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Abstract
Background: Studies of association methods using DNA pooling of single nucleotide
polymorphisms (SNPs) have focused primarily on the effects of "machine-error", number of
replicates, and the size of the pool. We use the non-centrality parameter (NCP) for the analysis of
variance test to compute the approximate power for genetic association tests with DNA pooling
data on cases and controls. We incorporate genetic model parameters into the computation of the
NCP. Parameters involved in the power calculation are disease allele frequency, frequency of the
marker SNP allele in coupling with the disease locus, disease prevalence, genotype relative risk,
sample size, genetic model, number of pools, number of replicates of each pool, and the proportion
of variance of the pooled frequency estimate due to machine variability. We compute power for
different settings of number of replicates and total number of genotypings when the genetic model
parameters are fixed. Several significance levels are considered, including stringent significance
levels (due to the increasing popularity of 100 K and 500 K SNP "chip" data). We use a factorial
design with two to four settings of each parameter and multiple regression analysis to assess which
parameters most significantly affect power.

Results: The power can increase substantially as the genotyping number increases. For a fixed
number of genotypings, the power is a function of the number of replicates of each pool such that
there is a setting with maximum power. The four most significant parameters affecting power for
association are: (1) genotype relative risk, (2) genetic model, (3) sample size, and (4) the interaction
term between disease and SNP marker allele probabilities.

Conclusion: For a fixed number of genotypings, there is an optimal number of replicates of each
pool that increases as the number of genotypings increases. Power is not substantially reduced
when the number of replicates is close to but not equal to the optimal setting.
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Background
Case/control genetic association studies are used as a
means of localizing susceptibility genes for a complex dis-
ease. With the recent development of technologies that
can determine the genotypes for hundreds of thousands
of single nucleotide polymorphisms (SNPs) across the
human genome, such studies are now being reported in
the literature [1-3]. Design issues such as power to detect
association using these technologies are also being pub-
lished [4,5]. Since a critical requirement for such studies
to be sufficiently powered is that the disequilibrium
among the disease allele and neighboring marker alleles
be large, marker density needs to be high. If the effect size
for a complex disease is small (e.g., genotype relative risks
[6] on the order of 1.5 to 2), the sample size required to
detect association may be thousands of cases and controls
[4,5,7-9]. Therefore, researchers often consider genotyp-
ing technologies such as DNA pooling [10-13] as an ini-
tial strategy to identify genomic regions that may harbor
susceptibility loci in an effort to reduce cost (time and
money) (e.g.,[14,15]). Advantages of DNA pooling tech-
nologies include (a sometimes substantial) reduction in
genotyping cost when performing multi-stage association
studies to identify disease susceptibility genes. Potential
disadvantages include reliance on a number of assump-
tions related to statistical design and analysis. For exam-
ple, a key assumption is that the intensity measure has an
expected value equal to the allele frequency. Another
potential disadvantage is that DNA pooling techniques
may not detect disease mode of inheritances that deviate
from dominant or recessive modes. For example, DNA
pooling techniques will be underpowered to detect dis-
ease genes that operate in an over-dominant form.

Sham et al. reviewed currently available technologies for
DNA pooling [10]. The statistical analysis of data from
pooled DNA studies uses analysis of variance (ANOVA)
procedures that have algorithms for calculating power to
detect unequal allele probabilities. A major design issue
when using DNA pooling technologies is the measure-
ment error as compared with the gold standard method of
individual genotyping.

Research has been done regarding specification of study
parameter settings to maximize power [10,16,17]. The
research question addressed in this work is: assuming a
certain level of measurement error, what settings of study
design parameters maximize the power to detect associa-
tion? More specifically, we study the sensitivity of power
to changes in design parameters (e.g., total sample size,
differing numbers of genotypings, number of pools, and
genetic model parameters). We present a closed form
approximation to the power in terms of the genetic
model, pooling measurement error model, and the study
parameters (e.g., number of pools, number of replicates

per pool, sample size) and we perform a systematic study
of the design parameters to identify which have the great-
est effect on power to detect association for DNA pooling
studies.

Results
The pooled DNA association studies considered here have
equal number of cases and controls N. For a fixed number
of total subjects (cases and controls), an equal number of
cases and controls yields maximal power for association
[7,8]. The N subjects in each group are randomly assigned
to one of J pools, each of size T (so that N = J × T). Each
of the J pools has K replicate measures, so that the number
of case genotypings is equal to the number of control gen-
otypings (G = J × K). The data analyzed in the study are the
estimated allele frequencies Yijk of the more common

allele (called "2"), where the index i is 0 for cases and 1 for
controls, the index j ranges from 1 to J, and the index k
ranges from 1 to K. The variance of Yijk has two compo-

nents, one due to the sampling variability of the frequency

of allele 2 in each pool (denoted by  here) and the

other due to the variability of the measurement process of

the pooled material (denoted by  here).

We refer to the term m as the measure of the machine rep-
licability variance factor. The quality of the estimate of the
pooled frequency as measured by its variance is parame-
terized so that is proportional to the sampling variance of
the allele 2 frequency and is assumed to be independent
of pool size or other pooling parameters. When the

number of pools is J ≥ 2, the structure of a pooled DNA
study is an example of a two-stage nested design [18]. Its
statistical analysis is conventionally organized in an
ANOVA table as in Table 1, with the null hypothesis that
the case allele 2 frequency is equal to the control allele 2
frequency. This hypothesis is tested using the statistic

. Here, SSA is the sum of

squares of the case/control averages, SSP is the sum of

squares of the pool averages within a group about the
group pool mean, and is the basis of an estimate of the
variance of a pool average frequency. The term MSA is the

mean square of SSA, which by definition is just SSA

divided by the degrees of freedom (df), and similarly for
MSP. Under the null hypothesis, MSA is also the basis of an

estimate of the variance of a pool average frequency.
When the null hypothesis is false, on average, MSA is

increased as shown in its expected mean square.
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The power calculation of the F-test, the standard statistical
procedure used when testing allele frequency differences
for DNA pooling, requires the non-centrality parameter
(NCP) of the test. Its approximate value is given in equa-
tion 1 of the Methods and Technical Issues section below.
The NCP is a function of the difference between the case
and control allele 2 frequencies, the quality of the pooling
estimate of these probabilities, the number of cases and
controls, the number of replications of DNA measure-
ments of each pool, and the size of each pool.

When the number of replicates K is fixed, the approximate
NCP is constant with respect to the number of pools (J).
When the number of pools J is larger, the denominator
degrees of freedom (df) are larger, so that the power of the
F-test is greater. That is, smaller pool sizes T = N/J for
larger J, have greater power. The protocol of genotyping
each subject has T = 1, which is the most powerful allele

frequency testing protocol. That is, if genotype cost is not
an issue, it is always most powerful to individually geno-
type all subjects.

When the total number of genotypings (G = J × K) is fixed,
as is the situation for a fixed budget, the optimal choice of
J and K is more complex. When one knows the genetic
model parameters, one can examine the power using a
range of values of J and K (and hence T) to find settings
with high power. We seek to find Ko(G), the number of

replicates that has greatest power when there are G geno-
typings. For example, Figure 1 is based on a recessive
mode of inheritance (MOI) with N = 10,000, prevalence

φ = 0.05, disease allele frequency pd = 0.15, relative risk of

homozygous for disease allele (R2) is 3, linkage disequi-

librium , (where  is the maximum dis-p Rr = 0 9 2. max Rmax
2

Table 1: The analysis of variance table for a two-stage nested design

ANOVA Table
Source DF SS E(MS)

Case or control (α) 1

Pools nested in case or control (P) 2(J - 1)

Replicates (E) IJ(K - 1)

Abbreviations for column headings are as noted below.
DF: the degrees of freedom for the respective source row;
SS: the sum of squares for the respective source row;
E(MS): expectation of the mean square for the respective source row.
The sums of squares are based on the following terms:

The model we consider for individual pooled allele frequency estimates is

where the "group" effect associated with cases or controls is , i = 0,1 subject to the constraint ∑αi = 0. The random 

effect associated with the jth pool in either cases or controls is , with . Finally, {Eijk} are independent N(0, 1) 

random variables and  is the variance of the allele frequency in the ith group.
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equilibrium value between the disease allele and the
coupling SNP allele; also see PAWE-3D website Helpfile
[19], minor SNP allele frequency q1 = 0.35, and machine

replicability variance factor m = 2.25. We set G = J × K to
80, 160, 320, and 640 with significance level 0.0001. The
power increases substantially as G increases. For example,
the maximum power is 0.73 with 80 genotypings when
Ko(80) = 4; that is, 4 replicates of each of 20 pools. It

increases to 0.91 with 640 genotypings when Ko(640) =

13; that is 13 replicates each of 49 pools. The power of the
chi-squared 2 × 2 test of independence when each subject
is individually genotyped is 0.97. With 640 genotypings,
the power with K = 4 is 0.85. The increase of power from
0.73 to 0.91 is obtained through additional genotyping
effort rather than increased sampling of subjects. Also
note that the power when K = 1 is always substantially less
than the power using the optimal choice of K; that is, rep-
lication of pool measurement is always advantageous.

Figure 2 is based on a dominant MOI with N = 5,000,

prevalence φ = 0.05, disease allele frequency pd = 0.15, rel-

ative risk of a genotype with at least one copy of the dis-

ease allele is 1.5, linkage disequilibrium ,

minor SNP allele frequency q1 = 0.35, and machine repli-

cability variance factor m = 2.25. We set the number of
genotypings J × K to 40, 80, 160, 320, and 640. The pat-
tern is similar to that of Figure 1. A program is available
from the corresponding author to produce these numbers
for user specified settings.

We note that, although results are not presented, we per-
formed analyses similar to those presented in Figures 1
and 2 for a multiplicative MOI. The conclusions were the
same, with results being very similar to the dominant MOI
results (Figure 2). We omit these results in the interest of
brevity.

p Rr = 0 9 2. max

Power as a function of number of replicates (K) for fixed number of genotypings (G = J × K) with dominant mode of inheritanceFigure 2
Power as a function of number of replicates (K) for 
fixed number of genotypings (G = J × K) with domi-
nant mode of inheritance. Power values presented here 
are for studies with N = 5000, prevalence φ = 0.05, disease 
allele frequency pd = 0.15, relative risk of a genotype with at 
least one copy of the disease allele = 1.5, minor SNP marker 
allele frequency q1 = 0.35, machine replicability variance fac-

tor m = 2.25, linkage disequilibrium  and signif-

icance level alpha = 0.0001. *The horizontal line represents 
the power for specified parameters with individual genotyp-
ing using the 2 × 2 test of independence. Power with individ-
ual genotyping was computed using the method implemented 
in the Power for Association With Error (PAWE) website 
[27].
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Power as a function of number of replicates (K) for fixed number of genotypings (G = J × K) with recessive mode of inheritanceFigure 1
Power as a function of number of replicates (K) for 
fixed number of genotypings (G = J × K) with reces-
sive mode of inheritance. Power values presented here 
are for studies with N = 10000, prevalence φ = 0.05, disease 
allele frequency pd = 0.15, relative risk of homozygous for 
disease allele R2 = 3, minor SNP marker allele frequency q1 = 
0.35, machine replicability variance factor m = 2.25, linkage 

disequilibrium  and significance level alpha = 

0.0001. *The horizontal line represents the power for speci-
fied parameters with individual genotyping using the 2 × 2 
test of independence. Power with individual genotyping was 
computed using the method implemented in the Power for 
Association With Error (PAWE) website [27].
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The program mentioned above was  used to create Table
2, which considers the robustness of design choices when
studying a disease with prevalence equal to 0.05. We con-
sider both dominant and recessive MOI with genetic rela-
tive risk (GRR) values ranging from 1.5 to 2.2 for specified
levels of significance, linkage disequilibrium, sample size,
minor SNP marker allele frequency and quality of pooling
measurement m. We examine the range of numbers of
genotypings J × K between 40 and 640. Table 2 gives the
maximum power for each number of genotypings, Ko(G),
and the range of K settings that produce power within
95% of the maximal power. As in Figures 1 and 2, the
most important result is that increasing G always substan-
tially increases power. For example, in scenario 1 with
10,000 subjects in each group, recessive MOI, relative risk
2.2, and level of significance 0.0001, the maximal power
is 38% with 40 genotypings compared to 77% with 640
genotypings. Similar patterns hold for the other situations
considered. The value of Ko(G) increases at a less than lin-
ear rate as G increases. Typically, the decrease in power
associated with using a value of K slightly different from
Ko(G) is relatively small; that is, the power of the proce-
dure is relatively insensitive to choice of K. While K = 4 is
optimal or close to optimal when the number of genotyp-
ings is small (i.e. G = 40 or 80), Ko(G) increases with G and
can have appreciable greater power than with 4 replicates.
The value of Ko(G) is not substantially affected by whether
the MOI is dominant (see scenarios 8–10) or recessive
(see scenarios 1–7).

Regression modeling results
We use ordinary least squares (OLS) regression analysis
with power at the 0.0001 significance level as the depend-
ent variable for each of the 44 × 23 × 3 × 5 (30720) model
specifications. We consider the 9 factors listed in Table 3
and all possible two-way combinations in our regression
model to assess the relative importance of the factors in
determination of power to detect association. We also use
the square of the number of replicates to model the opti-
mal number of replicates. The analysis finds a significant
fit (F55,30664 = 1348.07, p-value < 0.0001) with R2 equal to
0.71. Genotype relative risk (R2) has the largest F-statistic
(34333.5 with 1 df), with increasing R2 associated with
greater power. Sample size has the second largest F-statis-
tic (15002.4 with 1 df). The MOI also has a highly signif-
icant F-statistic (5869.7 with 2 df). For a fixed genotype
relative risk R2, the median power is greatest for dominant
MOI, followed by multiplicative and then recessive MOIs.
The prevalence of the disease (φ), the minor marker allele
frequency, and the measurement quality of the pooling
are the factors that have the smallest F-statistic values.
Measurement error explains less of the variance than
genetic parameters. In general, increased measurement
error reduces the power of the procedure. Further, with
genetic parameters fixed, the decrease in power from
increased measurement error can be offset either by an
increase in K or decrease of the number of individuals in
each pool.

Among the interaction terms not involving K, pd × q1, pd ×
MOI, R2 × T, pd × R2, and N × T are highly significant
(sorted in increasing P-values). The most significant inter-

Table 2: Maximum power as a function of the number of genotyping(G = J × K), number of replicates giving maximum power (Ko(G)), 
number of replicates (K) at 95% of the maximum power at specific experimental and genetic parameters and the power at K = 1 when 
assuming no machine replicability variability (m = 1)

Situation N MOI R2 α m MAF pr G = 40 G = 80 G = 160 G = 320 G = 640

1 10000 R 2.2 0.0001 2.25 0.20 0.9 38%, 2, (2), 82% 54%, 4, (3–4), 85% 64%,6, (4–7), 87% 72%, 10, (5–16), 87% 77%, 13, (6–27), 88%
2 10000 R 2.0 0.001 2.25 0.20 0.9 43%, 2, (2), 79% 56%, 4, (3–4), 81% 65%, 7, (4–7), 82% 71%, 11, (6–16), 83% 75%, 16, (7–32), 83%
3 10000 R 1.8 0.01 2.25 0.20 0.9 50%, 2, (2), 79% 62%, 4, (3–4), 80% 68%, 7, (5–7), 80% 72%, 13, (6–16), 80% 75%, 20, (7–32), 81%
4 10000 R 2.2 0.0001 2.25 0.15 1 69%, 2, (2), 98% 84%, 4, (3–4), 99% 90%, 6, (3–7), 99% 95%, 10, (4–16), 99% 96%, 13, (4–32), 99%
5 10000 R 2.2 0.0001 2.0 0.15 1 75%, 2, (2), 98% 87%, 4, (2–4), 99% 92%, 5, (3–7), 99% 95%, 8, (3–16), 99% 97%, 12 (3–32), 99%
6 10000 R 2.0 0.0001 2.25 0.15 1 43%,2, (2), 86% 59%, 4, (3–4), 89% 70%, 6, (4–7), 90% 77%, 10, (5–16), 91% 82%, 13, (6–28), 91%
7 10000 R 2.0 0.0001 2.0 0.15 1 49%, 2 (2), 86% 63%, 4, (3–4), 89% 73%, 5, (4–7), 90% 79%, 8, (4–16), 91% 83%, 12, (5–27), 91%
8 2000 D 1.5 0.0001 2.25 0.15 0.9 57%, 3, (2–3), 

94%
73%, 4, (3–6), 96% 82%, 6, (4–10), 96% 88%, 10, (4–18), -- 91%, 13, (5–32), --

9 2000 D 1.5 0.0001 2.25 0.15 1 65%, 3, (2–3), 
97%

80%, 4, (3–6),98% 88%, 6, (3–9), 98 92%, 10, (4–21), -- 95%, 13, (4–40), --

10 2000 D 1.5 0.0001 2.0 0.15 1 70%, 2, (2–3), 
97%

83%, 4, (3–6), 98% 90%, 5. (3–10), 98% 94%, 8, (3–20), -- 96%, 12, (4–37), --

We only consider designs in which the pool size (T) is between 10 and 500. The prevalence φ is 0.05 and disease allele frequency pd is 0.15.
--: the size of pool is out of our consideration, no power is provided;
N: sample size in cases or controls;
MOI: mode of inheritance (R = recessive MOI and D= dominant MOI);
R2: relative risk for subjects homozygous for disease allele;
α: significance level;
m: machine replicability variance factor;
MAF: minor SNP marker allele frequency;
pr: measure of linkage disequilibrium.
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action term is pd × q1. This finding is not surprising as there
has been extensive documentation in the statistical genet-
ics literature that power for genetic association is maxi-
mized when the difference between the disease allele
frequency and the SNP marker allele frequency in cou-
pling with the disease allele is 0, with decreasing power
occurring as the difference increases [20-23]. The finding
of a significant interaction pd × MOI between disease allele
frequency and disease MOI has also been documented
previously, most recently in the work by Skol et al. [4]. The
finding underscores the fact that, when all other factors
are fixed, the disease allele frequency that gives optimal
power differs depending upon the disease MOI.

Discussion
Our results have produced two types of conclusions. The
first is that the genetic parameters of the disease being
studied are the most important determinants of the power
to detect association. This fact is consistent with the asso-
ciation of ApoE with late onset Alzheimer's Disease [24]
and recent association results for age-related macular
degeneration [1,3]. In each of these studies, estimated
genotype relative risks are approximately 3 for the hetero-
zygote and greater than 9 for the homozygote. In all stud-
ies, highly significant associations were observed with less
than 500 total cases and controls. Furthermore, for age-
related macular degeneration [24], associations were
observed for SNP alleles in linkage disequilibrium (LD)
with the functional variants. The results from the OLS
regression analysis are consistent with this history. The
genetic relative risk is the most significant parameter, fol-
lowed by the sample size. For a fixed genotype relative risk
R2, the median power is greatest for dominant MOI, fol-
lowed by multiplicative and then recessive MOIs. The lin-
ear and quadratic terms in the number of replicates K and
a number of interactions with K are significant. Since there
is an optimal setting of K, this result is expected.

The second type of conclusion is guidance about the
choice of the number of genotypings G = J × K and the
simultaneous setting of the number of replicates K of the
J pools. We have shown that the number of genotypings
G = J × K should be as large as possible (holding all other
factors constant) to have the greatest power. When G is
fixed, we have shown that there is a setting Ko(G) that
maximizes the power when all genetic model parameters
are specified. The optimal setting increases as G increases.
These differences are practically important and suggest
that those conducting pooled studies use the program
available from the corresponding author to determine
optimal settings. In all situations studied, for fixed value
of G, power is relatively insensitive to choice of K near
Ko(G). Further, when the machine replicability variance
factor m is larger than 1, the setting K = 1 has power much
less than replicated designs. This suggests that such exten-
sions of these designs as staggered nested designs [18]
may have little value in genetic pooling studies.

Our work provides the basis for extending recommenda-
tions such as those of Sham et al. [10] to include genetic
model parameters. For the very large studies possible with
pooling, there is strong evidence that increasing the
number of genotypings and increasing the number of rep-
licate measurements of each pool can increase power
noticeably. This approach is dependent on the assump-
tion that E(Πi) = E(Yijk), where Πi is the fraction of the
major allele 2 in a randomly selected subject from the ith

group; that is, the pooled estimate of the intensity of an
allele is in fact an unbiased estimate of the allele 2 fre-
quency. Further work will incorporate designs that for-
mally include validation of this assumption.

Conclusion
Our work extends that of previous researchers who have
considered power and sample size calculations for genetic

Table 3: List of parameters considered in the multiple regression analysis

Parameter Description Value

N Number of case (control) subjects 1000, 2000, 5000, 10000
φ Prevalence of the disease 0.01, 0.1
T Size of the pool 25, 50, 100, 250, 500
K Number of replicates of each pool 1, 2, 4, 8
pd Disease allele frequency 0.1, 0.25

MOI Modes of inheritance dominant, recessive, multiplicative
R2 Genotype relative risk of homozygote of disease allele *1.2, 1.5, 2.25, 4
q1 Minor SNP marker allele frequency 0.1, 0.35
M Machine replicability variance factor 2.05, 2.1, 2.25, 3

*R1 is obtained according to the relationship between R1 and R2; that is for multiplicative MOI, R2 = ; dominant MOI, R1 = R2; recessive MOI, R1 

= 1. We considered all 30720 (44 × 23 × 3 × 5) situations generated from the parameters listed above.

R1
2
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association studies with pooled DNA samples (e.g., [16]).
Our extension involves inclusion of genetic model param-
eters such as disease MOI, disease allele frequency, disease
prevalence, marker allele frequency, and genotype relative
risks. It is clear from the results of our regression analysis
that incorporation of such parameters is important in the
design of more powerful genetic association tests. We rec-
ommend that researchers incorporate information into
their power and sample size calculations for genetic asso-
ciation with pooled DNA, such as choice of numbers of
genotypings and the number of replicates that can
increase power from such relatively low levels as 40% to
50% to 75% to 80% using the same cases and controls.

Methods
Definitions
N: number of case (control) subjects; we assume equal
numbers of cases and controls (balanced design).

J: number of pools; J ≥ 2.

T = N/J: number of individuals in each pool; we assume
that case subjects are assigned randomly to case pools and
control subjects are assigned randomly to control pools.

K: number of replicates of each pool; we assume that there
is no reassignment of subjects in the replications.

G = J × K: number of case (control) genotypings.

Genetic model parameters
We consider a disease associated with a di-allelic gene
with allele d associated with increased risk of disease and
allele + associated with no increased risk.

pd: allele frequency of disease locus d allele.

p+ = 1 - pd: allele frequency of disease locus wild-type (+)
allele.

φ: prevalence of the disease.

f2: probability of having disease with 2 disease alleles in
the genotype = penetrance of dd.

f1: probability of having disease with 1 disease allele in the
genotype = penetrance of d+.

f0: probability of having disease with 0 disease alleles in
the genotype = penetrance of ++.

Genotype relative risks (GRR)

Modes of Inheritance (MOI)
The three MOIs are characterized by the parameter R.

Multiplicative MOI: The penetrances satisfy the equation

; that is, .

Dominant MOI: R = R1 = R2.

Recessive MOI: ; that is, R1 = 1.

SNP marker parameters
q1: allele frequency of minor SNP marker allele 1 (that is,
0 <q1≤ 0.5).

q2: the frequency of the major SNP marker allele 2.

Disequilibrium parameters
Dmax = min(pdq2, p+q1).

 (see, e.g., [25]).

pr: measure of linkage disequilibrium between disease

gene and SNP marker; here it is a fraction of  (0 <pr

≤ 1); the examples use pr = 0.9.

The detailed computation of case and control genotype
probabilities which are functions of the disease allele fre-
quency, minor SNP allele frequency, and linkage disequi-
librium parameters are documented in the PAWE-3D
Helpfile [19].

We use method [26] implemented in the PAWE software
[27] to calculate the power of the 2 × 2 test of independ-
ence when each subject is individually genotyped and we
report these value in Figures 1 and 2.

Case-control frequency of allele 2
Πi: the fraction of the major allele 2 in a randomly
selected subject from the ith group, i = 0 for cases, i = 1 for
controls. It follows that the expectation of Πi is given by:

R
f

f2
2

0
= .

R
f

f1
1

0
= .

R
f

f

f

f
= =1

0

2

1
R R2 1
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R R
R

R
= =2

2

1

R
D

p p q qd
max

max2
2

1 2
=
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Rmax
2

E P Pi i i( ) ,Π = +1
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where Pi1 is the frequency of the heterozygous genotype
with allele 2 in the ith group and Pi2 is the frequency of the
homozygous genotype with allele 2 in the ith group. In
addition,

Analysis of variance (ANOVA) table for two-stage nested 
design
Specification of ANOVA model
Aijk: intensity level of allele 2 in the ith group (i = 0 for
cases, 1 for controls), jth pool (j = 1,...,J), kth replicate (k =
1,...,K).

Bijk: intensity level of allele 1 in the ith group (i = 0 for
cases, 1 for controls), jth pool (j = 1,..., J), kth replicate (k =
1,..., K).

: fraction of SNP allele 2 estimated in the

ith group (i = 0 for cases, 1 for controls), jth pool (j = 1,...,
J), kth replicate (k = 1,..., K).

Model:

Yijk = µ + αi + Pj(i) + σEEijk,

where the case or control effect is

, i = 0,1, subject to the con-

straint ∑αi = 0. The random sampling effect of the allele 2

frequency associated with the jth pool in either cases or

controls is , with .

Finally, {Eijk} are independent N(0,1) random variables

incorporating the additional variability due to the meas-
urement process. See below for more details regarding the

specification . It follows that

Here, var(Yijk) is modeled as the sum of two components

of variance. The first, , is due to the sampling

variation of the frequency of allele 2 in the subjects

assigned to each pool. The second, , is due to the meas-

urement error of the processing of the pooled material.

Under an ideal measurement process,  = 0; we define a

parameter m to capture the departure from this ideal. The

parameter m (machine replicability variance factor), m ≥

1, is defined by , so that m = 1 represents

the ideal measurement process and m > 1 models addi-
tional variability due to a less than perfect measurement
process. The fraction of var(Yijk) due to the measurement

process is .

This model is dependent on the assumption that

. Also, let

. This value is an indication of the

adequacy of the approximation of the NCP in equation
(1) below [28].

Let

Following Scheffé [29], the means used in the sums of
squares can be expressed in terms of the ANOVA model as

Then,

where

.
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If we let Wi represent n independent and identically dis-

tributed N(µ, σ2) random variables, then 

has the distribution [18]. Consequently,

where . The sum of squares SSP therefore has the

distribution  when the null hypothe-

sis is true, with . Further

 under both the null and

alternative hypotheses with  and

. The distribution of SSP under

the alternative is a weighted sum of independent central
chi-square distributions.

To obtain the distribution of SSA, consider

where .

Then,

The null distribution of SSA is a scaled central chi-squared

random variable with scaling factor  so that

has a central F-distribution with 1 numerator degree of
freedom and 2(J - 1) denominator df when H0: αi ≡ 0 is
valid. Under the alternative hypothesis, the distribution of

SSA is a weighted sum of non-central chi-squared random
variables. The approximation to the alternative distribu-
tion of the F-test proposed here is that it is a non-central F
with 1 numerator degree of freedom, 2(J - 1) denominator
df, and non-centrality parameter (NCP) δ2, where

As shown by Gronow [28], the inequality in variance does

not affect the power approximation when p ≤ 1.5 Since

, where 1 ≤ m,

which is not dependent upon J, assuming this model. This

result is due to the fact that we assumed , which

is an assumption that each individual's variance contrib-
utes equally to the variance of the pool. The factor (m - 1)
includes the cumulative effect of such sources of addi-
tional variability as experimental error, differential varia-
bility in processing of individuals, and other sources.

Multiple regression analysis of approximate power
We calculated the approximate power of the experimental
design under various values of parameters (Table 3). We
then used OLS multiple regression analysis to identify the
parameters that had the greatest impact on power, using
SAS software [30]. For independent variables, we used all
variables listed in Table 3, all two way interactions of
these variables, and K2, the square of the number of repli-
cates to incorporate the existence of an optimal number of
replicates. We considered type I errors at 0.01, 0.001 and
0.0001 levels. It might be argued that researchers should
use 0.0001 or less as a stringent significance level if the
design is applied in a genome-wide association study.
Since DNA pooling techniques are normally used as 1st

stage screening and for 1st stage design, researchers may be
more concerned with false negatives than false positives
[9,31].
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