy (thereby minimizing the rank) of the data matrices.

Incorporating Foi’s VST recipe (Foi, 2011), the proposed denoising method is specifically 

devised for denoising Rician images. In the context of parallel imaging, a Rician image is 

obtained by taking the magnitude of a single composite complex-valued Gaussian image 

(Dietrich et al., 2001). This single composite complex-valued Gaussian image can directly 

be reconstructed by using a SENSE-type algorithm (Pruessmann et al., 1999); alternatively, 

it can be obtained by using a GRAPPA-type interpolation (Griswold et al., 2002) in which 

case the GRAPPA-reconstructed multi-channel complex-valued images have to be combined 

using an intelligent multi-channel combination method such as spatial matched filtering 

(Roemer et al., 1990; Walsh et al., 2000) or SENSE-1 reconstruction (Sotiropoulos et al., 

2013) (as employed in this study). If the GRAPPA-reconstructed multi-channel images are 

combined with the sum of squares approach, the resulting composite magnitude image may 

still be modelled to follow a non-central Chi distribution. However, it has been shown (Aja-

Fernández et al., 2011) that the non-central Chi distribution in this case has to be 

characterized by effective parameters as determined by the GRAPPA interpolation and the 

coil-to-coil correlation and that the effective parameters (i.e., effective channel count and 

effective noise variance) are spatially dependent (meaning that they vary from one image 

voxel to another). We note that this spatial dependency of effective parameters will make it 

difficult in practice to accurately estimate the shape of the data distribution at each image 

voxel, posing a challenge to denoising. Therefore, we recommend that non-central Chi 

distribution be avoided through image reconstruction that aims to form a single composite 

complex-valued Gaussian image. Such composite complex-valued Gaussian images can also 

be denoised directly (Cordero-Grande et al., 2019), which is believed to hold potential to 

provide improved denoising performance, especially for low SNR regimes. Indeed, we have 

run additional simulation (data not shown) to investigate how our proposed VST-based 
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denoising method would compare against denoising directly in the complex domain; we 

found that the direct use of the optimal shrinkage algorithm to denoise a Gaussian diffusion 

imageset outperformed the use of the proposed denoising method to denoise the 

corresponding Rician diffusion image-set, increasing the PSNR measures by ~4% at 5% 

noise level and by ~10% at 10% noise level.

One limitation of the current study is that the whole brain diffusion images were obtained 

using the Nova single-channel transmit RF coil which is known to present severe transmit 

RF inhomogeneity across the brain (Vu et al., 2015). Although reduced to some extent by 

using dielectric padding, the transmit RF inhomogeneity of the coil was still quite strong, 

leading to weak diffusion signal or even signal dropout in lower brain regions such as the 

cerebellum and the pole of temporal lobes. Our results (Figs. 12 and 13) show that the 

proposed denoising method has the ability to improve the SNR in these lower brain regions, 

resulting in enhanced estimation of diffusion metrics as compared to using the original noisy 

diffusion images. However, the improvement in estimation of diffusion metrics was limited 

mostly due to the extremely low SNR to begin with. On the other hand, it has been shown 

that RF parallel transmission (Katscher et al., 2003; Zhu, 2004) can be used to improve the 

image quality of HCP-style whole brain diffusion at 7T by effectively improving the RF 

uniformity across the brain and substantially enhancing the SNR in lower brain regions (Wu 

et al., 2018). Part of our future work therefore would be to combine RF parallel transmission 

with the proposed denoising method and evaluate how this synergistic combination would 

further improve the image quality when acquiring 7T whole brain diffusion at ~1-mm 

isotropic resolutions.

6. Conclusions

We have introduced and demonstrated a comprehensive denoising method that can be used 

to enhance the SNR for magnitude diffusion images. Critical to the efficacy of the new 

denoising method is the synergistic combination of various techniques including noise 

estimation, variance stabilization, standard denoising (e.g., with optimal singular value 

shrinkage) and patch-based implementation. The effectiveness of the proposed method for 

noise reduction is demonstrated by using both simulation and real-data experiments and by 

considering spatially varying noise levels. Our results obtained using synthetic diffusion data 

in a brain-like phantom and using ~1-mm isotropic HCP-style 7T dMRI show that the use of 

the proposed method can effectively remove Rician noise and improve the image SNR, 

thereby substantially increasing the performances for diffusion tensor imaging and the 

estimation of fiber crossing. Further, the results of our real-data experiment show that the 

use of the proposed method can improve the performances for estimation of fiber crossings 

to a level comparable to what is achievable with 10 averages. In addition, our results from 

both simulation and real-data experiments demonstrate that the proposed denoising method 

can outperform the MPPCA approach, an existing method representing the state of the art in 

denoising magnitude diffusion images. As such, we believe that the proposed denoising 

method will have a great utility for high-quality, high-resolution whole-brain diffusion MRI, 

desirable for many neuroscientific and clinical applications.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of the proposed denoising framework. At the heart of this framework are 

sequential applications of four operation modules: 1) noise estimation, 2) variance 

stabilizing transformations (VST), 3) denoising and 4) exact unbiased inverse VST 

(EUIVST). The purpose of noise estimation is to estimate directly from the Rician 

distributed diffusion magnitude data the standard deviation (std) of the Gaussian noise (or 

noise level) corrupting the data, since both VST and EUIVST require priori knowledge on 

the noise level. The denoising module aims to reduce the noise from the transformed data by 

using a standard denoising algorithm. Implementation of all of these operation modules are 

patch-based for improved performance. The output images of this framework are estimates 

of the underlying noise-free diffusion signals.
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Fig. 2. 
Simulation experiment: noise-free diffusion magnitude images serving as gold standard (a), 

alongside a 3D noise map (b) defining how the noise level (ie. the standard deviation of the 

Gaussian noise corrupting the data) would vary in space, displayed in axial, sagittal and 

coronal views. Shown are b0 images (overlaid with the brain mask as indicated by the 

yellow curves), and diffusion weighted images of one representative direction with b-values 

= 1000 and 2000 s/mm2. The dataset consists of a total of 67 images, including 7 b0 images 

interspersed between 60 diffusion weighted images (with one b0 image inserted after every 

9th diffusion weighted image). The double-shell diffusion weighted images were created to 

sample the q-space on two shells with 30 randomly distributed samples on each shell and 

were ordered in an interleaved manner between the two shells. The noise map (normalized to 

unity) was scaled according to the desired noise level before being added to the gold 

standard to synthesize the noisy images.
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Fig. 3. 
Simulation experiment: comparing denoising performances of the proposed method vs the 

MPPCA approach in terms of overall and b-value-dependent peak SNR (PSNR) in dB as a 

function of the noise level. The overall PSNR was calculated by considering whole-brain 

images including b0 and diffusion weighted images, whereas the b-value-dependent PSNR 

by only accounting for images of the specified b-value (e.g., b0 PSNR was evaluated by only 

considering b0 images). Note that the use of the proposed denoising method outperformed 

the MPPCA approach and substantially improved the image quality (especially for diffusion 

weighted images).
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Fig. 4. 
Simulation experiment: example denoised images at 4% noise level obtained using the 

proposed method vs the MPPCA approach, alongside the corresponding gold standard and 

noisy images for comparison. The right half of each denoised image shows the 

corresponding absolute difference image relative to the gold standard (amplified in 

magnitude by 25-fold for b0, 15-fold for b1k and 10-fold for b2k images for improved 

visualization), the numbers reported are b-value-dependent PSNR in dB, and the brain mask 

(yellow) defines the region of interest for all PSNR calculations. Note that the use of the 

proposed denoising method outperformed the MPPCA approach (especially for diffusion 

weighted images), producing images that were much closer to the gold standard.

Ma et al. Page 31

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Simulation experiment: comparing denoising performances of the proposed method vs the 

MPPCA approach in terms of estimation of four diffusion metrics: mean diffusivity (MD), 

fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). The metric 

mapping was obtained by fitting a diffusion tensor model to the double shell diffusion data. 

For each case, we evaluated the respective estimation performances by calculating the root 

mean square error (RMSE) of the metric estimation relative to the gold standard obtained 

from the noise-free images, and compared to the metric estimation using the noisy images. 

Note that the use of the proposed denoising method substantially improved the estimation 

performances especially for intermediate and high noise levels (>5%), relative to the noisy 

images or the MPPCA approach.
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Fig. 6. 
Simulation experiment: example diffusion tensor metric maps estimated from denoised 

images obtained at 4% noise level using the proposed method vs using the MPPCA 

approach, alongside the gold standard metric maps estimated from the corresponding noise-

free images and those from the noisy images for comparison. The use of the proposed 

method largely improved the estimation of MD, AD and RD with increased values and 

clearer delineation of fine structures, and slightly improved estimation of FA with reduced 

noise.
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Fig. 7. 
Simulation experiment: comparing performances for estimation of fiber crossing when 

fitting an extended ball and stick model. Shown are volume fraction and dispersion maps 

(shown for voxels of ≥0.05 vol fraction) for first (or principle), second and third fibers when 

estimated using noise-free images (Gold standard), noisy images (Original), denoised 

images with MPPCA (MPPCA) or the proposed method (Proposed). Results of noise level 

of 4% were shown for demonstration.
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Fig. 8. 
Simulation experiment: summary of Bland-Altman (BA) analysis results when using the 

MNI structural atlas (a) and the JHU white matter atlas (b) to define the regions of interest 

(ROIs) for comparison. Using each atlas, we compared each noisy or denoised imageset 

against the gold standard: 1) noisy images (Original), 2) images denoised with the MPPCA 

approach (MPPCA), and 3) images denoised with the proposed method (Proposed). Results 

of noise level of 4% were shown for demonstration. For each of the three fiber types (ie, 

first, second and third fiber), two diffusion metrics were compared: volume fraction (left 

column) and dispersion (right column). For each diffusion metric, region-specific average 

values for individual ROIs were calculated for each imageset and the results were compared 

against those of gold standard by calculating the region-specific difference values between 

each imageset and the reference. For each case, shown is the average difference across ROIs 

with the error bar corresponding to the reproducibility coefficient (ie, 1.96 standard 

deviation (SD) of the differences across ROIs).
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Fig. 9. 
Simulation experiment: an exemplar region of the centrum ovale (as indicated by a green 

box in the inset) demonstrating the comparison of the original noisy images (noise level 

4%), images denoised using MPPCA or the proposed method for estimation of fiber 

crossing, with gold standard images serving as the reference. In each case, shown are the 

estimated orientations for the first, second and third fibers (thresholded at 0.05 vol fraction) 

overlaid on the respective FA map, with the color representing the fiber orientation (red: left-

right; green: anterior-posterior; blue: superior-inferior). Note that the fiber orientation maps 

resulting from the use of the proposed method were closer to those obtained with gold 

standard images compared to the noisy images and MPPCA, especially for second and third 

fibers, indicated by the yellow box and ellipse respectively.
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Fig. 10. 
Simulation experiment: comparing angular differences for first, second and third fibers when 

fitting the ball and stick model to the double shell simulated diffusion data. Results of noise 

level of 4% were shown for demonstration. The angular differences for each fiber type were 

calculated by comparing the fiber orientation obtained with gold standard (serving as the 

reference) against that with noisy images (Original), images denoised with the MPPCA 

approach (MPPCA) or with the proposed method (Proposed). For each case, angular 

differences in degrees masked using the corresponding volume fractions thresholded at 0.05 

are shown on top of the respective FA map in the top panel; the corresponding histograms of 

angular differences are plotted in the bottom panel.
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Fig. 11. 
Real-data experiment: comparing HCP-style diffusion before (top) and after denoising using 

the MPPCA approach (middle) and using the proposed denoising method (bottom). In each 

case, shown are a set of three orthogonal views for b = 0, 1000, or 2000 s/mm2, obtained 

from a representative image volume after the respective entire dataset underwent the HCP 

7T diffusion preprocessing pipeline to correct for motion and EPI geometric distortion. The 

whole-brain diffusion dataset was acquired following exactly the HCP 7T diffusion imaging 

parameters including 1.05-mm isotropic resolutions, 2-fold slice acceleration, 3-fold in-

plane acceleration, and TE/TR = 71/7000 ms; it consisted of a series of 71 unique image 

volumes (including eight b0 images interspersed between 63 double-shell diffusion-

weighted images), acquired twice with anterior-posterior (AP) and PA phase encode 

directions, leading to a total scan time of ~20 min. Note how the use of the proposed method 

substantially increased the signal to noise ratios (by effectively reducing the noise floor), 

giving rise to largely improved tissue contrasts especially for diffusion-weighted images.
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Fig. 12. 
Real-data experiment: comparing performances for estimation of mean diffusivity (MD), 

fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) when fitting a 

diffusion tensor model to the HCP-style double-shell diffusion acquisition. Here, we 

compared 1) single average (Original), 2) single average denoised using the MPPCA 

approach (MPPCA), 3) single average denoised with the proposed method (Proposed), and 

4) 10 averages (Original (x10). Note that the use of the proposed method substantially 

improved the estimation performances: it resulted in less underestimated MD in CSF (with 

average MD in CSF being ~1.8×10^−3 mm2/s as compared to ~1.3×10^3 mm2/s for all the 

other three cases) while providing more plausible non-zero MD values for subcortical nuclei 

(such as red nuclei and substantia nigra as indicated by white arrows); it also improved FA 

estimation, giving rise to FA values comparable to 10 averages, especially for regions (e.g., 

lower temporal lobes as indicated by white circles) where the initial signal to noise ratios 

were low due to RF inhomogeneity.
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Fig. 13. 
Real-data experiment: comparing performances for estimation of fiber crossing when fitting 

an extended ball and stick model to HCP-style double-shell diffusion acquisitions. Shown 

are volume fraction and dispersion maps (shown for voxels of ≥0.05 vol fraction) for first (or 

principle), second and third fibers when estimated using single average (original), single 

average denoised with MPPCA (MPPCA), single average denoised with the proposed 

method (Proposed), and 10 averages (Original (x10)).
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Fig. 14. 
Real-data experiment: summary of Bland-Altman (BA) analysis results when using the MNI 

structural atlas (a) and the JHU white matter atlas (b) to define the regions of interest (ROIs) 

for comparison. Using each atlas, we compared the three single average scenarios against the 

10 averages (serving as the reference): 1) single average (Original), 2) single average 

denoised with the MPPCA approach (MPPCA), and 3) single average denoised with the 

proposed method (Proposed). For each of the three fiber types (ie, first, second and third 

fiber), two diffusion metrics were compared: volume fraction (left column) and dispersion 

(right column). For each diffusion metric, region-specific average values for individual ROIs 

were calculated for each single average scenario and the results were compared against those 

of the reference by calculating the region-specific difference values between the single 

average scenario under consideration and the reference. For each case, shown is the average 

difference across ROIs with the error bar corresponding to the reproducibility coefficient (ie, 

1.96 standard deviation (SD) of the differences across ROIs).
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Fig. 15. 
Real-data experiment: comparing first, second and third fiber orientations when estimated 

using single average (original), single average denoised with MPPCA (MPPCA), single 

average denoised with the proposed method (Proposed), and 10 averages (Original (x10)). 

Shown are fiber orientations in a region of the centrum ovale (as indicated by a green box in 

the inset) known to have multi-way white matter fibers. In each case, voxel-wise color-coded 

fiber orientations, thresholded at 0.05 vol fraction and with the color representing the fiber 

orientation (red: left-right; green: anterior-posterior; blue), are displayed over the respective 

FA map. Note that when compared to using the single average without denoising superior-

inferioror denoised with the MPPCA approach, the use of the proposed method to denoise 

the single average substantially improved the estimation of fiber orientations by giving rise 

to better-organized and better-aligned fibers (e.g., in a region as indicated by the ellipse) 

while supporting more voxels of three-way white matter fibers (e.g., in a region as indicated 

by the rectangle), which improvement appeared comparable to what was achievable with 10 

averages.
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Fig. 16. 
Real-data experiment: comparing angular differences for first, second and third fibers when 

fitting the ball and stick model to the HCP-style double shell diffusion data. The angular 

differences for each fiber type were calculated by comparing the fiber orientation obtained 

with 10 averages (serving as the reference) against that with single average (Original), single 

average denoised with the MPPCA approach (MPPCA), and single average denoised with 

the proposed method (Proposed). For each case, angular differences in degrees masked using 

the corresponding volume fractions thresholded at 0.05 are shown on top of the respective 

FA map in the top panel; the corresponding histograms of angular differences are plotted in 

the bottom panel.
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