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Abstract

Background: The germline cancer predisposition genes associated with increased risk of each clinical subtype of breast
cancer, defined by estrogen receptor (ER), progesterone receptor (PR), and HER2, are not well defined. Methods: A total of
54555 invasive breast cancer patients with 56 480 breast tumors were subjected to clinical hereditary cancer multigene panel
testing. Heterogeneity for predisposition genes across clinical breast cancer subtypes was assessed by comparing mutation
frequencies by gene among tumor subtypes and by association studies between each tumor subtype and reference controls.
Results: Mutations in 15 cancer predisposition genes were detected in 8.6% of patients with ER+/HER2-; 8.9% with ER+/
HER2+; 7.7% with ER-/HER2+; and 14.4% of ER-/PR-/HER2- tumors. BRCA1, BRCA2, BARD1, and PALB2 mutations were enriched
in ER- and HER2- tumors; RAD51C and RAD51D mutations were enriched in ER- tumors only; TP53 mutations were enriched in
HER2+ tumors, and ATM and CHEK2 mutations were enriched in both ER+ and/or HER2+ tumors. All genes were associated
with moderate (odds ratio > 2.00) or strong (odds ratio > 5.00) risks of at least one subtype of breast cancer in case-control
analyses. Mutations in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53 had predicted lifetime absolute
risks of at least 20.0% for breast cancer. Conclusions: Germline mutations in hereditary cancer panel genes confer subtype-
specific risks of breast cancer. Combined tumor subtype, age at breast cancer diagnosis, and family history of breast and/or
ovarian cancer information provides refined categorical estimates of mutation prevalence for women considering genetic

testing.

Estrogen receptor (ER), progesterone receptor (PR), and HER2
tumor markers are routinely used for clinical subtype
classification for breast cancer and selection of therapeutic
strategies (1-3). Approximately 70.0% of breast cancers are ER
positive (ER+) tumors, including 10.0-20.0% ER+/HER2+ and
50.0-60.0% ER+/HER2-, whereas 15.0% are ER negative (ER-)/
HER2+ tumors and 15.0% are ER-/PR-/HER2- triple-negative
breast cancers (TNBC) (4-6).

Next-generation sequencing of breast tumors and germline
multigene panel testing of women with breast cancer has
revealed molecular heterogeneity for predisposition genes
within breast tumor subtypes (7,8). BRCA1 and BRCA2 mutations
are found in 11.0% of patients with TNBC (9) and in up to 68.0%

of all TNBC patients with predisposition gene mutations (10).
This may have implications for treatment with selected forms
of chemotherapy (7) or targeted poly ADP ribose polymerase
inhibitors (11). Likewise, germline mutations in BARD1, BRIP1,
PALB2, RAD51C, RAD51D, and TP53 have been associated with
increased risks of TNBC (9,12), and mutations in BARD1, BRCA1,
BRIP1, RAD51C, and RAD51D are more frequent in TNBC than
other subtypes of breast cancer (10). In addition, germline TP53
mutations have been reported in 1.4% of HER2+ breast cancers
(13); CHEK2 c.1100delC mutations have been observed more fre-
quently in women with ER+ tumor subtypes (14,15), and ATM
mutations have been observed more frequently in women with
other breast cancer subtypes relative to TNBC (10). However, the
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influence of mutations in individual predisposition genes on all
clinical subtypes of breast cancer defined by ER, PR, and HER2
status has not been established (16,17). Such studies may pro-
vide insight into breast cancer risk in the population and may
have implications for selection of therapy and personalized
clinical management. Thus, a better understanding of the germ-
line mutations associated with each subtype is needed.

In this study, we evaluated cancer predisposition genes that
have established associations with breast cancer and tested the
hypothesis that each gene has heterogeneous associations
across clinical breast cancer subtypes defined by ER and HER2
status in a 54 555 breast cancer patients subjected to multigene
panel testing in a single testing laboratory.

Methods

Study Population

This study included results from hereditary cancer genetic test-
ing at Ambry Genetics of 54555 female invasive breast cancer
patients (age at diagnosis 18 years and older) of any race or eth-
nicity from 2012 to 2016 (Supplementary Table 1, available on-
line). Test requisitions were completed by the ordering
clinicians. These included information on personal history of
cancer; age at diagnosis; cancer pathology; ER, PR, and HER? sta-
tus; and family history of cancer. Information was also ab-
stracted from available clinical records, including pedigrees,
clinic notes, and pathology reports. The accuracy of the ER, PR,
and HER2 status was reported as 99.5%, 98.8%, and 96.3%, re-
spectively (18). Breast tumors were classified by ER and HER2
status (Table 1). Although PR status was available, ER and PR
status were rarely discrepant and subgroups defined by ER, PR,
and HER2 were too small for informative analyses
(Supplementary Table 10, available online). Thus, tumors were
categorized as ER+/HER2-, ER-/HER2+, ER+/HER2+, and both
ER-/HER2- and ER-/PR-/HER2- TNBC (Table 1). For patients with
multiple breast cancers, all analyses were restricted to first
breast cancers. Thus, synchronous tumors were included,
whereas asynchronous second breast cancers were excluded.
Tumors were not stratified by morphology status. The Western
Institutional Review Board determined that the study was ex-
empt from review.

Predisposition Gene Mutation Screening

All germline truncating, consensus dinucleotide splice sites (+/
—1 or 2), and any known pathogenic missense alterations in 15
genes implicated in breast cancer (ATM, BARD1, BRCA1, BRCA2,
BRIP1, CDH1, CHEK2, MSH6, NBN, NF1, PALB2, PTEN, RAD51C,
RAD51D, and TP53) that were identified by Ambry Genetics were
assessed by a five-tier classification system (8,9,19-21). All
mutations identified were submitted to ClinVar (National
Center for Biotechnology Information, Bethesda, MD, USA).
Reduced penetrance and CHEK2 missense variants were ex-
cluded. Large genomic rearrangements were retained for muta-
tion frequency and case-case comparisons but were excluded
from case-control comparisons with Genome Aggregation
Database (gnomAD) reference data (9,22). Pathogenic mutations
in the PASS category of gnomAD exome sequencing results
from 123136 unrelated individuals were used for case-control
association studies (9). Analyses were restricted to patients not
tested for BRCA1/2 mutations prior to panel testing.

Statistical Analysis

Enrichment of gene-specific mutations in individual subtypes
was assessed by pairwise comparisons of subtypes using polyt-
omous regression analysis with adjustment for age at diagnosis
and family history of breast and ovarian cancer. Associations
between mutations in each gene and individual clinical sub-
types were also assessed by comparing frequencies of patho-
genic mutations with gnomAD reference control populations
weighted for the relative frequency of different races and eth-
nicities in the cases, using a weighted logistic regression model.
Odds ratios (OR) and corresponding 95% confidence intervals
(CIs) were estimated. The heterogeneity of predisposition gene
mutation frequency between subtypes was assessed using a
generalized linear regression test adjusted for age of breast can-
cer diagnosis. To assess the source of subtype heterogeneity,
associations between gene-specific mutations and ER status,
HER2 status, and the interaction of ER and HER2 status were
evaluated by logistic regression adjusted for age at diagnosis of
breast cancer. Lifetime absolute risks of breast cancer subtypes
were estimated by combining OR estimates with age-adjusted
subtype incidence rates from the SEER (Surveillance,
Epidemiology, and End Results Program) registry (https://seer.
cancer.gov/) (9). Hormone receptor status (HR), including ER or
PR status, was used in place of ER. All analyses were performed
with R (version 3.4.2). All statistical tests described above were
two-sided, and P values less than .05 were considered statisti-
cally significant. When considering mutation frequency by age,
patients were divided into groups of younger than 37, 3745, 46—
50, 51-60, and older than 60 years to reflect the criteria used for
selection of patients for genetic testing in the National
Comprehensive Cancer Network guidelines and to refine selec-
tion of women at younger ages of diagnosis.

Results

Study Population Characteristics

The clinical characteristics of the 54555 invasive breast cancer
patients with single primary (n=49301) or multiple breast can-
cers (n=>5254) are described in Table 1 and Supplementary
Table 1 (available online). There were 49301 single primary
breast tumors and 7179 tumors from patients with multiple pri-
mary breast cancers (3850 synchronous tumors and 3329 first
primary tumors from patients with asynchronous breast can-
cers). The mean (SD) age of first breast cancer diagnosis was
49.5 (11.5) years for patients with a single primary breast tumor
and 50.2(11.1) years for patients with multiple breast tumors.
Race and ethnicity distributions, personal cancer history, and
family cancer history were similar for single primary and multi-
ple breast cancer patients. Among these, approximately 63.0%
reported a family history of breast cancer (first- or second-de-
gree relative), consistent with selection of patients for genetic
testing (Table 1). Information on at least one histopathological
tumor marker (ER, PR, or HER2) was available for the 56480
breast tumors from these patients (Table 1). Clinical breast can-
cer subtypes defined by ER and HER? yielded 26 620 (58.0%) ER+/
HER2; 5979 (13.0%) ER+/HER2+; 2701 (5.9%) ER-/HER2+; and
10621 (23.1%) ER-/HER2- breast tumors. Of these, 10292 (22.4%)
were assigned to the ER-/PR-/HER2- TNBC clinical subtype
(Table 1; Supplementary Table 1, available online). The propor-
tions of clinical subtypes were consistent with SEER18 2010-
2015 breast cancer incidence data (ER and PR combined as HR)
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for women diagnosed younger than age 60 years. Statistically
significant heterogeneity (P < .05) among subtypes was observed
for mean age at diagnosis, age at diagnosis categories, race and
ethnicity, and family history of breast and other cancers
(Table 1). In particular, TNBC and/or ER-/HER2- tumors were
more frequent in the black population than in other racial or
ethnic groups (14.8% vs <10.0%; P <.001), and patients with no
family history of common epithelial cancers had a lower fre-
quency of ER+/HER2- tumors (P =.02) (Table 1). Among patients
with multiple breast cancers, only moderate concordance be-
tween the clinical subtypes of the tumors was observed
(Krippendorff’s alpha = 0.584) (Supplementary Table 2, available
online) (23).

Pathogenic Mutation Prevalence in Breast Tumor
Subtypes

Characteristics of mutation carriers and nonmutation carriers
are shown in Supplementary Table 1 (available online).
Pathogenic mutations in 15 predisposition genes were detected
in 10.1% of the tumor cohort (Table 2). The pathogenic mutation
prevalence was 8.6% in ER+/HER2-, 8.9% in ER+/HER2+, 7.7% in
ER-/HER2+, and 14.4% in the TNBC subtype (Table 2). BRCA2,
CHEK2, and ATM were the most frequently mutated genes
(>1.0%) for ER+/HER2- and ER+/HER2+ tumors, whereas BRCA1
was the most frequently mutated gene for ER-/HER2+ (1.8%)
and TNBC (6.7%) tumors (Table 2). Mutations in BARD1, BRCAI,
BRCA2, and PALB2 were most frequently observed for TNBC
(Table 2). BRIP1, RAD51C, and RAD51D mutations were also most
frequent in TNBC, consistent with recent associations between
mutations in these genes and TNBC (9). Similar results were ob-
served when evaluating ER-/HER2- instead of TNBC or when
restricting to the non-Hispanic white population
(Supplementary Tables 3 and 4, available online). It was also
noted that NBN mutations were not associated with moderate
or high risks of any subtype of breast cancer, consistent with re-
cent suggestions that NBN mutations are not associated with
clinically relevant risks of breast cancer (OR > 2) (8,16).

Heterogeneity of Predisposition Gene Mutations Among
Breast Tumor Subtypes

ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D,
and TP53 displayed heterogeneity in mutation frequency across
the subtypes (Table 2; Supplementary Table 3, available online)
overall and in the non-Hispanic white population
(Supplementary Table 4, available online). Similar results were
obtained for tumors from single breast cancer patients
(Supplemental Table 5, available online). Some estimates were
based on small numbers of mutations and should be interpreted
with caution. ER status contributed to the heterogeneity associ-
ated with all of these genes other than TP53; HER2 status con-
tributed to the subtype heterogeneity for ATM, BARD1, BRCA1,
BRCA2, CHEK2, PALB2, and TP53; and interactions between both
markers contributed to heterogeneity for ATM, BARD1, BRCA1,
and CHEK2 (Supplementary Table 6, available online). Next,
pairwise subtype comparisons were conducted to assess enrich-
ment of mutations in specific subtypes (Figure 1,
Supplementary Table 7, available online). ATM and CHEK2
mutations were statistically significantly enriched in ER+/
HER2+, ER+/HER2-, and ER-/HER2+ tumors relative to TNBC
(Figure 1). In addition, CHEK2 was enriched in ER+/HER2+
tumors relative to ER-/HER2+. BARD1, BRCA1l, PALB2, and

RAD51D mutations were statistically significantly enriched
more than twofold in TNBC compared with all ER+ or HER2+ tu-
mor subtypes, consistent with established associations with in-
creased risk of TNBC (9). BRCA1 mutations were also 2.8-fold
enriched in ER-/HER2+ relative to ER+/HER2+, and RAD51C was
also statistically significantly enriched more than twofold in
TNBC relative to ER+ tumor subtypes (ER+/HER2- and ER+/
HER2+), but not relative to the ER-/HER2+ subtype
(Supplementary Table 7, available online). BRCA2 mutations
were enriched in TNBC relative to HER2+ subtypes and in ER+/
HER2- relative to ER+/HER2+. Finally, TP53 mutations were
more common in HER2+ tumors than in HER2- subtypes
(Figure 1; Supplementary Tables 6, 7, and 8, available online),
consistent with previously reported associations between TP53
somatic mutations and HER2+ tumor etiology (13,24,25).

Gene-Specific Mutations Associated With Increased Risk
of Breast Cancer Subtypes

In case-control association analyses to identify predisposition
genes for each breast cancer subtype, BRCA1, BRCA2, and PALB2
mutations were associated with all subtypes (Figure 2 and Table
3; Supplementary Table 9, available online). Similarly, TP53 was
associated with all subtypes, with greatest effects in ER+/
HER2+ and ER-/HER2+ subtypes. ATM was associated with all
subtypes except TNBC, whereas CHEK2 was only associated
with ER+ subtypes (ER+/HER2+4- and ER+/HER2-) (Figure 2 and
Table 3; Supplementary Table 9, available online). Among genes
with at least five mutations, BARD1, BRCA1, BRCA2, BRIP1, MSH6,
NF1, PALB2, RAD51C, RAD51D, and TP53 were all associated with
the TNBC subtype (9). In addition, ATM, BRCA1, BRCA2, PALB2,
and TP53 were associated with the ER-/HER2+ subtype (Figure 2
and Table 3) in the entire cohort and when restricting to non-
Hispanic whites (Supplementary Table 9, available online).
Sensitivity analyses incorporating PR status to define tumor
subtypes yielded similar associations (Supplementary Table 10,
available online). However, CHEK2 mutations were more
strongly associated with ER+/PR+/HER2+ (OR=3.53, 95%
CI=2.72 to 4.56) than ER+/PR-/HER2+ (OR=2.11, 95% CI=1.04 to
4.01) (Supplementary Table 10, available online). Furthermore,
BRCA1 mutations were more strongly associated with ER+/PR-/
HER2- (OR=10.8, 95% CI=7.86 to 14.74) than ER+/PR-+/HER2-
tumors (OR=2.74, 95% CI=2.19 to 3.41) (Supplementary Table
10, available online).

Lifetime Risk Estimation for Overall and Individual
Subtypes of Breast Cancer

Cancer incidence data from the 2010-2015 SEER registries were
used to estimate overall and subtype-specific lifetime absolute
risks of breast cancer for non-Hispanic white patients with
mutations in high- and moderate-risk breast cancer genes
(Figure 3; Supplementary Table 11, available online). Overall life-
time risks of breast cancer of at least 20.0% were estimated for
mutations in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2,
RAD51C, RAD51D, and TP53. In addition, all of the known breast
cancer genes had lifetime risks of HR+ disease of greater than
10.0% (Supplementary Table 11, available online).
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Figure 1. Enrichment of gene-specific mutations in breast cancer subtypes. Pairwise comparisons of gene-specific mutations in breast cancer clinical tumor subtypes
defined as ER+/HER2+, ER+/HER2-, ER-/HER2+, and triple-negative breast cancer (TNBC) are shown. Only genes with one or more statistically significant odds ratio

among the six pairwise comparisons were included.
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Figure 2. Associations between mutations in cancer predisposition genes and
breast cancer subtypes. Semi-log (x-axis) plot of odds ratios estimated by com-
paring gene-specific mutation frequencies from breast cancer cases in each sub-
type with Genome Aggregation Database reference controls. Subtypes
(ER+HER2+, ER+HER2-; ER-HER2+; and triple-negative breast cancer [TNBC])
were defined by estrogen receptor (ER), progesterone receptor, and HER2 status
of tumors and are shown in color. Odds ratio estimates of statistically significant
associations (P <.05) are labeled as “*” and nonstatistically significant associa-
tions are shown as “e.” 95% confidence intervals are shown as “whiskers.”

Gene-Specific Mutation Prevalence by Tumor Subtype
and Patient Characteristics

To facilitate better identification of patients carrying germline
predisposing mutations, the prevalence of mutations in the 15
genes was estimated in categories stratified by age at diagnosis
and family history of breast or ovarian cancer (first- and sec-
ond-degree relatives) (Table 4). Among patients with ER+/HER2-
breast cancer, the prevalence of mutations in the 15 tested
genes was only 10.0% or more among those with a substantial
family history of breast or ovarian cancers or a personal history
of multiple tumors and a breast cancer diagnosis at a young age
(Table 4). Importantly, the BRCA1/2 mutation frequency was
only in the 2.0-5.0% range unless the diagnosis was at age
37years or younger (Table 4). Similarly, among patients with
ER-/HER2+ disease, only those diagnosed at age 37 years or
younger and/or with a substantial family history of breast or
ovarian cancer or multiple primaries had more than 10.0% mu-
tation prevalence (Table 4).

Discussion

In this study, we report on 54 555 invasive breast cancer patients
from a cohort assembled by a genetic testing laboratory with tu-
mor pathology information and hereditary cancer genetic test-
ing results. The results allowed evaluation of heterogeneity in
associations between specific predisposition genes and breast
cancer clinical tumor subtypes. These results will guide
subtype-specific breast cancer risk assessment and allow for
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Figure 3. Absolute risk estimates for overall and clinical subtypes of breast cancer in non-Hispanic white population. Age-related (x-axis) absolute risk (y-axis) curves
for clinical subtypes defined by hormone receptor (HR) and HER2 status (HR+/HER2+, HR+/HER2-; HR-/HER2+; and triple-negative breast cancer [TNBC]) and overall
breast cancer (BC) are shown as colored lines for breast cancer patients with gene-specific mutations. Confidence intervals are shown as shadow around the cumula-

tive risk curves.

fine-tuning of clinical management decisions for mutation car-
riers. Specifically, because BARD1, RAD51C, and RAD51D muta-
tions were associated with more than 20.0% lifetime risk of
breast cancer and 4.0-9.0% lifetime risk of TNBC in this study,
enhanced breast surveillance may be considered for carriers of
mutations in these genes, particularly for races and ethnicities
such as Hispanics and blacks with higher prevalence of TNBC.
Current National Comprehensive Cancer Network guidelines
(https://www.nccn.org/professionals/physician_gls/pdf/genetics_
screening.pdf) do not recommend enhanced screening for breast
cancer in carriers of mutations in these genes. Further studies
are needed to establish whether magnetic resonance imaging
screening will be of benefit for this group of women.

In addition, we provide mutation prevalence estimates for
each tumor subtype by gene, age of breast cancer diagnosis, and
family history of cancer. These estimates may prove useful for a
more informed selection of patients for genetic testing when
attempting to reduce the burden on genetic services associated
with the American Society of Breast Surgeons recommendation
to offer germline hereditary cancer multigene panel testing to
all breast cancer patients (26). Furthermore, integrating infor-
mation on risks of different subtypes of breast cancer associated
with mutations into risk prediction models along with personal
and family history information, polygenic risk scores based on
common genetic variants that are currently being offered as
part of clinical genetic testing (27,28), and other nongenetic risk
factors may yield improved personalized breast cancer risk esti-
mates for patients.

Overall, mutations in known breast cancer predisposition
genes were observed in 7.0-9.0% of each subtype except for
14.4% in TNBCs. None of the known predisposition genes were
exclusively mutated in one subtype of breast cancer. Although
BARD1, BRCA1, BRCA2, BRIP1, MSH6, NF1, PALB2, RAD51C, and
RADS51D were all statistically significantly associated with clini-
cally relevant increased risks (OR>2) of TNBC, mutations in
these genes were also found in non-TNBC tumors, although for
BARD1, RAD51C, and RAD51D, this was a rare event. In addition,
whereas BRCA2-mutated tumors are thought to be predomi-
nantly ER+, in this study mutations were associated with in-
creased risk of all four subtypes (Table 3), and 30.0% were found
in TNBC. This is somewhat consistent with the findings from
Mavaddat et al. suggesting that 16.0% of tumors in BRCA2 muta-
tion carriers from the Consortium of Investigators of Modifiers
of BRCA1/2 were TNBC (29). Furthermore, whereas ATM and
CHEK2 mutations have been associated with ER+ breast cancer
(8), in this study ATM and CHEK2 mutations were enriched in
ER+ tumors (Figure 1; Supplementary Tables 6 and 7, available
online), and ATM but not CHEK2 was associated with ER-/HER2+
tumors (Table 3). Although the case-control association studies
appeared to suggest that ATM (OR=0.57) and CHEK2 (OR =0.45)
have protective effects for TNBC, this is likely the result of a re-
duced frequency of these mutations among TNBC cases caused
by specific effects on the pathogenesis of ER+ and HER2+ breast
cancer.

Predisposition genes have been studied in detail in TNBC
and ER+ breast cancer, but limited information is available re-
garding the influence of mutations on ER-/HER2+ disease (8,16).


https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa023#supplementary-data
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Table 4. Mutation frequency for predisposition genes among breast clinical tumor subtypes based on age at diagnosis, family history of cancer,

and multiple breast cancers*

Agey
Family history <37 37-45 46-50 51-60 >60
ER+/HER2- [mutation No. (%)]
No FHx of BC and OC
BRCA1/2 45 (4.4) 68 (2.5) 31(1.8) 12 (1.0) 5(0.6
All genes 106 (12.0) 189 (8.1) 83 (5.6) 65 (6.4) 29 (4.5
FHx 1 BCno OC
BRCA1/2 64 (9.5) 46 (2.2) 37 (2.1) 37 (1.9) 21 (1.4
All genes 121 (20.3) 143 (7.7) 108 (7.5) 132(8.1) 78 (6.3
FHx >2 BC no OC
BRCA1/2 28 (13.3) 33(3.6) 26 (2.7) 36 (1.8) 24 (1.1)
All genes 56 (28.5) 101 (12.0) 98 (11.6) 139 (8.1) 111 (5.7)
FHx of any OC
BRCA1/2 23 (14.6) 28 (5.2) 13(2.2) 35 (3.6) 19 (1.
All genes 35 (23.8) 57 (11.4) 37 (7.0) 88 (10.1) 66 (7.5
Multiple breast cancers
BRCA1/2 18 (10.8) 24(3.2) 27 (3.3) 21 (2.0) 10 (1.1
All genes 39 (24.7) 84 (12.1) 66 (9.5) 90 (9.6) 50 (6.9
ER+/HER2+ [mutation No. (%))
No FHx of BC and OC
BRCA1/2 9(1.7) 7(0.9 6(1.8) 1(0.4) 4(3.3)
All genes 37 (8.5 43 (6.9 17 (5 18 (8.4) 12 (12.2)
FHx 1 BCno OC
BRCA1/2 11 (3.4) 15 (2.9) 3(0.9) (1.8) 4(1.9)
All genes 47 (17.0) 47 (10.1) 23 (8.8) 26 (7.7) 10 (5.4)
FHx >2 BC no OC
BRCA1/2 5(6.1) 2(0.9 6 (3.3) 5(1.4) 2(0.7
All genes 14 (17.9) 17 (8.8 22 (12.9) 27 (9.6) 13 (5
FHx of any OC
BRCA1/2 1(1.5) (2.8) 2(1.8) 8 (4.2) 4(3.1)
All genes 4(6 13 (9.8) 8(8.7) 14 (8.0) 8(7.0)
Multiple breast cancers
BRCA1/2 4(5.9) 3(2.1) 4(3.5) 2(1.0) 2(2.0)
All genes 15 (22.7) 18 (13.7) 20 (20.1) 122 (14.3) 8(9.9)
ER-/HER2+ [mutation No. (%)]
No FHx of BC and OC
BRCA1/2 6(2.4) 7 (2.0 4(5.4) 1(1.9) 0(0.0
All genes 26 (11.5) 16 (5.0 6(9.3) 1(1.9) 1(5.
FHx 1 BCno OC W
BRCA1/2 6 (4.4) 10 (4.3 3(2.0) 2(1.5) 2(22 =
All genes 13 (10.2) 17 (7.9 6 (4.8) 7(7.5 6(7 E
FHx >2 BC 1o OC %
BRCA1/2 0(0.0) 7(7.9) 0(0.0) 5(2.9) 0(0.0)
All genes 1(3.3) 16 (18.5) 5(9.9) 12(7.7) 2(2.4)
FHx of any OC
BRCA1/2 2(9.1) 0(0.0 1(1.8) 3(2.7) 3 (44
All genes 3(13.1) 4(7.8 2(3.8) 10 (10.3) 5(7.
Multiple breast cancers
BRCA1/2 4(13.3) 5(6.5) 1(1.7) 1(2.1) 0(0.0
All genes 8(27.5) 8(10.4) 4(7.9 3(7.5) 3(8.4
TNBC (ER-/PR-/HER2-) [mutation No. (%)]
No FHx of BC and OC
BRCA1/2 56 (9.5) 68 (6.9) 37 (5.3) 50 (4.0) 5(1.3
All genes 68 (12.0) 112 (13.0) 67 (10.8) 88 (8.1) 20 (6.3
FHx 1 BCno OC
BRCA1/2 71(19.9) 66 (10.2 35 (7.3) 50 (5.1) 25 (4.9)
All genes 84 (24.2) 96 (15.7 58 (13.9) 88(9.8) 45 (10.2)
FHx >2 BCno OC
BRCA1/2 47 (33.3) 45(17.7 24 (10.6) 33(6.7) 21(5.2)
All genes 54 (39.3) 58 (24.2) 33(15.2) 66 (14.6) 40 (11.1)

(continued)
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Table 4. (continued)

Age,y
Family history <37 37-45 46-50 51-60 >60
FHx of any OC
BRCA1/2 37 (32.7) 38 (20.1) 22 (14.1) 36 (10.9) 28 (11.7)
All genes 41 (37.0) 49 (27.7) 29 (19.2) 51 (16.6) 41 (18.4)
Multiple breast cancers
BRCA1/2 50 (29.6) 45 (17.4) 16 (9.2) 28 (8.8) 11 (5.3)
All genes 58 (35.1) 58 (23.5) 23 (14.5) 47 (16.3) 19 (10.2)

*Genes include all 15 genes evaluated in this paper (ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MSH6, NBN, NF1, PALB2, PTEN, RAD51C, RAD51D, and TP53).
Multiple breast cancers include patients with two or more breast cancers (both synchronous and asynchronous). FHx = family history; BC = breast cancer; OC = ovarian

%
=
a
a
tm

cancer; ER = estrogen receptor; PR = progesterone receptor; TNBC = triple-negative breast cancer (ER-/PR-/HER2-).

In this study, BRCA1 and TP53 were associated with high risks of
ER-/HER2+ breast cancer; and mutations in ATM, BARD1, BRCA2,
and PALB2 were associated with moderate risks of the ER-/
HER2+ subtype. Several other genes had too few mutations to
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