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Abstract: The synthesis, thermal, and mechanical properties of epoxy resin composites incorporating
waste fibers of hemp were studied. Five different systems with increasing quantity of the eco-filler
were obtained. For the synthesis of polymeric materials, the commercial epoxy resins Epidian® 5
and triethylenetetramine (TETA) were applied as crosslinking agents. The composites were obtained
based on the polyaddition reaction of an amine group with an epoxide ring. ATR/FT-IR (Attenuated
Total Reflection-Fourier Transform Infrared) analysis was used to confirm the chemical structure
of the composites and the course of curing processes. Moreover, the influence of the eco-friendly
components on the mechanical properties was determined, while thermal properties of the materials
were investigated by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC).
Dynamic mechanical studies (DMA) and Shore hardness tests of the obtained polymers were also
carried out. The DSC curves and DMA analysis revealed that all materials were characterized
by a similar glass transition range. Furthermore, the DMA and hardness measurements of the
composites demonstrated an increasing elasticity with the increase in the amount of eco-filler present
in the compositions.

Keywords: fibers of hemp; epoxy resin; epoxy resin composites; thermal and mechanical properties

1. Introduction

Nowadays, people possess greater awareness and approval of biodegradable, envi-
ronmentally friendly materials, and recyclable products. Moreover, concerns about the
environment protection and exploitation of nonrenewable resources during goods manu-
facturing are legislatively relevant issues in many countries. Therefore, natural materials
should be used in manufacturing the products of everyday use whenever possible [1,2].

The aforementioned natural material products are mainly natural fiber-reinforced
composites (NFRCs). Natural fibers in these materials provide several benefits as they are
abundant, recyclable, and non-toxic with regard to soil ecology, people, and animals [3–6].
Natural fibers used as reinforcements are low cost compared with carbon fibers or glass
fibers. Owing to this fact, natural fibers-reinforced composites can be affordably priced;
thus, they are genuinely competitive components in many industrial branch processes [6–8].
Natural fibers can be classified based on their origin as mineral fibers, animal fibers, or
plant fibers. Plant fibers are built from cellulose, hemicelluloses, and lignin. Natural fibers
are used like light-weight fillers that significantly reduce the weight of materials (their
densities are from 1.1 to 1.6 g/cm3) [9–11].

In designing the natural fibers of reinforced composites, common agricultural residues
and biomass are exploited [12–15]. For reinforcement of the polymeric matrices (elastomers,
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thermoplastic, or thermosetting) rice husk, bamboo, wood, flax, hemp, cotton, pineapple
leaves, and many others are utilized [16–20]. The thermo-mechanical parameters of the ob-
tained composite are influenced by many factors, among others, fiber orientation and fiber
length, chemical composition of the originating plant, fiber weight % or volume fraction,
and fiber architecture. These parameters affect tensile and flexural strength, glass transition
temperature, and thermal resistance [21–23]. Lionetto et al. described the morphology
of injection molded short basalt fibers reinforced polypropylene in view the fiber length
distribution and orientation. The results obtained from micro-CT analysis indicating that
most of the fibers are aligned in the injection direction [24].

Stănescu and Bolcu [25] carried out the synthesis of composite materials with natural
reinforcements (fabrics of flax, cotton, hemp, cattail leaves, and wheat straw) while the
matrix were hybrid mixtures of epoxy resin and resin dammar (in different proportions).
They compared their mechanical and the damping properties. The analysis showed a
decrease in the values of the tensile strength and the modulus of elasticity as the dammar
volume proportion was increased in the composite. Moreover, scientists noticed an increase
in the damping capacity, with a higher dammar quantity in the sample composition. There
are many reports in the literature about the use of fibers derived from grass. Vijaykumar
et al., for example, attempted to use the Eulaliopsis binata grass as reinforcement for the
polypropylene composites [26]. Atmakuri et al. characterized the mechanical and wettabil-
ity properties of the reinforced natural fiber epoxy resin composites. Researchers fabricated
hybrid composites based on the epoxy resin and fibers: Hemp, flax, banana, or pineap-
ple. For comparison, the single-fiber composites and double-fiber composites of varying
proportions of the fiber were synthesized. It was found that hybrid composites showed
improved mechanical properties when compared to the pristine composites. As follows
from the moisture analysis, all materials absorbed water and nature of their surface was
hydrophilic. Based on the overall measurement results, the researchers proved that the
hybrid composites were characterized by the improved properties compared to those of
the pristine composites and that hemp and flax fibers could be a potential replacement for
reinforcements in the composites [27].

The synthetic composites reinforced by natural fibers exhibit satisfactory durability
compared to the glass or aluminum fibers, making them widely applicable e.g., in the
automotive or aerospace industries or construction [28–31]. In some cases, the lower
strength parameters are compensated by lower costs, weight, better damping, and greater
environmental friendliness.

Building construction is an important domain where natural fiber reinforced com-
posites can be applied. These light-weight materials are suitable for construction of floor
panels, tailgates trim, and dashboards [32–35]. The studies on incorporation of natural
reinforcements in polymers, glass, and concrete to extend their functional properties and
their application were also carried out. As a result, commercial construction materials
(concrete, steel, wood) as well as daily products can be substituted by new composite
materials [36–40].

In this article, synthesis and characterization of the crosslinked composites based on
Epidian® 5 and TETA with lower environmental impact by using waste fibers of hemp as
the eco-filler are presented. The main objective of the study was to influence a biowaste
from the hard part of stems (after oil production), on the physico-chemical properties
of the obtained materials. The biowaste was mechanically fragmented before the use.
The detailed thermal (TG, DSC), and thermo-mechanical (DMA) analyses, as well as the
measurements of tensile and flexural strength, were made, showing how the addition of
fibers effects on the resistance of the composites. Epoxy resins have many advantages e.g.,
they crosslink readily at room temperature and have excellent affinity for other materials.
However, due to a high degree of crosslinking, they are poorly degradable materials in the
environment. The use of the bio-based filler can significantly accelerate this process and
make them more bio-friendly.
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2. Materials and Methods
2.1. Materials

Epoxy resin: Epidian® 5 (at 25 ◦C density: 1.17 g/cm3; viscosity: 20,000–30,000 mPas;
epoxy number: 0.48–0.51 mol/100 g) was purchased from Ciech Sarzyna S.A. (Nowa
Sarzyna, Poland) and was used as a monomer while triethylenetetramine (TETA) from
Sigma-Aldrich (Steinheim am Albuch, Germany) acted as a crosslinking agent. Natural
waste hemp fibers derived from production processes were used as an eco-filler.

Hemp fibers (Cannabis sativa) came from the crops intended for oil production. The
waste, in the form of a stem after drying, was subjected to mechanical fragmentation,
the outcome of which were 8–20 mm long fibers, which were treated as a resin eco-filler.
Fragmentation of the fibers is of practical importance during preparation of a composition
in mold, and it the better mixing of the resin with the fibers and a more even distribution
of the fibers in the resulting composite.

2.2. Methods

The fragments of the solid composites were studied using a Morphologi G3 optical
microscope (Malvern, Great Britain).

Attenuated total reflection-Fourier transform infrared (ATR/FT-IR) spectra were
recorded on a Bruker FT-IR spectrophotometer TENSOR 27 (Bruker GmbH, Mannheim,
Germany), using powdered samples. Spectra were recorded from 4000 to 600 cm−1 with a
resolution of 4 cm−1 and 32 scans.

Thermal stability (TGA/DTG) was performed with a Netzsch STA 449 F1 Jupiter
thermal analyzer (Netzsch, Selb, Germany) under the following operational conditions: the
heating rate of 10 ◦C/min, dynamic atmosphere of helium (flow 20 cm3/min), temperature
range of 25–600 ◦C, sample mass ~15 mg, and sensor thermocouple type S TG-DSC. All
TGA/DTG measurements were taken in Al2O3 crucibles. As a reference, an empty Al2O3
crucible was used.

Differential scanning calorimetry (DSC) curves were obtained on a DSC Netzsch
204 calorimeter (Netzsch, Günzbung, Germany). The samples (~15 mg) were placed in the
aluminum pans with pierced lids. An empty crucible was used as a reference. Dynamic
scans were obtained at a heating rate of 10 ◦C/min in the temperature range from 25 ◦C to
550 ◦C, within a nitrogen atmosphere (flow rate: 20 cm3/min).

Dynamic mechanical analysis (DMA) was performed using DMA Q800 Analyzer TA
Instruments (New Castle, DE, USA). Thermo-mechanical properties of the cured materials
were determined from the storage modulus, loss modulus, and damping factor (tan δmax)
versus temperature. Measurements for all samples were made in the scanning tempera-
tures ranging from 0 to 190 ◦C, under natural air conditions, at a constant heating rate of
4 ◦C/min. The experiments were conducted using rectangular samples of the dimensions
close to 3 ± 0.1 mm thick, 5 ± 0.2 mm wide, and 35 ± 0.1 mm long. Mechanical properties
were determined by means of a Zwick/Roell testing machine (model Z010, Zwick GmbH
& Co. KG, Ulm, Germany). The specimen dimensions were 80 × 10 × 3 (±0.2) mm. The
measurements were made at room temperature with a crosshead speed of 50 mm/min. All
data were subjected to the analysis of variance using the Origin 8.1 (OriginLab, Northamp-
ton, MA, USA) applications. The one-way analysis of variance (one-way ANOVA) was
used to detect significant differences among the tested mechanical parameters (Young’s
module, stress at break, and relative elongation at break) depending on the fibers content.

Hardness of samples was compared by means of the Shore Hardness Tester Affriee
in D scale, (model ART.13/serial Y5493, Omag, Italy). Five measurements were made for
each sample and the average hardness was calculated for all samples.

2.3. Curing Procedure

Five epoxy based crosslinked materials containing: 0, 5, 10, 20, and 30 wt.% of the
eco-filler were obtained based on the polyaddition reaction of an amine group with an
epoxide ring (see Figure 1).
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Figure 1. General scheme of the reaction of epoxy resin with amine.

The ratio of the epoxy resin to the amine in each case was 10:1, (wt.%). The amount
of amine for the epoxy number was determined previously in Ref. [38]. The experimental
parameters of the syntheses are summarized in Table 1.

Table 1. Experimental parameters of the syntheses.

Fibers Content (wt.%) Epidian® 5 (g) TETA (g) Hemp Fibers (g)

0 8.4 0.84 0.000
5 8.6 0.86 0.473
10 8.5 0.85 0.935
20 8.6 0.86 1.892
30 8.7 0.87 2.871

Epidian® 5 was weighed in suitable polyethylene containers. A specific amount of
crosslinking agent was then added to each container and the content was thoroughly mixed.
Next, the calculated amounts of eco-filler were added in small portions and the whole was
thoroughly mixed. Finally, the contents were poured into similar rectangular glass molds
to obtain identical samples. The fibers were added in the form of 8–20 mm fragments.
The crosslinking process was conducted at room temperature for 10 h. The simplified
structures of polymeric composites are visualized in Figure 2. The hemp fibers are made
mainly of cellulose but also of lignin and hemicellulose. There are numerous hydroxyl
groups in the cellulose that can affect the -OH groups present in the polymer chain, as
proposed in Figure 2. These impacts can enhance the interactions of the fibers with the
chains, contributing to their better adhesion to the resin.
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3. Results
3.1. Optical Microscope Characterization

The photos of the obtained composites are presented in Figure 3. As one can see when
the number of fibers increases, the composites become less transparent, but the fibers are
clearly visible (even 30 wt.%) and embedded inside the material. The arrangement of
fibers in the composite is random. The sample of pristine resin is transparent with a slight
light-yellow shade.
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with 30 wt.% of eco-filler. Magnification 5×.

3.2. ATR/FT-IR Analysis

Characterization of chemical structure by the spectroscopic analysis ATR/FT-IR (Atten-
uated Total Reflection-Fourier Transform Infrared spectroscopy) was made for all obtained
materials. Figure 4 shows the spectra of the samples and Table 2 presents the wavelength
values with the attributed intramolecular vibrations.
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Figure 4. ATR/FT-IR spectra of the obtained materials: (a) Non-crosslinked epoxy resin; (b) sample
without eco-filler; (c) sample with 30 wt.% of eco-filler; (d) sample with 20 wt.% of eco-filler; (e)
sample with 10 wt.% of eco-filler and (f) sample with 5 wt.% of eco-filler.

Table 2. Sample wavelength values with the attributed intramolecular vibrations.

Fibers Content (wt.%)

0 5 10 20 30

Symbol of Vibration Wave Number (cm−1)

ν–OH 3315 3340 3342 3320 3334

ν-CH3, -CH3- 2963 2961 2948 2923 2925
2922 2871 2875 2868 2869

ν-C=O 1727 1721 1724 1728 1723

ν-Ar
1605 1604 1605 1608 1604
1506 1506 1505 1507 1506

δ-CH3, -CH3- 1455 1457 1458 1427 1452

ν-C=O aromat. 1297 1294 1295 1284 1298

ν-CCO 1239 1238 1237 1239 1239

ν-C=O alk.
1033 1030 1037 1031 1034
1032 1033 1027 1038 1031

γ-Ar, Ar-H 828 827 823 829 828

γ-N=H 663 730 671 648 663
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Epoxy resin and TETA are the fundamental components of the analyzed samples. Thus,
characteristic bands of these reactants are pointed out on the spectra. In the 3342–3315 cm−1

range, wide bands derived from the stretching vibrations of the residual -OH groups or
the adsorbed water are found. In the case of composites, it can be observed that the signal
for the vibrations of -OH groups in the range 3415–3328 cm−1 is visible. This is due to the
presence of numerous hydroxyl groups in the structure of cellulose (the main component
of natural fibers). Additionally, after curing of the epoxy resin chains, -OH groups also
exist (formed after opening the epoxy ring). Moreover, this signal can be more intensive
due to the presence of amine (TETA) and strong tendency towards water absorption of
these molecules.

Characteristic bands of methyl and methylene groups are visible as two signals:
The first peak from 2962 to 2925 cm−1 and the second in the range of 2922–2868 cm−1.
These peaks correspond to the symmetrical and asymmetric stretching vibrations of both
types of groups. There is a doublet of bands: 1605 and 1506 cm−1 corresponding to the
symmetrical and asymmetric stretching vibrations of aromatic rings. Additionally, in the
range 828–823 cm−1, the signal of deformation vibrations of Ar and Ar-H is notable. Its
location indicates that carbon atoms number 1 and 4 are substituted in these rings. In the
range from 1298 to 1284 cm−1, a band derived from the stretching vibrations of oxygen
atoms connected with aromatic carbon atoms can be seen on the spectra. The bands at
1038–1026 cm−1 are associated with the stretching vibrations of hydroxyl groups in the
neighborhood of primary carbon atoms, whereas the signals between 1112 and 1094 cm−1

come from the analogous stretching vibrations of hydroxyl groups connected with the
secondary carbon atoms. Deformation vibrations of the mentioned two groups are visible
in the range from 1458 to 1427 cm−1. The presence of the TETA-derived amine groups is
confirmed by the valence band of stretching vibrations in the N-H bonds. This signal is
observed from 730 to 648 cm−1.

In the spectrum for non-crosslinked Epidian® 5 (marked in Figure 4), a clear signal
changing in intensity can be seen. This occurs around 914 cm−1 and can be assigned to the
C-O deformation band in the epoxy group. After the crosslinking reaction, the lack of this
signal is observed. Different courses of spectrum for the epoxy resin and the spectra for the
crosslinked materials confirm the effectiveness of the crosslinking process [41].

3.3. Thermogravimetry Analysis

Thermal stabilities and degradation behavior of the polymeric composites were stud-
ied by means of thermogravimetry. The curves obtained from the TGA and DTG (differ-
ential) measurements (in helium) for all samples are presented in Figure 5. The mass loss
factors—Initial Temperature of Decomposition (ITD)—corresponding to the temperature
of 2% of mass loss, T50% (temperature at 50% weight loss), maximum decomposition tem-
peratures (T1 and Tmax) with the mass losses and the residual masses (RM) for each sample
are listed in Table 3.

Table 3. TGA and DTG data of the samples.

TGA/DTG
Fibers Content (wt.%)

0 5 10 20 30 Only Hemp

T1 (◦C) 58.1 52.4 57.5 52.0 50.3 52.6
T1 mass loss (%) 0.35 0.32 0.30 0.31 0.55 1.58

ITD (◦C) 230.1 247.7 234.2 235.6 213.1 55.2
Tmax (◦C) 337.9 316.4 324.1 323.5 327.4 322.7

Tmax mass loss (%) 59.3 18.2 25.9 24.6 29.2 51.2
T50% (◦C) 324.9 419.9 407.5 387.8 368.6 323.5
RM (%) 7.9 13.3 13.7 14.7 18.9 4.8
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The thermal decomposition of hemp sample (bio-filler in the composites) proceeded
in three stages. Three separate signals related to the degradation stages can be seen on the
DTG curve. The first peak (T1) at 52.6 ◦C with the 1.58% mass loss was assigned to the
volatilization of small amounts of unreacted monomers and water. The second peak at
Tmax 322.7 ◦C was related to the main degradation of the sample. The third decomposition
stage can be also found on the DTG curve. This peak was observed at about 455 ◦C and
was probably related to the degradation of lignin present in the hemp fibers. In the case of
the sample without the eco-filler, the initial decomposition temperature is about 230 ◦C.
The DTG curve for this sample contains one separate degradation step with the maximum
of the mass loss (Tmax) at 337.9 ◦C and is related to the total degradation of the resin. The
unreinforced sample had generally lower T50% and ITD values compared to the modified
composites. For the analyzed composites, the TGA and DTG curves had almost the same
course up to a temperature of ca. 230 ◦C, all the composites were thermally stable (the
range of ITD was from 213.1 to 247.7 ◦C). Further heating of the analyzed materials above
Tmax led to their complete thermal degradation. The highest thermal residue mass (RM)
assessed at the final temperature was for the composite with 30 wt.% eco-filler (18.9%).

In Figure 6, the proposed mechanism of polymer network fragmentation is presented.
The suggested mechanism is based on our earlier research and literature data [42,43]. In the
case of natural fillers, their decomposition leads to environmentally safe, small aliphatic
hydrocarbons, alcohols, and then H2O and CO2. While crosslinking the epoxy resins,
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the main products of thermal decomposition, (apart from carbon dioxide and water) are
phenol, phenol derivatives, benzene, toluene, amino derivatives, and nitrogen oxides.
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3.4. DSC Analysis

The thermal behavior of the obtained composites was also studied by means of DSC
analysis. The DSC curves of these materials are presented in Figure 7.
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Figure 7. DSC curves of the obtained samples.

On the curve for the sample without eco-filler, one endothermic effect with the max-
imum at 332.4 ◦C could be seen. This endothermic effect was connected with the total
thermal degradation of the sample. No exothermic effect (about 200 ◦C) associated with
crosslinking was visible. The DSC curves of the composites with hemp fibers had a similar
course. The maxima of the endothermic effect peaks occur in the temperature range from
318.4 to 339.1 ◦C. The addition of an eco-filler increases the decomposition temperature
by about 7 ◦C in the case of 30 wt.% of eco-filler. The addition of natural filler affects
positively the thermal resistance of the obtained materials. Additionally, pristine hemp
fibers were also studied. On the curves, one can see two endothermic effects (325.7 and
457.4 ◦C) due to the thermal degradation. The resulting curve course (two maxima) is most
likely associated with a large amount of aromatic lignin in the hardened parts of the hemp
stem [42].

3.5. DMA Analysis

The results from the dynamic, mechanical, and thermal analyses of the obtained
samples are presented in Figures 8 and 9, as well as in Table 4.
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Table 4. Data of dynamic mechanical studies (DMA) measurements.

DMA
Fibers Content (wt.%)

0 5 10 20 30

Tg (◦C) 84.1 81.4 81.6 82.3 82.5
damping factor/tan δmax 1.17 0.98 0.94 0.67 0.70

Tmax Loss modulus (◦C) 74.4 72.2 73.5 74.3 74.7
FWHD (◦C) 25.7 22.1 25.5 21.1 22.9

The storage moduli (E’) in the function of temperature for the obtained five materials
are depicted in Figure 8. Upon analyzing these values, major changes in the storage
modulus are observed when the materials pass through the glassy to the rubber–elastic
state. After the glass transition, the storage modulus no longer decreases, and plateaus are
observed on all curves. In Figure 8, it is noticeable that the materials containing 5, 10, and
20 wt.% of eco-filler lose their storage moduli with the increase of temperature at higher
rates than those of the composites with 30 wt.% of eco-filler. This indicates that for these
three samples, the stiffness decreases more rapidly. Figure 9 also reveals the tan δ curves
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for four composites with different contents of eco-filler and for one cured epoxy resin.
On examining the courses of the tan δ curves, it can be seen that the obtained samples
exhibit symmetrical tan δ plots with only one maximum. In this paper, the position of
the tan δ maximum was taken as the glass transition temperature Tg (associated with the
process of segmental relaxation) [44]. In analyzing the tan delta values, it can be observed
that the glass transition region spreads over a similar temperature range regardless of the
composite type.

The values of the damping factor (tan δmax) were in the range of 0.67–1.17 for the
composites containing the epoxy resin as the matrix cured by TETA. The DMA plots show
the highest value of tan δ for the sample without eco-filler. Measurements showed that the
addition of filler reduces the damping capacity of energy during deformation [45]. The
values of this parameter decrease with the increase in the percentage amount of eco-filler
in the prepared compositions. As a result, the composite containing 5 wt.% of hemp had a
similar damping factor value as the sample with 10% wt.% hemp. The same situation was
found for the materials with the 20 wt.% and 30 wt.% eco-filler.

Duc et al. [46] demonstrated that mechanical properties of polymer composites (stor-
age modulus, loss factor) depend on many factors: Fibers type, polymer matrix type, and
temperature of measurements. The researchers analyzed the mechanical properties of ther-
moset (epoxy) and thermoplastic (polypropylene PP and polylactic acid PLA) composites
containing different fibers: Glass, carbon f, and flax fibers. Duc et al. observed that the
addition of flax fibers to PP resulted in a decrease in the loss factor, indicating the damping
properties of the matrix to be superior to those of the fibers. However, the damping in-
creased when flax fibers was used instead of synthetic fibers in the epoxy composites. It can
be inferred that the loss factor depends on the matrix and also on the fibers type. A similar
trend was reported by Cicala et al. [47]. The scientists conducted DMA analysis of the
epoxy composites with glass fibers, flax fibers, and hybrid reinforcement. As expected, the
loss factor showed a different trend depending on the measurement temperature. Below
the glass transition temperature, the sample reinforced by the flax fibers displayed a higher
loss factor compared to that of the carbon fibers, while at the glass transition temperature,
the opposite dependence was found. The composites with hybrid reinforcement displayed
an intermediate behavior. This is an argument confirming the impact of temperature and
type of fibers on the damping ability of polymer composites.

The width of the peak tan δ in the middle of its height (FWHM, Full Width at Half
Maximum) is a measure of the structure heterogeneity. The largest FWHM value was
determined for the composite with 20 wt.% of eco-filler while the smallest value was
characteristic of the sample without eco-filler. These transition regions could be a result of
all samples showing a similar degree of structural heterogeneity. In Figure 10, the photos
of the cut samples after the DMA analysis are presented. As one can see, only the sample
without the hemp was cracked. In contrast, the samples with the addition of fibers retain
their shape despite exposure to low-pressure forces during the analysis.
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3.6. Tensile Test

The tensile test consisted of the slow stretching of a sample (3 mm × 10 mm × 80 mm)
with the addition of hemp fibers at a given constant speed in a uniaxial stretching system,
using a Zwick/Roel Z010 universal testing machine. The test speed was 50 mm/min,
and the tensile module speed was 5 mm/min. The Young’s modulus, yield stress, and
elongation at break were determined. The crack resistance was designated during the
three-point bending determining the modulus of flexural strength, the conventional yield
strength, and bending deformation. The bending strength represents the largest stress
generated in the material at the time of fracture. The tests were carried out on a Zwick
Z010 testing machine with the bending test holders, the support spacing was 60 mm. The
test speed and flexural module speed were 50 mm/min and 5 mm/min, respectively.

The results of tensile and flexural strength are presented in Table 5. Additionally, the
exemplary samples during the tensile and flexural measurements are shown in Figure 11.
As expected, the results of tests showed that the addition of hemp fibers to all materials
causes a decrease in the value of the elastic modulus (Young’s modulus), which is the
effect of a decrease in the tensile stress from 2790 to 1500 MPa. For the composites with the
addition of 30% fibers, a significant decrease in the tensile strength is visible. This amount
of eco-filler is too large; hence, the positioning of the fibers is incidental. Furthermore, this
material may show too low resistance to external forces.
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Table 5. Tensile and flexural strength data of the samples.

Fibers Content (wt.%)

0 5 10 20 30

Tensile Tests

Stress at break (MPa)
min 37.3 15 9.8 9.7 3.7
avg 40.2 16.2 11.5 10.1 4.2
max 41 17.5 12.3 11.9 4.7

Relative elongat. at break (%)
min 4.18 0.56 0.59 0.38 0.26
avg 4.2 0.58 0.6 0.41 0.28
max 4.23 0.6 0.61 0.43 0.3

Young’s modulus (MPa)
min 1465 2786 2417 2243 1498
avg 1470 2790 2420 2250 1500
max 1492 2802 2433 2257 1523

Flexural Tests

Stress at break (MPa)
min 99.5 42.2 39 38.9 24.8
avg 102.1 43.3 39.5 40.3 25.2
max 104.7 44 40.1 41 25.9

Relative elongat. at break (%)
min 2.2 1.07 0.97 0.94 0.87
avg 2.4 1.2 1.1 1.1 0.9
max 2.5 1.31 1.2 1.15 1.03

Young’s modulus (MPa)
min 4100 3343 3100 3243 2716
avg 4110 3330 3120 3230 2720
max 4123 3332 3129 3239 2730

The analysis of variance showed that only the Young modulus changes obtained at
different percentage of fiber content were statistically significant, which was confirmed us-
ing the one-way analysis of variance (ANOVA) for the significance level p < 0.05. However,
the changes in stress and elongation at break turned out to be statistically insignificant.

The mechanical strength was also dependent on the fiber distribution in the composite.
Nevertheless, these changes are more evident during the tensile test. A large number
of fibers (30%) reduces significantly the flexural strength from 102 (0 wt.%) to 25 MPa.
However, due to the fact that the fibers were of considerable length (8–20 mm), while the
samples cracked when subjected to the bending force, this did not break the continuity of
both halves, which one can see in Figure 11 (view of the samples during the flexural tests).

The addition of natural fibers (of various lengths), unlike glass, carbon, or basalt fibers,
can have a smaller mechanical strength of the obtained composites [48,49] particularly in
the case of highly crosslinked materials. However, as shown in Figure 11, the use of fibers
indicates that these materials subjected to an external force maintain residual connections
between the elements when cracking. This may be of practical use e.g., as elements of
car bumpers.

As described by Sathishkumar et al. [50] in the case of natural fibers, their influence
on the mechanical properties of composites also depends on the chemical structure of the
plant being used. Cellulose fibrils act as reinforcement in the plants and their amount
determines the mechanical performance of the fibers used as a filler. In the case of major
participation of lignin, present in the woody parts of the stem, the reductions of the
mechanical properties are prominent, due to the interfacial effect between the fibers and
the matrices. A similar behavior was observed in our previous studies using kraft lignin as
an eco-filler in crosslinked composite materials [51].

3.7. Hardness Measurements

Measurements of hardness consisted in vertical immersion of the indenter into the
composite surface. The numerical values of these parameters are expressed in the D scale
in Figure 12 and Table 6.



Polymers 2021, 13, 503 14 of 17

Polymers 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

use of fibers indicates that these materials subjected to an external force maintain residual 

connections between the elements when cracking. This may be of practical use e.g., as 

elements of car bumpers.  

As described by Sathishkumar et al. [50] in the case of natural fibers, their influence 

on the mechanical properties of composites also depends on the chemical structure of the 

plant being used. Cellulose fibrils act as reinforcement in the plants and their amount 

determines the mechanical performance of the fibers used as a filler. In the case of major 

participation of lignin, present in the woody parts of the stem, the reductions of the 

mechanical properties are prominent, due to the interfacial effect between the fibers and 

the matrices. A similar behavior was observed in our previous studies using kraft lignin 

as an eco-filler in crosslinked composite materials [51]. 

3.7. Hardness Measurements  

Measurements of hardness consisted in vertical immersion of the indenter into the 

composite surface. The numerical values of these parameters are expressed in the D scale 

in Figure 12 and Table 6. 

Hardness of the composites before the DMA analysis was in the range of 73–84 units. 

The largest hardness was for the sample without eco-filler, while the lowest value was 

assigned to the sample with 30 wt.% of eco-filler. These results show the increasing 

ductility of the polymeric composites based on the epoxy resin content and the use of 

waste hemp fibers as the natural eco-filler. After the DMA analysis the following 

relationship was observed: The hardness of the composites with 5, 10, and 20 wt.% was 

almost without change whereas that for the materials with 30 wt.% of hemp was 

improved. This may be due to the fact that such a large amount of the eco-filler is a spatial 

problem and hinders the crosslinking process. The range of this parameter for the 

materials after DMA was 78–81 units in the D scale. 

0% 5% 10% 20% 30%
0

10

70

80

84

79

82
81

80
79

78 78

73

79

A
v

e
ra

g
e

 v
a

lu
e

 o
f 

h
a

rd
n

e
s

s
 v

a
lu

e
 (

D
)

The percentage of reinforcement in the sample

  Before DMA analysis   After DMA analysis  

 

Figure 12. Hardness diagram of the obtained composites. 

  

Figure 12. Hardness diagram of the obtained composites.

Table 6. Values of hardness test of the synthesized samples.

Fibers Content (wt.%)
Hardness (◦Sh) (D Scale)

Samples before DMA Samples after DMA

0 84 79
5 82 81
10 80 79
20 78 78
30 73 79

Hardness of the composites before the DMA analysis was in the range of 73–84 units.
The largest hardness was for the sample without eco-filler, while the lowest value was
assigned to the sample with 30 wt.% of eco-filler. These results show the increasing ductility
of the polymeric composites based on the epoxy resin content and the use of waste hemp
fibers as the natural eco-filler. After the DMA analysis the following relationship was
observed: The hardness of the composites with 5, 10, and 20 wt.% was almost without
change whereas that for the materials with 30 wt.% of hemp was improved. This may be
due to the fact that such a large amount of the eco-filler is a spatial problem and hinders
the crosslinking process. The range of this parameter for the materials after DMA was
78–81 units in the D scale.

4. Conclusions

The objective of this article was the application of waste fibers of hemp as the eco-filler
for the synthesis of more eco-friendly and thermal resistant polymeric composites based
on the epoxy resin. The composites with different amounts of hemp fibers: 0, 5, 10, 20,
and 30 wt.% were obtained, built upon the polyaddition reaction of an amine group with
an epoxide ring. The TGA analysis demonstrated that for the analyzed composites, the
TGA and DTG curves had almost the same trend. Up to a temperature of ca. 230 ◦C,
all the composites were thermally stable (the range of ITD was from 213.1, to 247.7 ◦C).
The largest thermal residue mass (RM) assessed at the final temperature was for the
composite with 30 wt.% eco-filler. The addition of an ecological filler in the form of fibers
positively influences the thermal resistance of composites. The DSC curves for the obtained
samples show a similar trajectory and one endothermic signal corresponds to the thermal
degradation of the samples. Upon analyzing the tan delta values from the DMA analysis,



Polymers 2021, 13, 503 15 of 17

it can be observed that the glass transition region spreads over a similar temperature range
regardless of the composite type. Moreover, the results from the DMA analysis and the
values of hardness of the obtained materials show that the increasing amount of hemp
reduces their hardness. With an increase of the eco-filler content, the material has a greater
ability to vibration damping. As confirmed by the mechanical tests, hemp fibers can be used
as eco-fillers in the polymer composites, but their quantity and form should be selected
for their future application needs. As indicated by the research, it was also found that
further measurements of both quantity and length of fibers should be made. Moreover, it
could be beneficial to check not only curable plastics, but also thermoplastics as polymer
matrices for fillers in the form of hemp fibers. These materials could be used for filling
cavities or gaps in the polymer coatings and in the artificial, wood, or concrete surfaces.
The addition of natural waste hemp fibers into the polymer materials can promote the
sustainability of the plastic industry and increase the amount of environmentally friendly
polymeric materials.
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