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Abstract

High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern
hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter
decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on
the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if
the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a
change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four
Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under
elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of
the ligninolytic gene lcc was significantly down-regulated by a factor of 2–4 fold relative to its expression under ambient N
deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently
lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28
ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated
the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the
proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the
community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition
may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and
compositional changes in the fungal community.
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Introduction

Elevated levels of atmospheric nitrogen (N) deposition, resulting

from anthropogenic activity, are a global phenomenon and lead to

increased N availability in terrestrial ecosystems, such as temperate

forests in which plant growth is generally N limited [1,2]. Higher

N availability may increase carbon (C) storage in these ecosystems

by stimulating primary productivity [3,4,5] and by increasing soil

C sequestration [4,6,7]. Because of its size and temporal stability,

understanding the long-term impact of N deposition on the soil C

storage is particularly important, because it is a major pool in the

global C cycle. Nitrogen deposition could increase soil C

sequestration by increasing aboveground litter production, in-

creasing root litter production, or reducing microbial activity. We

have recently demonstrated that simulated atmospheric N

deposition, at a rate expected by 2050 across portions of the

Northern Hemisphere [1], has increased net primary productivity

and soil C sequestration (,100 g C m22 y21 from 1994 to 2004)

in a widely distributed temperate deciduous forest ecosystem [8].

In this ecosystem, increased soil C sequestration has occurred

despite no significant increase in above- or belowground litter

production, but concomitant with declines in microbial lignocel-

lulolytic extracellular enzyme activities and with the accumulation

of organic matter in the forest floor [8,9,10]. Because N deposition

stimulation of C sequestration in this ecosystem appears to be

mediated through the saprotrophic microbial community, in this

study we employed molecular genetic approaches to examine the

mechanisms underlying this response.

Litter decomposition is primarily a biochemical process, and

litter biochemistry, especially the relative proportions of cellulose

and lignin, strongly affects decomposition rates and also the

magnitude and direction of the response of decomposition rate to

increased N availability [11]. Cellulose, which is a glucose

polymer, is the main constituent of plant cell walls and is broken

down through the action of cellulolytic enzymes (cellulases; i.e.

cellobiohydrolases, endo-glucanases, and b-glucosidases). Lignins

are phenolic polymers integral to plant secondary cell walls, and

they are mineralized by a range of lignolytic enzymes, including
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lignin-peroxidases, manganese-peroxidases, and laccases [12]. In

the forest floor, these lignocellulolytic enzymes are of predomi-

nantly fungal origin and are secreted by a phylogenetically wide

range of species [13,14,15]. The saprotrophic fungal community is

species rich and highly variable in space and time, reflecting

environmental variation [16] as well as life-strategy differences

between species and the continuously changing nature of the

substrate as decomposition progresses [17]. Higher levels of N

availability have the potential to affect the composition of the

fungal community [18], and in doing so might alter lignocellulo-

lytic enzyme production. For example, a declining proportion of

basidiomycete species in the community has been postulated as a

cause of lower decomposition rates, because saprotrophic

basidiomycetes are often considered the primary agents of lignin

decomposition [18,19,20].

However, higher N availability may also directly affect the

transcription of the functional genes that encode for lignocellulo-

lytic enzymes [21,22] and in doing so affect decomposition without

necessarily eliciting a change in community composition. The

expression of cellulolytic genes is induced by the presence of

cellulose, and repressed by elevated concentrations of simple

sugars [21,23,24]. Higher N availability has been associated with

increased cellulolytic gene transcription [21] and with higher levels

of cellulase activity [11,15]. As decomposition progresses, the

fraction of cellulose bound in recalcitrant complexes with lignin

and other polyphenols increases, and further mass loss becomes

increasingly controlled by the rate at which lignin is metabolized

[13]. Ligninolytic activity has been connected to nutrient depletion

[25,26], and the expression of lignin- and Mn-peroxidases may be

repressed by higher N availability [27]. Laccase expression

displays a more variable response to increased N availability, with

repressed expression occurring in some fungal species and

stimulated expression in others [28,29]. The effect of N availability

on the transcription of ligninolytic and cellulolytic genes has only

been considered for a small number of species in vitro, and, to our

knowledge, has not been examined under field conditions. In this

study, we sampled forest floor from sugar-maple (Acer saccharum

Marsh.) dominated forest stands in which chronic simulated N

deposition (30 kg NO3- -N ha21 yr21since 1994) has been

associated with lower levels of lignocellulolytic enzyme activity

and increased levels of C sequestration. We tested three alternate

hypotheses: 1) simulated N deposition represses lignocellulolytic

gene transcription, 2) simulated N deposition alters fungal

community composition, 3) declines in decay rates result from a

combination of both

Results

Lignocellulolytic gene expression
The expression of the lignocellulolytic genes cbhI and lcc in the

forest floor of experimental plots receiving elevated levels of N was

determined relative to that of forest floor in plots receiving

ambient levels of N deposition at one sugar-maple dominated site

(Site D, Table 1) in 2007 and 2009, and also at an additional three

sugar-maple dominated sites (A – C, Table 1) in 2009.

Cellobiohydrolase and laccase enzyme activities were determined

in parallel. Beta-tubulin, cbhI, and lcc genes were successfully

amplified from 27 of 30 cDNA (6 in 2007 and 21 in 2009). The

expression of the cellobiohydrolase cbhI gene relative to b-tubulin

(DCT cbhI2btub) varied between sites and showed no clear

relationship to N deposition (Table 2). Normalized relative cbhI

expression (22DDCT) ranged from 0.06- to 6.85-fold across the four

sites in 2009, and was not significantly affected by N deposition

(Mann-Whitney U = 46, nambient = 9, nsimulated N deposition = 11,

P two-tailed = 0.50, Fig. 1). At Site D, despite a high degree of spatial

variation (0.23-fold to 6.25-fold in 2007; 0.09-fold to 4.54-fold in

2009) cbhI expression levels were significantly lower under

simulated N deposition in the pooled two-year dataset (Mann-

Whitney U = 35, nambient = nsimulated N deposition = 6, P two-tailed

= 0.01). Laccase gene expression also showed considerable

variation, although mean DCT values were generally lower under

simulated N deposition (Table 2). Normalized lcc gene expression

(22DDCT) ranged from 0.02-fold to 11.5-fold across the four forest

sites in 2009, and tended to be lower under simulated N deposition

(Fig. 1). Despite the high variability in mean fold expression, non-

parametric analysis indicated that lcc gene expression was

significantly lower under simulated N deposition (Mann-Whitney

U = 21, nambient = 9, nsimulated N deposition = 11, P two-tailed = 0.04),

providing evidence supporting one of our hypotheses. Laccase

gene expression was also significantly lower under simulated N

deposition at Site D in the pooled two-year dataset (Mann-

Whitney U = 27, nambient = 6; nsimulated N deposition = 5, Ptwo-tailed

= 0.04).

Cellobiohydrolase enzyme activity across the four sites in 2009

was on average 22% lower under simulated N deposition than

under ambient N deposition (Table 2), although this was not

statistically significant (Mann2Whitney U = 46, nambient =

nsimulated N deposition = 12, P two-tailed = 0.14). Cellobiohydrolase

activity was significantly different between years at Site D (mean

(6 SD) 2007, 360 (6111) nmol h21 g21; mean (6 SD) 2009, 920 (6

165) nmol h21 g21; P = 0.01). Despite the temporal difference in

magnitude, cellobiohydrolase activity tended to be lower under

simulated N deposition than under the ambient condition

(Table 2), and this was statistically significant (Mann-Whitney

U = 32, nambient = nsimulated N deposition = 6, P two-tailed = 0.03).

Laccase enzyme activity varied considerably across the four sites

in 2009 (Table 2); it was lower under simulated N deposition than

under ambient N deposition at three of the four sites, although

overall N deposition had no significant effect (Mann-Whitney

U = 46, nambient = nsimulated N deposition = 12, P two-tailed = 0.14).

Laccase enzyme activity was higher in 2009 than in 2007 at Site D

(Table 2), although this temporal difference was not significant (t-

test, P = 0.19, n = 10). In each year, laccase activity tended to be

lower under simulated N deposition than under ambient N

deposition, but this was not statistically significant (Mann-Whitney

U = 30, nambient = nsimulated N deposition = 6, P two-tailed = 0.06).

Table 1. Site, climatic, overstory and ambient nitrogen
deposition rates of four sugar maple stands receiving
experimental NO3

- additions.

Forest characteristics Site A Site B Site C Site D

Latitude, N 46u529 45u339 44u239 43u409

Longitude, W 88u539 84u519 85u509 86u099

Mean annual precipitation, mm 821 828 856 793

Mean annual temperature, uC 4.8 6.1 6.9 7.6

Wet plus dry total N deposition
kg ha21 yr21

6.8 9.1 11.7 11.8

Total N deposited, 1994–2009 kg ha21 yr21 590 625 667 670

Overstory age, 2009 102 96 97 101

Sugar maple % of overstory biomass 91 86 79 71

doi:10.1371/journal.pone.0020421.t001
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Fungal Community Composition
The response of fungal community composition to chronic N

deposition was examined at Site D. We obtained high quality

sequence data from 209 of 288 rDNA 28S clones (72.5%), and 203

of these sequences were of fungal origin (97%). Phylogenetic

analyses divided the fungal sequences into 47 Operational

Taxonomic Units (OTUs). Ascomycotina dominated the OTUs

(28 OTU vs. 19 Basidiomycota), yet they composed only 24% of the

fungal sequences. This discrepancy was driven by the abundance of

two basidiomycete OTUs (Ceratobasidium sp. and Athelia sp.) which

were widespread (each recovered from five of six plots within the

site) and whose combined abundance accounted for 46% of the

fungal sequences. Phylogenetic analyses indicated that Pezizomy-

cotina dominated the Ascomyctona, with Leotiomycetes, Dothi-

deomycetes, Sordariomycetes and Geoglossomycetes taxa repre-

senting a combined 82% of the library (Fig. 2). Leotiomycetes

represented 50% of ascomycete diversity (Fig. 2) and the three most

widespread and abundant ascomycete OTUs recovered placed

within this group. Within the Basidiomycota, species from at least

seven orders within the Agaricomycotina were recovered in cDNA

(Fig. 3). Agaricales dominated diversity with 10 of 19 OTUs (Fig 3),

although the most widespread and abundant OTUs placed in the

Ceratobasidiales, Atheliales, and Auriculariales. The proportion of

ascomycete taxa in the community was significantly smaller under

simulated N deposition (mean ambient, 63%; mean elevated NO3
2,

37%; t-test, P2-tailed = 0.02, n = 5).

Of the 47 fungal OTUs, only 12 (8 Basidiomycotina, 4

Ascomycotina) were recovered from more than one of the six

field plots, and only 6 occurred under both ambient and simulated

N deposition. We used Canonical Correspondence Analysis (CCA)

to determine if the relative abundance of these 12 most widespread

taxa was affected by N2 deposition, using plot levels of soil

moisture content as a covariable. The principal CCA axis

(constrained) accounted for 23% of the variability in species

relative abundance; the second axis (unconstrained) for a further

37% (Fig. 3). There was no evidence that simulated N deposition

at this site significantly affected the relative abundance of the more

common fungal species (Monte Carlo Pprincipal axis = 0.60).

Discussion

Litter decomposition is an enzymatically complex process

mediated by a species-rich community of saprotrophic fungi

[13,30], and litter decomposition rates are known to be sensitive to

N availability in the environment [7,11,19,31]. Nitrogen avail-

ability is also known to affect the transcription of fungal genes that

encode for the enzymes critical to the decomposition process

[22,25,26,27] and therefore altered rates of gene transcription

under elevated N deposition may mechanistically underlie

ecosystem level responses to this agent of global change. Also,

because co-occurring fungal species differ in their rates, modes and

potential for lignocellulolytic activity [14,15,32], altered commu-

nity composition resulting from chronic elevated N deposition

might also mechanistically underlie changes in litter decomposi-

tion rates and C sequestration. These mechanisms are not

Table 2. Cellobiohydrolase and laccase enzyme activities and gene expression levels under ambient and elevated NO3
2

deposition in four northern hardwood forests.

Cellobiohydrolase Laccase

Site/Treatment

Enzyme activity
(mean ± SD)
nmol h21 g21

cbhI expression
DCT (cbhI –btub)

(mean ± SD)

Enzyme activity
(mean ± SD)
nmol h21 g-1

lcc expression
DCT (lcc – btub)

(mean ± SD)

A/ambient
A/simulated N

13346664
8106194

1.7061.56
0.4760.36

79668
32613

3.9061.82
5.3660.31

B/ambient
B/simulated N

9926175
5246159

1.4660.23
3.5262.81

2906206
45622

7.8160.03
9.7564.59

C/ambient
C/simulated N

8396174
11046194

4.1460.95
3.3362.20

161613
7246148

5.4560.20
5.5061.94

D/ambient (2009)

D/simulated N (2009) D/ambient (2007)

D/simulated N (2007)

1003671
8366205
427642
2936125

3.4161.23
5.9962.68
3.9860.71
6.7160.65

2326115
76617
91625
77611

2.3660.97
7.3663.54
1.3060.69
1.4660.80

P (a= 0.05) simulated N ? ambient N1 0.14 0.50 0.14 0.04

12009 data.
doi:10.1371/journal.pone.0020421.t002

Figure 1. Relative expression of fungal cbhI and lcc genes in
the forest floor of northern hardwood forests under ambient
or elevated levels of N deposition. Boxes define the interquartile
range, whiskers mark the minimum and maximum observations;
relative expression (Y-axis) is log-scaled. P-values are significance of
the mean difference in relative expression under ambient and elevated
N deposition (Mann-Whitney U, n = 21).
doi:10.1371/journal.pone.0020421.g001
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mutually incompatible, and, in this study, we examined levels of

gene transcription across a series of northern hardwood forest

stands receiving experimental N deposition for over a decade, and

moreover examined community composition in a stand that

displayed sustained levels of reduced lignocellulolytic gene

expression under elevated N deposition. Our results indicate that

although elevated N deposition can result in lower levels of both

ligninolytic and cellulolytic gene transcription in the fungal

communities of northern hardwood forest floor, ligninolytic gene

transcription appears to respond in more negative manner.

Functional Gene Transcriptional Response to Chronic N
Deposition

We examined the community-scale transcriptional response of

lignocellulolytic genes to simulated N deposition by focusing on

the relative transcription levels of genes that encode for fungal

cellobiohydrolase (cbhI) and laccase (lcc) enzymes. The cbhI gene is

unique to fungi, broadly distributed between the Ascomycotina,

Basidiomycotina and possibly Chytridiomycotina in forest soils

[33], and encodes for an enzyme critical to cellulose breakdown.

Expression of cbhI showed no consistent response to simulated N

deposition across four study sites, although it was significantly

lower under simulated N deposition at one of these sites over time;

cellobiohydrolase enzyme activity likewise was not significantly

affected by elevated N deposition. Nitrogen deposition has been

associated with higher cellulolytic enzyme activities and higher

initial rates of mass loss in cellulose-rich litters such as the

predominantly sugar maple leaf litter of these sites [6]. We did not

sample fresh litter in this study, but rather deliberately targeted the

latter stage of litter decomposition of the Oe horizon. As such, our

results suggest that during this latter stage of decomposition,

higher N availability neither promotes nor represses expression of

fungal cellobiohydrolase in the fungal community of this

ecosystem.

In contrast to cbhI, community-scale expression of the lcc gene

was significantly lower in the Oe horizon under simulated N

deposition (Fig 1). Although laccase enzyme activity was

significantly lower in previous studies [6,9], the decline we

document here was not statistically significant (Table 2). This

apparent disconnect may reflect differences in the specificity of the

gene-expression and enzyme activity assays, as tyrosinases or even

bacterial laccase-like multicopper oxidases released during sample

preparation [34] may also contribute to measured levels of phenol-

oxidase activity [35]. Despite this, our gene-transcriptional and

enzyme activity results exhibited strong congruence, with

simulated N deposition predominantly associated with reduced

expression of fungal lcc and lower overall laccase activity (Table 2).

Although fungal laccases may play a role in morphogenesis and

pathogen-host and fungal-fungal interactions, they are also an

important component of the suite of oxido-reductive enzymes

produced by fungi to break down lignin [35]. Lower levels of lcc

expression in the Oe horizon under simulated N deposition may

explain how the long-term trend towards lower phenol-oxidase

activity observed in this ecosystem occurs despite no significant

reduction in the average lcc gene copy number per gram of soil

[9,20]. As such, the transcriptional response of lcc to elevated levels

of N availability may be an important mechanism underlying the

slowing of decay and higher soil C sequestration [8].

Fungal Community Response to Simulated N Deposition
We examined the effect of simulated N deposition on fungal

community composition at the most southerly of our sites (site D,

Table 1), in which consistently lower levels of fungal cbhI and lcc

gene expression under simulated N deposition were observed in

2007 and 2009. We recovered a species-rich and diverse active

fungal community from the forest floor of this site (Figs 2, 3).

Although we recovered a higher diversity of ascomycete than

basidiomycete sequences, basidiomycete sequences clearly domi-

nated the rRNA gene library, and, moreover, represented 66% of

the most widespread species at this site (Fig. 4). Lignin

decomposition is principally associated with basidiomycete species,

and Clitocybe, Collybia, Marasmius, and Mycena species are well

known for their ligninolytic capability and are commonly

recovered from forest floor environments [13,30,31]. We recov-

ered taxa from Mycena, Clitocybe, Crepidotus and Clitopilus (Fig. 3), as

well as Entoloma and Typhula that are also most likely saprotrophs,

and these represented approximately half of the basidiomycete

diversity. The most abundant and widespread basidiomycete taxa

however, were members of the Cantharellales, Ceratobasidiales

and Atheliales. The nutritional mode of these resupinate taxa is

unclear; they are most likely saprotrophs, but mycorrhizal and

parasitic life-strategies are also known from these groups [36]. A

Gomphalian taxon recovered under both ambient and simulated

N conditions is probably mycorrhizal, and Tremellomycete yeasts

were also recovered under both treatments. Ascomycetes were

predominantly recovered from the Dothideomycetes, Sordario-

mycetes and Leotiomycetes, although most remained unidentified

at better than ordinal level (Fig. 2). This was especially true within

the Leotiomycetes (Fig. 2). Although simulated N deposition had

no significant effect on the relative abundance of the more

widespread basidiomycete or ascomycete taxa, the proportion of

ascomycete species in the active community was nevertheless

significantly reduced under simulated N deposition. The conse-

quences of the apparent reduction in ascomycete diversity during

the later stages of litter decomposition are largely unknown; lcc is

broadly distributed among the Basidiomycota, and less broadly

among the Ascomycota and other fungi [35]. With the exception

of some species of Sordariomycetes (e.g., Xylaria), saprotrophic

ascomycetes isolated from forest soils appear to be primarily

cellulolytic and chitinolytic organisms, rather than agents of lignin

degradation [14,15,16]. Indeed, ascomycete-derived cellolulytic

and chitinolytic genes have been recovered in a previous

transcriptomic analysis of this ecosystem [37]. The reduced

transcription of lcc that we observed may then be the result of

basidiomycetes expressing less lcc as a physiological response to

higher N availability; however, the extent of laccase distribution

among ascomycetes is poorly understood [35]. Leotiomycete

ecologies are generally considered to be plant-based, include

pathogenic, endophytic, saprotrophic and mycorrhizal life strat-

egies [38], and laccase positive species (e.g. Botryotinia fukeliana) are

known [39]. Similarly, within the Dothideomycetes and Sordar-

iomycetes, many of the taxa we recovered appear to place with

plant pathogens such as Mycosphaerella, Neonectria and the

Cryphonectriaceae. Species within these groups may use laccase as

an ‘‘attack’’ enzyme during infection, and subsequently to break

down senescent plant cells [39]. Although these taxa were sparsely

distributed across the site, the possibility that their absence from

Figure 2. Phylogenetic relationships between 28 environmental Ascomycete sequences recovered from a maple-dominated
hardwood site (Site D, ‘‘Oceana’’) and 79 representative Ascomycete sequences recovered from GenBank. Tree represents the 50%
consensus of 43 most parsimonious trees (tree length 1391) inferred from ca. 500 bp at the 59 end of the nuclear large subunit. MP bootstrap values
.65% are shown above nodes.
doi:10.1371/journal.pone.0020421.g002
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the simulated N deposition treatment is in part responsible for the

decline in lcc gene expression and laccase activity cannot be

discounted. Although ligninolytic basidiomycetes are often con-

sidered the primary agents of late-stage litter decomposition

[30,35,40], our results emphasize the need for further studies to

connect functional genes recovered in the transcriptome to the

species active in the community.

Conclusions
Despite their important function in plant litter decay and

nutrient recycling [41,42], relatively little is known about the

sensitivity of saprotrophic fungal communities and community

function to environmental change [18,43]. We examined relative

levels of functional gene transcription and community composition

in a northern hardwood ecosystem in which chronic elevated N

deposition has resulted in the slowing of litter decay and greater

soil C sequestration. Our results indicate that the transcription of a

key oxido-reductive gene (lcc) involved in lignin decomposition is

lower under elevated N deposition, suggesting that the physiolog-

ical response of saprotrophic fungi to higher N availability may be

an important link between environmental change and ecosystem

function. At the same time, our results indicate that while the

relative abundances of the more common fungi were unaffected by

elevated N deposition, fewer ascomycete species were recovered in

the latter stages of decomposition. Our results emphasize the

ongoing need to clarify the functional potential and ecological

niche of fungal species, as well as the need to understand how that

potential is realized under varying environmental conditions.

Overall, our results indicate that chronic N deposition can elicit

both compositional and functional changes in fungal communities.

These changes may mechanistically underlie the slowing of decay

and increased soil C storage associated with N deposition in this

ecosystem.

Materials and Methods

Study sites and soil sampling
The influence of chronic atmospheric N deposition was

investigated in four sugar maple (Acer saccharum Marsh.) dominated

stands distributed across lower and upper Michigan (Table. 1).

Figure 4. Triplot based on a Canonical Correspondence Analysis showing the relationships between samples of a fungal
community developing under ambient conditions of N deposition (open squares) and under conditions of simulated elevated N
depostion (closed squares), the relative abundance of the 12 most widespread fungal Operational Taxonomic Units (OTUs, black
circles), and total N depostion (vector) in the forest floor of a maple dominated hardwood ecosystem. The primary axis accounts for
22% of the variance in OTU relative abundances; the second axis a further 37%. The relationship between fungal relative abundances and total N is
not significant (Monte Carlo P = 0.52). OTU codes correspond to the phylogenies (Fig. 2, Fig. 3): OceanaOTU_1, Typhula sp; OceanaOTU_4, Mycena sp;
OceanaOTU_11, Entoloma sp; OceanaOTU_12, Athelia sp.; OceanaOTU_13, Gomphales sp.; OceanaOTU_15, Ceratosebacina sp.; OceanaOTU_16,
Ceratobasidium sp.; OceanaOTU_18, Sistotrema sp.; OceanaOTU_23, unidentified Ascomycota; OceanaOTU_36, Leotiomycete sp.; OceanaOTU_41,
Leotiomycete sp.; OceanaOTU_42, Leotiomycete sp.
doi:10.1371/journal.pone.0020421.g004

Figure 3. Phylogenetic relationships between 19 environmental Basidiomycete sequences recovered from a maple-dominated
hardwood site (Site D, ‘‘Oceana’’) and 73 representative Basidiomycete sequences recovered from GenBank. Tree represents the 50%
consensus of 33 most parsimonious trees (tree length 885) inferred from ca. 500 bp at the 59 end of the nuclear large subunit. MP bootstrap values
.65% are shown above nodes.
doi:10.1371/journal.pone.0020421.g003
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Overstory associates include Quercus rubra L., Fraxinus americana L.,

Betula alleghaniensis Britt. and Prunus serotina Ehrh.. The forest floor

is composed of a thin Oi horizon dominated by relatively intact

sugar maple leaf litter, and a thicker Oe horizon interpenetrated

by a dense root mat. Mineral soils are sandy (85–90% sand) typic

Haplothods of the Kalkaska series. All four sites are floristically

and edaphically similar, but differ in mean annual temperature,

ambient atmospheric N deposition, and soil N availability [7,20].

At each site, three 30-m x 30-m plots receive ambient atmospheric

N deposition and three 30-m x 30-m plots receive simulated

atmospheric N deposition. The simulated atmospheric N deposi-

tion treatment (30 kg N ha21 y21) was initiated in 1994 and

consists of 6 equal applications of NaNO3 delivered as dry pellets

to the forest floor over the growing season; NO3
2 composes

,60% of wet plus dry atmospheric N deposition in this region.

Soil sampling was performed in November 2007 (site D only) and

October 2009 (all sites) after leaf senescence. In each of the six

plots at each site, 10 random 0.1-m60.1-m forest floor samples

(Oe horizon) were collected, composited, and homogenized in

order to ensure plot coverage and representation of all overstory

tree species. Parts of the homogenized samples were immediately

flash-frozen in liquid N2 to prevent RNA degradation, and the

remainder, subject to enzyme measurements, was transported on

ice and later stored at -20 uC.

RNA extraction and cDNA preparation
In both 2007 (at Site D) and 2009 (at all four sites), total RNA

was extracted using a previously published protocol [44]. Briefly,

the RNA from ,1 g of forest floor was extracted using glass beads

and a phenol-based solution. The samples were disrupted using

the FastPrep FP120A instrument (MP Biomedicals, Solon, USA)

for 30 s at a speed of 6.5. The RNA of this crude extract was then

centrifuged, precipitated with ethanol, and separated using RNA/

DNA Midi kits (Qiagen, Hilden, Germany) as recommended by

the manufacturer. Before further purification of the RNA using

the RNeasy Plant Mini kit (Qiagen), a DNAse step (Qiagen) was

added as recommended by the manufacturer. To create cDNA,

3 ml of the purified DNA-free RNA was used as template in an

adaptor, polydT primed reverse transcriptase-PCR, and further

processed to synthesize the cDNA via 17 to 21 cycles of a long-

range PCR using the SMARTTM PCR cDNA Synthesis &

Advantage 2 PCR Kits (Clontech, Mountain View, USA). One

cDNA was created for each of the experimental plots.

Cellobiohydrolase and laccase gene relative expression
We initially screened all cDNA for cellobiohydrolase (cbhI),

laccase (lcc), and b-tubulin gene sequences using previously

described primer sets and PCR conditions [33,44,45,46]. Selec-

tivity of the primers for fungal functional genes was confirmed by

cloning and sequencing and subsequent BlastP searches of the

corresponding amino acid sequence. Based on sequenced

expressed lcc genes, the lcc primer pair was modified and adjusted

to reduce the degree of degeneracy from 32- and 64-fold to 8-fold.

Hence, in the quantitative PCR (qPCR) approach, the new primer

pair Cu1Fmod1 (59- ACG GTY CAY TGG CAY GG -39) and

Cu2Rmod1 (59- GRC TGT GGT ACC AGA AIG TNC -39) was

used. However, the both original lcc primer pairs were also used

and provided the same relative results, but with a slightly lower

sensitivity.

Quantitative PCR (qPCR) was performed using a Mx3000P

(Stratagene) real-time PCR system and Brilliant SYBR Green

qPCR Master Mix (Stratagene). QPCR-cycling parameters were a

10 min denaturation at 95 uC followed by 40 cycles of 30 s at 94

uC, 1 min at 50 uC, and 2 min at 72 uC with fluorescence

measurement during the extension step. A melting curve was

obtained by heating to 95 uC for 1 min, cooling to 55 uC for 30 s,

and then ramping up the temperature to 95 uC at 0.5 uC min21.

Fluorescence data were collected continuously during the ramp.

Each cDNA was serial-diluted 10, 20, 40, 80 and 160-fold, and

triplicate measurements of all genes made at each dilution in order

to confirm that relative threshold amplification values (DCT) were

independent of starting cDNA template concentration [47].

To test the hypothesis that simulated N deposition suppresses

ligno-cellulolytic gene expression, we calculated 22DDC
T for cbhI

and lcc in each cDNA with b-tubulin as the housekeeping gene

[47]. Because both the rRNA gene library and the functional gene

melting curves showed that the cDNA represented complex gene

mixtures, the use of single species – single gene calibrators was

inappropriate; we therefore calculated the mean CT value for each

gene within the ambient N deposition plots at each site, and then

used these as the standard from which to calculate 22DDC
T for

each sample at that site. Samples were ranked by their relative

expression levels, and the significance of the difference between

ambient N and simulated N deposition was determined using the

non-parametric Wilcoxon-Mann U test.

Extracellular Enzyme Assays
Potential cellobiohydrolase and phenol-oxidase enzyme activi-

ties were determined at Site D in 2007, and at all four sites in

2009. Extracellular enzymes were extracted from 1 g of litter

suspended in 125 mL 50 mM acetate buffer (pH 5) using a Bio

Homogenizer M133 (Biospec, Bartlesville, USA). The suspension

was continuously stirred and 50 mL aliquots were dispensed in 96-

well microplates, with 8–16 analytical replicates per sample.

Laccase activity was measured spectrophotometrically via 3 min

interval-kinetic in a EL800 platereader (Bio-Tek Instruments,

Winooski, USA) using 3 mM ABTS (e470 = 27.5 mM21 cm21) as

the substrate (Sigma, St. Louis, USA). Cellobiohydrolase activity

was determined using a fluorometric assay, in which methylum-

belliferone-linked cellobiose was used as the substrate [48].

Enzyme activity was expressed on a dry weight basis.

Ribosomal rRNA Gene Library
In 2007, fungal 28S rRNA gene fragments (LSU, large subunit)

were amplified from cDNA obtained from Site D using the

primers LR0R and LR3. Primer sequences were obtained from

http://www.biology.duke.edu/fungi/mycolab/primers.htm. PCR

cocktails included 50 ng cDNA, 200 nM dNTPs, 1X 1.5 mM

MgCl2 PCR buffer (Roche), 0.5 mM of each primer, and 50 mg of

BSA. After an initial denaturation step of 3 min at 94uC, 20 cycles

of 94uC for 30 s, 55uC for 45 s and 72uC for 90 s and a final

extension step of 72uC for 15 min were carried out using

Stratagene PCR cyclers (La Jolla, CA). PCR products were gel-

purified using the QIAquick Gel Extraction Kit (Qiagen), and

cloned into the pCR 2.1-TOPO vector using the TOPO TA

Cloning kit (Invitrogen, Carlsbad, USA) according manufacturer

protocol. Altogether, 48 clones from each of the 6 cDNA were

randomly picked, cultured overnight in liquid Luria broth and bi-

directionally sequenced at the Laboratory for Genomics and

Bioinformatics at the University of Georgia using standard M13

primers. Contigs were constructed using Geneious 5.3 (BioMatters

Ltd, Auckland, NZ).

Definition of Operational Taxonomic Units and
Phylogenetic Analysis

The rDNA 28S sequences were aligned using the FFT-NSi

x1000 algorithm in MAFFT [49], and a bootstrapped neighbour-
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joining tree constructed using the Kimura 2-parameter model and

pair-wise deletion of gaps in MEGA 4.0 [50]. Each phylogenet-

ically unique sequence was considered as an operational

taxonomic unit (OTU); moreover, clusters of sequences forming

well-supported terminal groups (bootstrap .95) were considered

members of an OTU, and subsequent alignments of these

members revealed mean pairwise sequence similarities of 97.2 to

99.9%. A sequence representative of each OTU was BLAST

searched against the NCBI nrDNA database, and the top five

matches downloaded. Generally, we avoided unidentified envi-

ronmental sequences, even if they were the top match, because of

their limited utility in taxon identification. For phylogenetic

analysis, Ascomycete and Basidiomycete sequences were consid-

ered separately. OTU and reference sequences were aligned using

MAFFT, and the alignment edited to remove ambiguously aligned

regions including the D1 and D2 variable domains. Maximum

Parsimony was conducted in MEGA 4.0 using the Close-

Neighbour-Interchange algorithm and a randomly generated

starting tree; bootstrapping used 100 replications. OTU sequences

were deposited at GenBank under accession numbers FJ040343 –

FJ403395.

Fungal Community Analysis
The relationship between simulated N deposition and the

relative abundances of fungal OTU was assessed for the

community active at site D in 2007 using a Canonical

Correspondence Analysis (CCA; [51]). The relative abundance

of each OTU within each of the six plots at Site D was estimated

as a percentage of the total number of sequences in the ribosomal

rRNA library. Nitrogen availability in the forest floor of each plot

was estimated as the annual sum of simulated and ambient N

deposition (g ha21 2007). For CCA, we restricted the analysis to

the 12 OTU that were recovered from at least two of the six plots

at Site D, and tested the strength of the correlation between

nitrogen availability and fungal community similarity through

Monte Carlo simulation with 500 replications in Canoco Vs. 4.54

(Biometris, Wageningen, NL). Because variation in soil moisture

content can influence the distribution of fungal species [16], the

mean gravimetric water content (% mass after 48 hrs at 105uC) of

the forest floor in each of the six plots was included as a covariable

in the analysis.
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