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A goal of the post-genomics era has been to elucidate a detailed global map of protein-protein interactions
(PPIs) within a cell. Here, we show that the presence of co-occurring short polypeptide sequences between
interacting protein partners appears to be conserved across different organisms. We present an algorithm to
automatically generate PPI prediction method parameters for various organisms and illustrate that global
PPIs can be predicted from previously reported PPIs within the same or a different organism using protein
primary sequences. The PPI prediction code is further accelerated through the use of parallel multi-core
programming, which improves its usability for large scale or proteome-wide PPI prediction. We predict and
analyze hundreds of novel human PPIs, experimentally confirm protein functions and importantly predict
the first genome-wide PPI maps for S. pombe (~9,000 PPIs) and C. elegans (~37,500 PPIs).

rotein-protein interactions (PPIs) represent an essential aspect of all biological pathways and signaling

mechanisms within a cell, and are reliable indicators of functional associations between proteins. Con-

sequently, a major goal of the post-genomics era has been to elucidate a detailed global map of PPIs within a
cell. To date, high throughput attempts, which are both time and resource demanding, have been utilized to study
the global PPI networks of only a few model organisms. Computational methods provide an attractive alternative.
However, due to computational limitations, elucidating the PPI networks of complex organisms such as human
has not been possible. Furthermore, with the exception of S. cerevisiae', other organisms are yet to be studied atan
all-to-all level where all proteins are analyzed for their abilities to interact with all other proteins, again, due to the
computational complexity of most approaches.

Several computational methods for predicting PPIs require in depth knowledge regarding the proteins includ-
ing structure, sub-cellular location, function, interacting domains, etc”. The obvious drawback of such methods is
their limited applicability for predicting interactions in organisms which have limited information available. This
is apparent by the use of only model organisms (e.g. S. cerevisiae) or widely studied organisms (e.g. human) used in
the testing and application of such methods.

Some PPI prediction methods, however, are based on sequence data only"*"'°. A growing body of evidence
supports the usefulness of short co-occurring polypeptide sequences (interaction codes) in predicting PPIs in
yeast"”'!. As discussed in"”"", there appear to exist a finite number of interaction codes of length around 20 amino
acids that mediate a subset of PPIs. However, there is no information on the global applicability of this approach,
as it has been until now computationally infeasible to apply these techniques to more complex organisms with
larger proteomes. Establishing the conservation of co-occurring polypeptide codes will not only provide further
evidence for their activities in mediating PPIs but, more importantly, it would highlight the applicability of this
approach to detect genome-wide PPIs in other organisms such as humans. In addition, it allows for the prediction
of PPIs in newly sequenced organisms for which limited or no experimental PPI data is available.

Through significant computational acceleration of our previous approach'’ via massive parallelization of our
previous software, it is now possible to scan larger and more complex proteomes. In this paper, we will investigate
the possibility of predicting PPIs based on sequence data only in various organisms including S. pombe, C. elegans,
E. coli, and most importantly human. In addition to our previously published genome-wide scan of the S.
cerevisiae interactome, we will present two new genome-wide scans (S. pombe and C. elegans) along with valid-
ation and analysis of the resulting predicted interactions. We will also explore part of the human interactome.
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Table 1 | Summary of information gathered for different organisms
tested (number of protein sequences, number of interactions and
the source of the inferactions)
Number of ~ Number of Interaction

Organism Proteins Interactions Database

C. elegans 23,684 6,607 BioGRID'®

E. coli 4,290 16,235 EciD'?

H. sapiens 22,513 41,678 HPRD?° and BioGRID'®
S. cerevisiae 6,716 43,591 BioGRID'®

S. pombe 5,024 2,951 BioGRID'®
Results

Conservation of interaction codes. Having previously demon-
strated the utility of interaction codes for the prediction of PPIs in
yeast"’, here we explore the conservation of interaction codes by
investigating whether PPIs in organisms other than yeast may also
be predicted from their primary sequences. In the current study, we
use co-occurring short polypeptide regions identified from pre-
viously reported PPIs to predict novel PPIs. Interaction codes were
computationally identified from the available PPI data (see Table 1)
in four model organisms (E. coli, S. pombe, C. elegans, S. cerevisiae)
and in humans. Our massively parallel, accelerated software, running
on a large-scale parallel computer using MPI (Message Passing
Interface) and Intel Cilk Plus, is the sole reported experimental
technique that is capable of exhaustively scanning all potential
PPIs in complex organisms such as C. elegans (approximately
23,000 proteins) whose potential interactome contains 2.8X10°
protein pairs. Unlike other reported techniques that rely on a set of
known domains or structures®, our approach is capable of predicting

Table 2 | Definitions of performance measures used in this paper.
TP = True positives, FP = False positives, TN = True negatives and
FN = false negatives

Measure (abbr.) Equation
Sensitivity (Sens.)  TP/(TP+FN)

Specificity (Spec.) TN/(TN-+FP)

Precision (Prec.)  TP/(TP+FP)

(TP+FN)/(TP+TN+FP+FN)
(2 Prec. Sens.)/(Prec.+Sens.) = 2TP/(2 TP+FP+FN)

Accuracy (Acc.)
F-measure (Fm)

interactions between completely uncharacterized proteins based
solely on primary sequence (and a starting PPI dataset). The
performance measures used in the paper are described in Table 2.
We conducted leave-one-out (LOO) in silico experiments to char-
acterize the sensitivity (i.e. relative size of the subset of the true
interactions that can be detected by our method) and specificity
(i.e. 1 - false positive rate) of our approach for each organism
(Figure 1) as well as the impact of the positive: negative ratio on
the precision (i.e. the proportion of predicted PPIs that will represent
true verifiable interactions) (see Supplementary Figure S1 and dis-
cussion below). The results in Figure 1 are reported using receiver
operator characteristic (ROC) curves, which plot the achievable sens-
itivity at a given false positive rate. Improved performance is reflected
in curves with a stronger bend towards the upper-left corner of the
ROC graph (i.e. high sensitivity is achieved with a low false positive
rate), while a random decision rule results in the diagonal line shown
in Figure 1. The ROC curves in Figure 1 show that our approach can
successfully detect PPIs, from the interaction codes, in all five organ-
isms that we investigated. It is critical to operate at extremely high
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Figure 1| ROC (Receiver Operating Characteristic) curve for C. elegans, E. coli, H. sapiens, S. cerevisiae and S. pombe. The curve presents the True
Positive Rate (Sensitivity) against the False Positive Rate (1-Specificity). Inset: performance at very high specificity (99.95%). H. sapiens has greater
sensitivity than all other organisms tested. Note that due to the scaling of the axes, the diagonal random curve appears flat in the inset.
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Table 3 | Chosen operating points for the various organisms fested.
In order to reduce the number of false positives, a specificity of
99.95% is typically chosen (* for E. coli a lower specificity of
99.0% was chosen due fo the small size of the known interaction
set). The positive-to-negative ratios (PNR) of the test sets are also
given

Organism Spec. (%) Sens. (%) PNR
C. elegans 99.95 9.97 1:15.1
E. coli 99.0* 14.48 1:6.2
H. sapiens 99.95 23.22 1:2.4
S. cerevisiae 99.95 8.77 1:2.3
S. pombe 99.95 16.89 1:33.9

specificities when applying such a method to a genome-wide analysis
due to the expected sparsity of the true interactome. Otherwise, in a
genome-wide analysis, true predicted PPIs will be vastly outnum-
bered by false positives. Therefore, insets are provided for each ROC
curve highlighting the expected prediction accuracy at very high
specificities (99.9 - 99.95%). From Figure 1, it appears that our
method has the highest accuracy for human proteins, followed by
S. pombe, C. elegans, and S. cerevisiae. For example, at a specificity of
99.95%, 23.8% of human PPIs can be predicted. When operating
at lower specificities, the accuracy for S. pombe surpasses that for
humans. The sensitivity for E. coli at 99.95% specificity is zero (see
inset of Figure 1), however sensitivity surpasses 60% when operating
at 80% specificity which is typically useful when analyzing a smaller
set of preselected protein pairs. Table 3 lists the specificity and sens-
itivity achieved with our method for each organism at the threshold
value used for all subsequent analysis. Although the positive-
to-negative ratio (PNR) ratio does not affect either sensitivity or

specificity (see discussion below), we have listed the PNR for each
organism’s test set in Table 3. Except where listed otherwise the PNRs
in Table 3 are applicable. The impact of homologous sequences in
our interaction databases had an inconsistent effect on performance
as discussed in detail below.

Prediction of cross-species PPIs using interaction codes. Next we
investigated whether PPIs in a target organism can be predicted from
cross-species PPIs (Figure 2). Specifically, can we predict PPIs in one
organism using known PPIs from a different organism? Note that
Park' also attempted to answer this question using our previous
method' in conjunction with others. However'’, used the para-
meter settings for S. cerevisiae in all of his experiments which leads
to reduced performance (see discussion below). To answer the above
question, we first investigated H. sapiens and S. cerevisiae because
they have the highest number of previously reported interactions. As
indicated in Figure 2, using known S. cerevisiae PPIs to predict H.
sapiens interactions (SC-HS) is a weaker predictor than using known
H. sapiens PPIs to predict H. sapiens interactions (HS-HS). However,
it is surprising that the cross-species predictors (i.e. SC-HS and HS-
SC) can still predict meaningful interactions at 80% specificity (46—
48% sensitivity) for both organisms. This illustrates that known PPIs
in one organism may be successfully used to predict novel inter-
actions in another.

We then investigated the applicability of this approach towards
predicting PPIs in one organism from a collection of independent
PPIs from an ensemble of several other organisms. For all eukaryotes
tested, our ROC curves (Figure 3) suggest again the ability of inter-
action codes from different species to predict interactions in an inde-
pendent species. The efficiencies of these predictions are lower than
the experiments in Figure 1 but similar to the results in Figure 2 for
H. sapiens and S. cerevisiae. In fact for H. sapiens we see a slight
sensitivity improvement at 80% specificity (54-55% sensitivity as
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Figure 2 | Cross-species prediction. Here we see the results of using known H. sapiens interactions to predict S. cerevisiae interactions (HS-SC) and
known S. cerevisiae interactions to predict H. sapiens interactions (SC-HS) compared to same-species prediction (HS-HS and SC-SC).
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Figure 3 | ROC curve illustrating the accuracy of cross-species PPI predictions. Here, predictions are based on the union of known interactions from
several organisms excluding the test organism. Inset: performance at very high specificity (99.95%). Note that due to the scaling of the axes, the diagonal

random curve appears flat in the inset.

opposed to 48-49%) when predictions are based on known PPIs
from multiple organisms rather than just S. cerevisiae. PPI prediction
in E. coli seems to be an exception, suggesting differences between
conservation of protein codes in E. coli, a prokaryote, and the eukar-
yotic organisms examined here.

Independent comparison of our approach and the impact of class
imbalance. Our method has been independently evaluated by Park
in'? and compared against three other approaches**® using a PNR of
1:100. Park compared the four methods using four test categories'*:
(a) H. sapiens data to predict H. sapiens PPIs, (b) S. cerevisiae data to
predict S. cerevisiae PPIs, (c) H. sapiens data to predict S. cerevisiae
PPIs and finally (d) S. cerevisiae to predict H. sapiens PPIs. Tests (a)
and (b) evaluate how well each method predicts PPIs in an organism
given data about that same organism, while (c) and (d) assess cross-
species predictions. Since we already explained the need for high
specificities for genome-wide predictions, Figure 4 presents the sen-
sitivity results of the experiments in'* for specificities higher than
95%. We can see that, apart from a close tie with® in Figure 4(a) at
95% specificity, our method achieves the highest sensitivity across all
four experiments (Figure 4(a), (b), (c) and (d)) at high specificities. In
fact at 99.95% specificity, our method attains 3.6 to 17.2 times the
sensitivity of the other methods. Also note that Park'? used the
parameter settings for S. cerevisiae in all of his experiments even to
predict H. sapiens PPIs. Amino acid distributions within proteins
differ significantly between different organisms; see Supplementary
Figure S8. Therefore, it is not optimal to run the same PPI prediction
method for different organisms. Supplementary Figure S9 shows the
difference between simply applying the unmodified PPI prediction
method using yeast parameters to human proteins and the adapted
human PPI prediction method using the PPI prediction adaptation
algorithm described in Materials and Methods.

Global interactomes are expected to be highly imbalanced, where
the vast number of protein pairs are not expected to form true inter-
actions. A recent paper’ compares their method to two other
sequence-based prediction approaches*® using an unbalanced data-
set where there are significantly more negative pairs than positives
pairs used for training. The paper evaluates balanced datasets (1:1
PNR) up to a mildly unbalanced 1:15 PNR comparing methods
using a combined sensitivity and precision measure called the F-
measure. Yu et al reported that the F-measure for all methods tested
decreased as the PNR increased. Using the same datasets published
in’®, we tested our method using the most unbalanced dataset exam-
ined in the paper (1: 15 PNR). Note that the real PNR in H. sapiens is
expected to be as high as 1:500 or more, but Yu et al only examined
up to 1:15 ratio due to technical limitations. Table 4 presents the
results for the three methods published in Yu et al and also our own
method. Using this unbalanced dataset our approach achieves a sig-
nificantly higher F-measure of 62.9 = 1.1 while the next-best method’
yields a value of 43.6 = 1.3. It is noteworthy that our method also
recorded better accuracy, precision, sensitivity and specificity that any
other method tested. Supplementary Figure S10 presents the pre-
cision-recall curve for our method using Yu et al's 1: 15 ratio dataset.

We have emphasized sensitivity and specificity as performance
measures in this paper (as opposed to precision or F-measure) since
they are independent of the ratio of positive to negative protein pairs
in the test data. As illustrated in Table 2, precision depends directly
on this ratio, and furthermore, the true ratio of interacting protein
pairs is unknown for most organisms. Supplementary Figure S1
illustrates the precision of our method over a range of PNRs when
operating at the threshold values given in Table 3. As expected, the
precision is negatively impacted by a decreasing ratio of positive-to-
negative test samples as the positive predictions become increasingly
dominated by false positives. Supplementary Figure S2 compares our
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Figure 4 | Accuracy vs. specificity for this work compared to previous work*** as found in'? using a PNR of 1:100. (a) Using H. sapiens data to predict
H. sapiens interactions. (b) Using S. cerevisiae data to predict S. cerevisiae interactions. (c) Using H. sapiens data to predict S. cerevisiae interactions. (d)
Using S. cerevisiae data to predict H. sapiens interactions. *The experiment by Park in'* did not have results for 95.0% specificity for Shen et alin (c) and
(d): the results for this method jumped from 2—3% specificity to 97-98% with no intermediate values in both experiments.

precision over human proteins compared to three competing meth-
ods examined in Yu et al® over a range of ratios from 1: 1 to 1:1000.
Note that this far exceeds the range of ratios examined in’. Our
method clearly outperforms all other methods at all ratios. It should
be noted that, unlike other algorithms based on machine learning,
our method does not require training per se. The only parameter
which must be tuned is the PAM sequence window similarity score
threshold, which is determined using random sequences drawn from
the target organism’s proteome (i.e. not from the database of known
PPIs; see Methods for details). All performance results are computed
using a stringent leave-one-out protocol which ensures that the test
data is independent from the database of known interactions on
which the predictions are based.

Effects of homologous sequences. It may be expected that homo-
logous sequences in our evaluation data sets may lead to overfitting

of the method and a corresponding overestimate of prediction
performance. We therefore investigated the impact of homologous
sequences in our data. Following the approach taken by Park'?, for
each organism all homologous sequences were removed from the
databases such that the remaining proteins share less than 40%
sequence identity. The most dramatic effect was observed for
human, where removing homologs reduced our sequence set from
22,513 to 14,867 proteins. This resulted in a corresponding decrease
in our known interaction set from 41,678 to 19,588 pairs (47% of
the original set). LOO analysis was repeated for each organism to
compare the performance with and without homologous sequences.
Results from these experiments are illustrated using ROC curves in
Supplementary Figures S3-S7. For human, at lower specificities we
notice a drop in sensitivity of approximately 7-8%, however, at high
specificities (required for all-to-analysis as discussed below) the
reduction in sensitivity becomes less pronounced. S. cerevisiae was

Table 4 | Comparison of this work with previous works*#? using the evaluation datasets with 1:15 PNR compiled by Yu et a. The cutoff
parameter was chosen to maximize the F-measure in order to compare results with those in Yu et aF

Acc. (%) Fm (%) Prec. (%) Sens. (%) Spec. (%)
Shen et alf 92.5=+0.1 33.1x14 37513 29715 96.7 = 0.1
Guo etal 91.7+0.2 36615 35115 38319 953 +0.2
Yu etaP 93.7+0.2 43.6+1.3 495+1.7 39.0+1.3 97.3 0.1
This work 95.7 + 0.1 62.9 = 1.1 73.7 = 2.8 55.0+ 1.6 98.6 + 0.2
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1,056 H. sapiens predicted interactions

Table 5 | Percentages of S. pombe, C. elegans and H. sapiens pairs in which both partners share the same GO SLIM annotation as well as
third party interactions. (a) Results for 100,000 random S. pombe pairs. (b) Results for 2,951 previously known S. pombe interactions
from BioGRID. (c) Results for our 2,009 S. pombe predicted interactions. (d) Results for 100,000 random C. elegans pairs. (e) Results for
6,607 previously known C. elegans interactions from BioGRID. () Results for our 37,572 C. elegans predicted interactions. (g) Results for
100,000 random H. sapiens pairs. (h) Results for 41,678 previously known H. sapiens interactions from BioGRID. (i) Results for our

Derived from GO annotation

Cellular Molecular Biological Third Party
Component (CC) Function (MF) Process (BP) CC & MF & BP Interaction
(a) Random S. Pombe pairs 32.6% 2.4% 7.3% 1.0% 0.032%
(b) Previously detected S. Pombe interactions 79.0% 53.9% 54.2% 29.9% 76.5%
(c) Predicted S. Pombe Interactions 61.8% 39.9% 34.5% 18.9% 36.2%
(d) Random C. elegans pairs 1.1% 2.4% 4.8% 0.2% 0.08%
(€) Previously detected C. elegans interactions 9.7% 44.6% 48.5% 4.2% 28.8%
(f) Predicted C. elegans Interactions 4.7% 30.2% 30.2% 1.8% 6.8%
(g) Random H. sapiens pairs 31.7% 32.7% 28.2% 11.3% 0.3%
(h) Previously detected H. sapiens interactions 82.5% 90.1% 82.2% 67.7% 59.2%
(i) Predicted H. sapiens interactions 91.2% 92.9% 88.9% 83.2% 45.3%

affected to a lesser degree (4% sensitivity decrease at 99.95%
specificity) and in the other organisms (C. elegans and S. pombe)
the results actually improved slightly at high specificities. Again,
PPI prediction in E. coli seems to be an exception, suggesting
differences between conservation of protein interaction codes in E.
coli, a prokaryote, and eukaryotic organisms. Even with homologous
sequences removed from our human interaction database we
continue to perform as well as the methods presented in Table 4.
This is despite the fact that the data sets used to train those methods’
contain a large percentage of homologs (estimated to represent 55%
of their overall positive data set when following the same homology
analysis used here'?).

Computational prediction of S. pombe and C. elegans global
interactome. At this point, the run time for our approach still
precludes analysis of the full human global protein interaction
map (requiring ~6.3 million CPU hours). We therefore targeted
S. pombe, which has 5,024 proteins and has the second best ROC
curve in our initial small scale LOO analysis. Large scale genome-
wide analysis was conducted on all possible S. pombe protein pairs
took approximately 110 CPU hours compared to ~3700 CPU hours
for the genome-wide scan of S. cerevisiae reported in'. We detected a
total of 9,009 possible interactions, 6,058 of which are novel and
suitable for experimental validation (see Supplementary Table S1).
Since currently there are only 2,951 known interaction pairs in S.
pombe, our predictions have potentially increased our knowledge of
the S. pombe interactome by over three fold. To examine the quality
of the predicted interaction pairs we classified them according
to their molecular function, biological process, and sub-cellular
location (Table 5). As indicated in Table 5(a) to (c), a significant
portion of protein pairs predicted via interaction codes have
similar functions (39.9%), occur in the same cellular component
(61.8%) and participate in the same cellular process (34.5%). This
is comparable to levels of agreement for previously reported protein
pairs, which are 53.9%, 79.0%, 54.2%, respectively, and significantly
higher than those for random pairs (2.4%, 32.6% and 7.3%,
respectively). Third party interactions (where both partners inter-
act with another common protein) were also investigated to further
assess the quality of our predicted interactions. Again 36.2% of
protein pairs predicted via interaction codes had a common third
protein partner, compared to 76.5% for previously reported and only
0.032% for random pairs. It should be noted however that for these
analyses (especially third party interaction), the previous experi-
mentally detected interactions might have an unfair advantage

since proteins known to interact are often prioritized for further
analysis and characterization.

Following our S. pombe experiments, C. elegans was targeted as
another model organism of interest. It has nearly five times more
confirmed proteins than S. pombe (23,684 compared to 5,024
respectively). A genome-wide scan of C. elegans was completed in
approximately 150,000 CPU hours and resulted in 37,572 possible
interactions, 31,056 of which are novel predictions. We again clas-
sified those predictions according to their molecular function, bio-
logical process, and location inside the cells as we did with our S.
pombe predictions (Table 5(d) to (f)). For our predictions, the per-
centage of pairs that simultaneously have similar function, occur in
the same cellular component, and also participate in the same cellular
process is 1.8%, which is consistent with the percentage for prev-
iously reported protein pairs (4.2% for 6,607 pairs). In contrast, for
randomly selected protein pairs, the percentage of pairs that have
similar function, occur in the same cellular component and particip-
ate in the same cellular process is only 0.2% (for 100,000 tested
random pairs). The results for similar function and cellular process
are analogous to those of S. pombe. However, the values for cellular
component do not appear to follow the same trend. This might be
due to a lack of reliable data since even the experimentally deter-
mined PPIs do not show any enrichment. For proteins pairs pre-
dicted in C. elegans, 6.8% had a common third protein partner
compared to 28.8% in previously reported pairs and only 0.08% in
random pairs.

Note that our PPI prediction software is based solely on conserved
interaction codes and does not use any information about a protein’s
molecular functions, biological processes or sub-cellular location.
Therefore, such additional information about the biological activities
of protein pairs can potentially also be utilized to determine an
independent confidence level for a predicted interaction. Since true
interactors are thought to be functionally related, participate in
the same cellular process, occur in the same sub-cellular location,
and interact with a same interacting partner (third partner), such
information can be used to determine a confidence level for a pre-
dicted interacting pair. For example, a predicted protein pair “A”
with both partners sharing the same 1. molecular function, 2. cellular
process and 3. interacting partner, may have a higher confidence
level than protein pair “B” with partners having the same 1. molecu-
lar function and 2. sub-cellular location, which may have a higher
confidence level than protein pair “C” with partners only being co-
localized in the same sub-cellular location. It should be noted how-
ever, that this approach may discriminate against uncharacterized
proteins for which limited information is available.
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Figure 5 | (a) A novel five member complex for S. pombe identified using interaction codes.Previously reported PPIs are shown in green; novel PPIs are
shown in red. Previous annotations of key proteins suggest that the complex may play a role in galactosylation of glycoproteins. The dark grey shade
represents core proteins. (b) A novel eight member complex for S. pombe formed by 5 fully-connected core proteins (shaded) and three peripheral
proteins. Predicted PPIs combined with previous annotation of some proteins suggest putative function in protein transport and vesicular trafficking.

The dark grey shade represents core proteins.

Prediction of novel protein complexes. PPI data can also be used to
determine protein complexes. From our predicted novel PPIs we
identified two novel complexes for S. pombe membrane proteins.
Membrane proteins often provide a challenge for classical PPI
detection methods. The first is a five member complex shown in
Figure 5A with SPBC1289.13c, a putative galactosyltransferase, as a
core protein that interacts with four other proteins, some of which
also interact with each other. Two of these proteins, SPAC22E12.06¢
and SPCC736.04¢c, are known to have alpha-1,2-galactosyltrans-
ferase activities involved in N-linked, and both O-linked and N-
linked oligosaccharide modification of proteins, respectively", and
have previously been reported to interact with each other (previously
reported PPIs are shown in green). All five proteins are membrane
proteins that are associated with the Golgi apparatus. Therefore it is
likely that this complex has a role in galactosylation of glycoproteins.
The second complex shown in Figure 5B consists of 8 members, with

5 proteins forming the core, and 3 additional proteins that interact
with the core proteins but not with each other. They are all thought
to be membrane proteins. Five of these proteins (SPBC1703.10,
SPAC4C5.02¢c, SPAC6F6.15, SPACI9E9.07C and SPAC18G6.03)
have been linked to protein transport and vesicular trafficking.
This suggests a role for the complex in this process.

Investigation of human dsDNA break repair PPI network. To
evaluate the effectiveness of interaction codes to predict PPIs in
human we investigated the interactions for 29 proteins, with
established roles in the efficiency of double stranded (ds) DNA
break repair, against all human proteins. This represents an anal-
ysis of more than 650,000 possible protein pairs (29 DNA break
repair proteins against all 22,500 reviewed H. sapiens proteins
from Uniprot'). dsDNA breaks represent a severe case of DNA
damage which can lead to cancer development if left unrepaired.
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Figure 6 | Inferring protein function from predicted PPIs. Biological process may be inferred based on the annotations of predicted interaction partners.
(A) Predicted PPIs for 8 novel human proteins (yellow and green nodes) against known dsDNA break repair proteins (blue nodes). Red edges represent
novel predicted interactions and the green edge represents a previously reported interaction. (B) Yeast deletion mutant strains for genes homolog to
human novel genes above are subjected to plasmid repair assay. The number of colonies formed after strain transformation with linearized plasmid is
normalized to that of intact plasmid, and related to the wild type (red bar) strain (set at 100%). YKU70and RSC2 are known players in non-homologous
repair of double stranded DNA breaks and are used as positive controls (pink bars). Yellow bars represent strains with statistically significant (P-value <
0.05) reduction efficiency in plasmid repair. The strains that did not show reduction in plasmid repair efficiency are represented by green bars. Each
experiment was repeated at least four times. Error bars in this figure represent the standard deviation between experiments.

We detected a total of 620 interactions (at 99.95% specificity), 349 of
which were previously reported, and 271 of which represented novel
interactions (see Supplementary Table S2). This represents an
expansion of the known dsDNA break repair interactome by an
additional 75%.

Following the PPI prediction verification analysis used above, we
again observed (Table 5 (g) to (i)) that a significant portion of our
predicted partners have the same molecular function (92.9%), are
involved in the same cellular processes (91.2%) and are co-localized
(88.9%), highlighting the quality of our predictions. Interestingly our
predicted interacting partners had more in common with each other
than previously reported partners (90.1%, 82.5% and 82.2%, respect-
ively). This is consistent with the ROC curves which show better
prediction abilities in human than in S. pombe. Predicted PPIs are
further verified when third party interactions are examined: only
0.3% of random protein pairs had third party interactions, while this
number rose to 45.3% in predicted PPI pairs - much closer to the
59.2% observed among previously reported PPIs.

An interaction between two proteins often infers a functional
relationship between the two. We next examined how our predicted
PPIs can be used to infer novel protein function. We hypothesized
that 8 proteins QINNZ6 (PRM3), Q92769 (HDAC2), QINRF9
(POLE3), P31946 (YWHABI), QI17RH7 (TPRXL), Q15072
(ZNF146), QONVP2 (ASF1B), and QSEBM4 (ZNF542) may be
involved in double stranded DNA (dsDNA) break repair due to their
novel interactions with proteins known to be involved in this process
(Figure 6A). To test this hypothesis we experimentally investigated
the activity of these proteins. This was done by subjecting the yeast
gene deletion mutants for corresponding human homologs to a
plasmid repair assay (Figure 6B). It was observed that deletion of
4 (YPL009C, HDA1, MNN4, and BMH?2) of the 8 genes (or 50% of the
tested genes) resulted in a statistically significant (P-value < 0.05)
decrease in the ability of the mutant cells to repair dsSDNA breaks.
This suggests an involvement for their corresponding human genes
PRM3, HDAC2, POLE3, and YWHABI, respectively in the efficiency
of DNA damage repair. Due to technical limitations associated with
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our plasmid repair approach, it is likely that more of the tested
candidate genes may, in fact, be involved in dsDNA break repair.
Their deletion may have subtle (or no) phenotypic consequences that
cannot be detected by our current experimental method.

Some of the novel proteins in Figure 6A, for example, QONNZ6
and Q5EBM4 form numerous interactions with the known dsDNA
break repair proteins, whereas others, for example, Q17RH7 and
P31946 form a single interaction each. It is generally thought that
the degree of connectivity of a protein within a PPI network may
represent the significance of that protein within the system. Con-
sequently, the “hub” proteins are thought to be essential for the
integrity of a PPI network. In agreement with this, 3 of the 4 iden-
tified novel proteins are highly connected and only one novel protein,
P31946, forms a single interaction. Interestingly, deletion of its
homolog in yeast (bmh2A stain) had the lowest effect on the effi-
ciency of dsDNA break repair among the 4 novel positives.

Discussion

Through computational acceleration of our PPI prediction algorithm
based on conserved interaction codes, we have performed the first
genome-wide PPI analysis for S. pombe and C. elegans. The new
computational abilities enabled us to demonstrate the conservation
of interaction codes among multiple species and that prediction of
PPIs in an uncharacterized proteome can be performed based on
known PPIs from other species. Furthermore, the human dsDNA
interactome was considerably expanded through our method. This
analysis led to the assignment of novel protein functions which was
confirmed experimentally for four proteins.

The current algorithm works on the basis of available PPI data. In
addition to being sparse, the available PPI data contain numerous
false positives and hence are considered “noisy” data. One may
expect that the availability of additional high confidence PPI data
may help increase the performance of the current approach. Ad-
vances in protein 3D structures can be related to the growing number
of structures for interacting complexes to predict novel binding part-
ners. Growing databases of computationally predicted PPIs can re-
veal new information about novel properties of interacting partners.
In future, some of these properties may be applied to the current
algorithm to reduce false positives and hence increase specificity. GO
terms can also be applied to eliminate false positives. These improve-
ments however, may come in expense of novel predictions since they
can discriminate against uncharacterized proteins.

The origin of the interaction codes used here for PPI prediction is
not clear. They seem to be present in both eukaryotes as well as in
E. coli, a prokaryote. However, the fact that eukaryotic codes cannot
accurately predict E. coli PPIs may suggest a difference between pro
and eukaryotic codes. A possible explanation for the origin of these
short polypeptide regions is that they may have evolved from longer
interaction mediating domains in order to maximize sequence usage.
These codes represent alternative polypeptide signals that merit fur-
ther attention.

The ability to investigate PPIs at a proteome level sets path to
better study the topology of different PPI networks. In this context,
“centrality” of a network can be better studied by examining hub
and betweenness centralities*"*>. These values can indicate proteins
thought to be more relevant to the integrity of a network. They can
provide significant clues for disease progression. In this way, import-
ant and novel drug targets can be elucidated®*.

In addition to the applicability of the new algorithm to study
arbitrary species, the new algorithm is also considerably faster. The
increased speed associated with the current algorithm however, is not
sufficient for studying human genome wide PPI analysis. Using
Massively Parallel (MP) computing approaches, we are currently
in the process of generating a new method amenable to studying
human PPI network.

Methods

PPI prediction via interaction codes. In brief, to predict whether two query proteins
are likely to interact, our method examines sliding windows of primary sequences to
determine if both query proteins share similarity with pairs of proteins that have been
previously reported to interact. For more details, please see'”. To measure sequence
similarity, the PAM120 substitution matrix is used. The method requires a similarity
threshold applied to the PAM120 score to determine whether sequence windows are,
in fact, similar. This threshold must be tuned for each organism, as described below.
Once we have completed this analysis over all possible sequence windows in each
query proteins, a decision must be made whether there is sufficient evidence to
support the predicted interaction. A second score threshold is then applied to make
the decision whether the interaction should be predicted or not. As discussed below,
this second threshold is tunable to achieve the required level of specificity or
precision.

PPI prediction adaptation algorithm for other organisms. Amino acid
distributions within proteins differ significantly between different organisms; see
Supplementary Figure S8. Therefore, it is not optimal to run the same PPI prediction
method for different organisms. Supplementary Figure S9 shows the difference
between simply applying the unmodified PPI prediction method using yeast
parameters to human proteins and the adapted human PPI prediction method using
the organism-specific PPI prediction adaptation algorithm described in the
remainder of this section.

Since amino acid sequence window comparison operations in our software are
based on the PAM120 substitution matrix, a different amino acid distribution will
cause a shift in the expected window score when two random sequences are com-
pared. We plot the probability of scores when comparing two fragments of length 20
and set our threshold such that two sequence windows are declared to be ‘similar’ only
if their PAM120 score is significantly above that expected by chance (i.e. there
remains only a probability of 107 of obtaining this score by comparing random
fragments). We have previously determined” this cutoff to be 35 in S. cerevisiae and
that remains a valid cutoff for most of the other organisms tested except one: H.
sapiens. For H. sapiens the expected score when comparing fragments increased, and
a new cutoff of 40 was used exclusively for this organism. Changing the fragment
window length (20 AA) and substitution matrix did not offer any significant
improvement and they were therefore not modified.

For any new organism, the steps for automatically tuning the window matching
score used by our PPI prediction method, precomputation of similar windows,
evaluating the method’s performance and selecting an operating point are as follows:

Step 1: Window matching score tuning

® (a) Part of the input is all the protein sequences for the organism (usually from an
online source). We can limit the proteins to those involved in known interactions;
however the entire proteome is preferred.

e (b) Our method then calculates the amino acid distribution for the organism. This
is used to evaluate the expected score for comparing two random fragments of
length 20 using this distribution. A score is picked to represent a 10~° chance that
two windows of length 20 are matched at random.

Step 2: Precomputation of similar windows

® (a) Once the correct window matching score setting have been determined, the
database pre-computation is run. That is, the similarity between each unique 20
AA window in the proteome is precomputed and cached.

Step 3: Performance evaluation and picking an operating point

® (a) The second part of the input is a set of known interactions for the organism.
This can be from one experiment, or from a repository such as BioGRID'. It can
also be a gold-standard set or the union of all the databases online for example.
Only physical interactions should be used since this is what the algorithm is
meant to predict.

e (b) The method then needs to evaluate the sensitivity and specificity of the
predictions for this organism. This is done by LOO cross-validation using the
known interaction set collected earlier. The negative set is generated from 100,000
random pairs'®. Plotting the ROC and recall vs. precision curves for the LOO
cross validation experiment will indicate what cutoff to use in order to achieve a
given specificity, precision, or sensitivity. For high-throughput experiments,
operating at a high specificity is strongly suggested in order to avoid a large
number of expected false-positives and maximize the precision of the classifier.

Step 4: PPI predictions

e (a) After completing the automatic steps listed above, the method is ready to start
predicting new PPIs for that organism. For small genomes this can be done by an
all-to-all experiment but for large genomes it is often preferable to only run pairs
of interest due to the runtime involved.

Improved speed of PPI prediction using parallel multi-core processing. An
ongoing concern with PPI prediction is performance. For example, for a single human
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protein pair such as 043345 and Q05481, sequential PPI prediction took 1894.04
seconds on a single processor core. We therefore used fine-grained parallelism to
accelerate our method using the Intel Cilk Plus library. For the same protein pair, our
new, parallel multi-core PPI prediction method took only 321.82 seconds on a quad
core Core i7 860 processor. This represents a 5.9 fold speed improvement.

Characterizing sensitivity, specificity, and precision of PPI predictions via in
silico experiments. To determine the sensitivity and specificity of our PPI predictions
we conducted LOO cross-validation experiments by first obtaining interactions
databases (Table 1) to use as positive sets. For each individual organism, a negative set
composed of 100,000 randomly chosen'® pairs was created. The LOO experiments
were conducted as per Step 5 of the “Sensitivity and Specificity Measure for Other
Organisms” section discussed previously. The results are plotted as a ROC curve
representing sensitivity against 1-specificity (Figures 1-3). While the ROC curve
displays the entire range of specificity (0-100%), high-specificity values are of greater
interest due to the relatively low number of true-positives expected for PPI maps,
which can easily be outnumbered by false-positives unless the method operates at
high specificity. Prediction confidence can also be measured using precision, which
measures the proportion of positive predictions which are likely to be true positive
interactions. The problem with precision is that it depends directly on the actual ratio
of positive-to-negative protein pairs, and this is typically unknown. Previous studies
have fixed this ratio at very low values (e.g. Yu et al explored ratios as high as 1: 15, but
admit that true ratios are likely on the order of 1:1000 for some species). For any
given ratio Positive(P):Negative(N), the precision can be directly computed from
sensitivity and specificity (which are unaffected by this ratio) using the following
equation:

Precision(Prec.) = (Sens. o) /((Sens. o) + (1 —Spec.)'(1—«)) where a=P/(N+P)
The precision of our method for each species is illustrated for a range of ratio values in
Supplementary Figure S1.

Sensitivity and specificity measure for cross-species predictions. To determine if
PPIs in a target organism can be predicted from cross-species PPIs using the union of
multiple species, all known interactions from our select organisms (C. elegans, E. coli,
H. sapiens, C. cerevisiae and S. pombe) are used except the interaction from the
organism used for testing. For example to test our prediction in H. sapiens we would
use all known interactions for the organisms above except interactions for H. sapiens.
This simulates predictions in a new organism or for one which has few known
interactions.

Yeast manipulations. The collection of yeast gene knockouts is described in'’.
Plasmid repair analysis was performed as before'®.
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