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Abstract: It is undeniable that the increasing costs in healthcare are a concern. Although 

technological advancements have been made in healthcare systems, the return on 

investment made by governments and payers has been poor. The current model of care is 

unsustainable and is due for an upgrade. In developed nations, a law of diminishing returns 

has been noted in population health standards, whilst in the developing world, westernized 

chronic illnesses, such as diabetes and cardiovascular disease have become emerging 

problems. The reasons for these trends are complex, multifactorial and not easily reversed. 

Personalized medicine has the potential to have a significant impact on these issues, but for 

it to be truly successful, interdisciplinary mass collaboration is required. We propose here a 

vision for open-access advanced analytics for personalized cardiac diagnostics using 

imaging, electrocardiography and genomics. 

Keywords: pharmacogenomics; echocardiography; electrocardiography; personalized 

medicine; genomics 

 

1. Introduction 

In 2009, the cost of cardiovascular disease in the United States (US) was valued at $475 billion [1]. 

This high cost is due to modern equipment, diagnostic tests, and therapeutics. Cardiovascular imaging 

alone accounts for a significant proportion of healthcare expense. In the US, annual imaging costs 

alone exceed $100 billion [2]. Cardiovascular imaging accounts for 29% of all medical imaging [3] 

and about one third of all annual medical imaging costs worldwide [4]. In part, these costs are due to 

proprietary software products, which are a hindrance due to their incompatibility with software from 

other vendors. Open-source software and digital services have revolutionized many industries, but 

have not had a significant impact in medicine [5]. Although highly regulated environments are 

problematic for open-source approaches, open-access, non-proprietary systems would be a significant 

improvement over the status quo. Lowering cost has also been achieved in other industries through the 

use of mass customization or personalization. The adoption of personalized services in healthcare has 

been slower than in other industries in part due to healthcare regulation but also significant barriers 

alluded to in this paper.  

The process behind personalizing healthcare involves a wide range of technologies. This includes 

not only genomics but also informatics and imaging. Personalization requires the gathering of high 

quality, large and accurate datasets, and the use of advanced analytics. As with internet-based 

technologies, seen in other industries, these can be used to deliver nearest neighbor matching of patient 

data, using comparisons with similar patients. This is a paradigm shift from the current model of care 

which uses population values, derived from averaging data. Fueling the transformation to personalized 

healthcare is a super-convergence of sensor technologies, pervasive connectivity, supercomputing and 
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molecular technologies [6]. This paper discusses emerging open-access technologies which may aid in 

this transformation. We will elaborate on open access systems for the diagnosis and management of 

cardiovascular disease, illustrating the use of these technologies with case studies. The analytics 

systems we outline are open access, vendor neutral, deployable with minimal cost and ideally suited 

for remote telemedicine. 

2. Personalized Cardiac Imaging using Ultrasound 

Over the last few decades, medical imaging methods have proliferated, with newer technologies 

offering higher spatial and temporal resolution than previous methods. This has resulted in higher 

sensitivity than conventional systems but the costs of imaging have soared. In part, this cost has been 

due to unnecessary imaging and duplication with patients undergoing repeated studies. The availability 

of medical imaging is also often restricted to secondary or tertiary care hospitals. Advanced and 

prolonged medical training is often required to interpret imaging studies, which leads to high running 

costs. Unfortunately, efficiency and cost reduction has not been a significant focus for industries 

producing imaging systems. Until recently, few imaging systems were portable or deployable outside 

of specialized hospitals, however that is rapidly changing.  

Of all the available imaging technologies such as computed tomography, ultrasound, nuclear 

medicine, and magnetic resonance imaging, ultrasound is the most cost efficient and sustainable [7,8]. 

Ultrasound imaging of the heart, known as echocardiography, has been a core imaging modality in 

cardiology for over 50 years. Despite the advent of other diagnostic imaging methods, ultrasound has 

remained an essential tool, due to its versatility and ability to assess both structure and function of the 

heart in real-time. Technological advances in computer processing units (CPUs) and miniaturization 

have led to the development of ultraportable ultrasound systems which are capable of examining not only 

static organs, but also the heart (Figure 1). Advances in data acquisition and processing have allowed 

high frame rate imaging of the heart, which has enabled highly accurate assessment of cardiac function.  

Figure 1. Portable Imaging Systems. ZONE Sonography Technology acquires ultrasound 

data up to 10 times faster than conventional systems and implements data acquisition and 

management in software rather than hardware. The limiting factor for image and analytical 

processing therefore becomes computer processing unit (CPU) processor speed, which 

increases at an exponential rate (Moore‘s law). 
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Echocardiography is used for the diagnosis of structural heart disease, coronary artery disease, 

valvular pathology and abnormalities of cardiac function. The assessment of cardiac function, using 

left ventricular blood ejection fraction, is one of the most commonly used measures in clinical 

medicine. However, early changes of cardiac function cannot be observed using standard methods of 

assessment such as ejection fraction. These subtle changes can be detected using advanced measures of 

cardiac function such as ventricular wall deformation, otherwise known as strain [9]. Strain is 

measured using methods of ventricular wall tracking on 2D or 3D moving images of the heart and 

calculates a percentage difference between a baseline length and instantaneous length of a segment of 

the heart (Figure 2). Strain-based assessment of cardiac function has been used in research studies as a 

method to predict the presence of coronary artery disease [10], and early cardiotoxicity in the use of 

anthracycline and HER2neu targeted biological chemotherapies (e.g., Trastuzumab) [11,12]. This can 

also be considered personalized since patient-specific changes in strain values are more predictive of 

the presence of disease than comparisons with population values. Hence, chemotherapy related 

cardiotoxicity can be inferred when strain deviates from individualized baseline values. This is only 

possible due to the high degree of accuracy and reproducibility of strain measurements [13]. Accurate 

assessment of cardiac function is also an important clinical variable factored into many clinical 

algorithms, for example decisions related to surgery, implanting defibrillating pacemakers, and drug 

therapy. In addition, cardiac function has an emerging role in pharmacogenomic algorithms [14]. 

𝜀 =
∆𝐿

𝐿
=

𝑙 − 𝐿

𝐿
 

where 𝜀 is normal strain, 𝐿 is the original length of the fiber and 𝑙 is the final length of the fiber. 

Measures of strain are often expressed in a negative percentage of total change in length of a cardiac 

segment or of all segments (global strain). 

Figure 2. Regional and Global Longitudinal Strain. Examples of instantaneous regional 

longitudinal strain (color coded segmental lines) and global longitudinal strain (white 

dotted lines) measured over a cardiac cycle (EchoPAC™, General Electric). The heart 

(left) demonstrates a normal shape, volume and maximal global longitudinal strain with 

segmental homogeneity. The heart (right) demonstrates a severe cardiomyopathy with 

spherical remodeling, increased ventricular cavity volume, reduced maximal global 

longitudinal strain and segmental heterogeneity.  
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As mentioned, cardiac strain has shown promising clinical utility in several settings; however, a 

major challenge that hampers widespread utilization is the availability of manufacturer-specific 

software with various tracking algorithms. In ―A Suggested Roadmap for Cardiovascular Ultrasound 

Research for the Future‖, one proposed technique to overcome vendor-dependency is to perform strain 

assessment on images in the widely utilized Digital Imaging and Communications in Medicine 

(DICOM) format [15]. DICOM images are derived from the native polar scan-line (raw) data and 

contain data in Cartesian coordinates. As part of this effort, our team is developing an open-access 

software system to assess subtle changes in cardiac function in astronauts on the International Space 

Station (ISS) [16]. The group effort is part of NASA‘s Integrated Cardiovascular project. 

3. The Integrated Cardiovascular (ICV) Project 

The impact of long-term microgravity on cardiovascular function may become a critical limitation 

to human space exploration. Ultrasound is well suited for space exploration due to its portability and 

versatility in imaging multiple organs quickly. For this reason, ultrasound imaging platforms have been 

installed aboard the International Space Station [17,18]. Our own work involves the use of these 

platforms within the Integrated Cardiovascular (ICV) Project and the larger framework known as the 

Digital Astronaut program. The Digital Astronaut program aims to generate computational models of 

various organ systems, by using a modular XML (extensible markup language) file format. The 

process of analyzing the human heart in space involves a number of steps. First, there is astronaut 

training, currently consisting of five sessions wherein crewmembers focus on gaining familiarity with 

the study protocol and remote guidance procedures. Second, real-time guidance of in-flight 

acquisitions is provided by a sonographer in the Telescience Center of Mission Control. During this 

step, physician investigators with remote access are also able to relay comments on image optimization 

to the sonographer. Live video feed is also relayed from the ISS to the ground via the Tracking and 

Data Relay Satellite System, with a 2 s. transmission delay. The expert sonographer uses these images 

along with two-way audio to provide instructions and feedback. Third, images are stored in  

non-compressed DICOM format (750 MB per study) for asynchronous relay to the ground for 

subsequent off-line analysis [19]. Offline analysis involves the measurement of a number of 

parameters including strain. This analysis has shown there is a reversible, time-dependent reduction in 

global longitudinal strain in astronauts spending several months in space [20].  

Further offline analytics are performed through the application of a personalized cardiac model to 

the echocardiographic images and the use of an electronic echocardiographic atlas, to compare each 

individual model with an existing patient database (Figure 3). Superimposing a model of cardiac 

structure and function onto echocardiographic images is advantageous for a number of reasons. 

Cardiac models have been used to improve edge detection algorithms by interpolating and 

extrapolating myocardial borders between imaging frames, and models have improved volumetric 

assessment. In addition, modeling the material properties of the heart tissue can be used to estimate 

strain. Models are also valuable as multiple data inputs can be superimposed onto models and 

extrapolated to make predictions based on prior observations.  
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Figure 3. Workflow for Gathering Echocardiography Data from the International Space 

Station (movie) and Integration into the Strain Based Model (movie). 

 

http://youtu.be/2Bw4wFl4XYU
http://youtu.be/QqdaTskwIZw
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The echocardiographic software we are developing aims to be low cost, open access and widely 

available, utilizing to the greatest extent possible an open source approach. The expectation is that this 

software, developed for space-based applications, will ultimately have use in ground-based clinical 

practice as either a third party plugin, within echocardiography laboratories, or as a plugin for a 

standalone product, within a Cloud-based environment.  

Cloud-based echocardiography reporting (e.g., StudyCast) can have a transformative impact on 

the delivery of healthcare in the third world. For example, the ASE-REWARD (American Society of 

Echocardiography) program was a brief intervention which involved screening patients in a remote 

rural community in India, using pocket or portable cardiac ultrasound [21]. Over two days during this 

project, 1,030 echocardiograms were performed and interpreted by remote readers in different time 

zones, using a Cloud-based server. The advantages of using the Cloud-based server included flexible 

storage and remote viewing of studies. Although not used in this project, Cloud-based technology also 

has the potential to apply advanced analytics, which often requires high performance computing and is 

readily available in the Cloud. The logistics of remote outreach telemedicine in rural communities has 

many of the same issues as monitoring astronaut health in space and the parallels between these two 

projects have been highlighted. 

4. The Human Physiome Project 

The cardiac modeling detailed here is also part of a broader international collaboration, known as 

the International Union of Physiology (IUPS) Human Physiome Project [22]. The IUPS Physiome 

Project is a worldwide effort to define the physiome through the development of databases and models 

that facilitate the understanding of the function of genes, cells, organs, and organisms as an integrated 

whole. The project is focused on compiling and providing a central repository of databases, linking 

experimental information and computational models from many laboratories into a single, self-consistent 

framework. The long term aim of this project is to develop modules for creating a Virtual 

Physiological Human for applications in personalized medicine.  

By extracting metadata from echocardiographic DICOM files, including cardiac chamber 

dimensions, and applying strain analysis to left ventricular mechanics, data rich models of the heart 

can be created. Preliminary steps have been achieved in the creation of these models, using data 

gathered from the ISS. These have demonstrated close agreement with clinically validated strain 

software systems [23]. Integrating data from electrocardiography and genomic sources is the next 

intention for this project. 

5. Advanced Electrocardiography  

Electrocardiography is an important diagnostic tool often used early in the assessment of cardiac 

disease. Although conventional resting electrocardiography (ECG) has an important role in managing 

acute coronary syndromes and chest pain, it has well-recognized limitations in the detection of heart 

disease [24]. For both isolated and pooled ECG abnormalities, the sensitivity of conventional resting 

ECG as a predictor for coronary artery disease (CAD) and left ventricular hypertrophy (LVH) has been 

too low for it to be practical as a screening tool [25,26]. Furthermore, while normal conventional 

resting ECG findings have excellent negative predictive value (NPV) for left ventricular systolic 
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dysfunction (LVSD), the simultaneously poor positive predictive value (PPV) of abnormal 

conventional ECG findings also limits conventional ECG‘s utility in heart failure screening [27,28].  

Over the past decade, researchers working in conjunction with NASA have implemented a 

comprehensive suite of advanced ECG (A-ECG) diagnostic software techniques on a single software 

platform [29]. Currently, all of the incorporated techniques can be performed simultaneously and their 

most important results are intelligently integrated in real time by using software-based statistical 

pattern recognition procedures [30]. When applied clinically, A-ECG takes advantage of pre-existing 

databases of conventional ECG, derived vectorcardiographic and several other advanced ECG results 

from thousands of patients with known, imaging-proven cardiac diseases and from thousands of 

healthy subjects. By referencing any ―new‖ patient‘s results to results already in the aforementioned 

large databases, and through use of state-of-the-art signal and statistical processing, A-ECG techniques 

have become diagnostically more powerful than conventional ECG alone [29,31]. A-ECG results can 

also be derived from digital ECGs collected on most conventional ECG equipment already in the 

installed base, and from digital ECGs currently stored only as ―conventional ECGs‖ within electronic 

health records. A-ECG also shares the same advantages that have made conventional ECGs 

ubiquitous: i.e., noninvasiveness, inexpensiveness, diagnostic capabilities that are multifunctional, and 

amenability not only to telemedicine but also to patient-centered and patient-driven healthcare.  

Figure 4 shows two example case studies illustrating the additional diagnostic clarity that A-ECG 

can provide over strictly conventional ECG. The first case study (A) in Figure 4 shows an appropriate 

reversal by A-ECG of a ―false negative‖ automated diagnostic call on the part of the conventional 

ECG, while the second (B) shows an appropriate reversal by A-ECG of a ―false positive‖ automated 

diagnostic call on the part of the conventional ECG. In (C) the traditional linear DA (―Canonical Plot‖) 

depicted takes into consideration results from only certain key parameters available from the 10-s 

―snapshot‖ ECG (such as the derived VCG-related spatial QRS-T angle and other ―3D ECG‖ 

parameters), and it specifically identifies non-ischemic cardiomyopathy (see X marker on Plot) as the 

likely underlying condition for the 57-year old patient, whose conventional ECG is shown in (A). 

Similarly, for the 30-year old patient whose conventional ECG is shown in (B), the A-ECG DA result 

correctly predicts the presence of ―health‖, not disease (see Y marker on Plot). All DA-related results 

were also confirmed by corresponding results from statistically more robust A-ECG-related logistic 

regressions [29]. 

The circles in the canonical plot diagram represent DA centroid results for various different 

populations in a large underlying database: Small green circle = Healthy population; red circle = 

Coronary Artery Disease (CAD) and/or Acute Coronary Syndrome (ACS) populations; aqua circle = 

Left Ventricular Hypertrophy(LVH) population; blue circle = Hypertrophic Cardiomyopathy (HOCM) 

population; purple and orange circles = Non-Ischemic (NICM) and Ischemic (ICM) Cardiomyopathy 

populations, respectively. 
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Figure 4. Additional Diagnostic Clarity Provided by Advanced ECG. (A) Conventional  

12-lead ECG from a 57-year old male with imaging-proven non-ischemic cardiomyopathy 

and low left ventricular ejection fraction (25%). The conventional ECG software‘s 

automated interpretation, (see top of A) is false negative in this case, even though poor  

R-wave progression is present; (B) Conventional 12-lead ECG from a 30-year old male 

triathlete, with a normal cardiac MRI. The conventional ECG software‘s automated 

interpretation (―myocardial injury in anterior location‖) is false positive in this case 

because the ST segment elevation present in some precordial leads is due to early 

repolarization, not ―myocardial injury‖; (C) Advanced-ECG-related linear discriminant 

analysis (DA) results from the same ECGs shown in (A) and (B).  

 

 

B 

A 
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Figure 4. Cont. 

 

6. Cardiovascular Biomarkers for Personalized Medicine 

A biomarker is defined as a measurable characteristic which reflects the physiological status of an 

individual. Although medical imaging is considered a biomarker, the term is more commonly used to 

denote blood-based clinical chemistry. In 1902, Archibald Garrod, one of the founders of clinical 

chemistry, introduced the concept of personal ―chemical individuality‖, and foresaw a future where 

genetics and chemical variability would become intertwined [32]. Conceptually, this was thinking far 

ahead of its time and now could be taken a step further with the inclusion of medical imaging. Whilst 

medical imaging assesses anatomic structure and function, blood-based biomarkers, such as nucleic 

acids, proteins or metabolites, are also capable of inferring the same, without imaging the whole organ 

or organism. There is an emerging realization that integrated imaging and clinical chemistry has 

significantly greater value than contemplating these fields as separate. 

Although medical imaging is a commonly used diagnostic tool, there is a well-recognized limitation 

to its capabilities. Pathological change, visible at an organ level, is generally an example of late-stage 

C 
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disease processes. For example, the imaging modalities used in the diagnosis of coronary artery disease, 

such as stress echocardiography and nuclear cardiography, are used to assess advanced disease and are 

incapable of detecting subtle early coronary artery disease or cardiac metabolism. Despite significant 

efforts to increase spatial and temporal resolution to improve sensitivity, returns have diminished for 

additional expense on medical imaging. A sustainable, low-cost option may however be to integrate 

low-cost imaging systems and biomarkers together, into diagnostic algorithms [33]. An excellent 

example of a biomarker which provides additive value to diagnostic imaging is the cardiac-specific 

troponin assay. In addition to aiding the diagnosis of myocardial infarction, troponin plays a role in the 

diagnosis of incipient heart disease; for example, anthracycline induced cardiomyopathy [11,12].  

An emerging evidence base suggests that troponin and imaging, such as nuclear scintigraphy [34] and 

strain-based echocardiography, may be complementary in detecting this cardiotoxicity [12]. Although 

appealing, the integration of multimodality imaging with biomarkers in clinical practice is inhibited by 

a lack of point-of-care instruments and evidence-based diagnostic algorithms.  

Similar to the limitations of diagnostic imaging, technological advances in laboratory systems are 

also reaching a roadblock. Improvements in technology have increased the sensitivity and precision of 

analytical systems, and resulted in earlier medical diagnosis; however, conversely, this has been at the 

cost of reduced specificity, and a reduction in diagnostic accuracy for single conditions. Single analyte 

biomarkers—for example, prostate specific antigen—have been used widely for prostate cancer 

screening. However, due to a high false positivity rate and potential for treatment harm, there is a 

general trend away from using this assay for population screening [35]. Troponin assays, used in the 

diagnosis of myocardial infarction (MI) and cardiovascular disease, again provides a prototypic 

example of this problem [36]. Although more sensitive and specific than previous biomarkers (CK, 

CK-MB and AST), the first generation Troponin assay lacked dynamic range at low concentrations. 

Early generation assays were therefore only able to confirm a diagnosis, some hours after an event. 

Newer generation troponin assays have greater sensitivity and analytical accuracy for measuring lower 

quantities of troponin [ng/L for high sensitivity (hs) assays and pg/L for ultrasensitive assays] [34]. 

Although the increased sensitivity of assays has resulted in earlier diagnoses, the tradeoff has been 

reduced specificity, with positive results occurring in noncardiac conditions such as sepsis [37]. 

Therefore, the use of hs-troponin has led to inappropriate diagnoses, investigations and treatments, 

which heighten the risk for iatrogenic injury. Next generation, ultrasensitive assays, are likely to 

further exacerbate this problem. The solution to this conundrum is likely to come from the emerging 

fields of metabolomics and proteomics. These technologies appear promising in making both early and 

accurate diagnoses with high levels of sensitivity and specificity [38–41]. Metabolomics for instance 

has been used in an experimental setting for the early diagnosis of myocardial infarction, chronic 

stable coronary artery disease and metabolic wellness [39,40,42]. 

Metabolomic and proteomic profiling involves the broad quantitation and identification of 

thousands of metabolites and proteins. This is often performed using mass spectrometry or nuclear 

magnetic resonance, both of which are capable of identifying thousands of analytes rapidly and 

inexpensively. Metabolomic profiling, using mass spectrometry, is already in clinical use and has 

revolutionized microbial identification in many clinical laboratories [43]. Labor intensive and slow 

historical methods of identifying microbes can now be performed within seconds using mass 

spectrometry, with spectral profiles matched to a database of known microorganism metabolite 
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profiles. Making sense of the high volume data resulting from experimental metabolomic and 

proteomic studies is however complex and requires advanced bioinformatics. For biomarker discovery, 

these pattern recognition algorithms often require high performance supercomputing which itself is 

becoming more readily available outside of high-end research laboratories. 

7. Bioinformatics and Supercomputing 

As already discussed, single biomarker assays are commonly used in the diagnosis of complex 

disease. However, due to the limitations described, this approach is recognized as reductionistic. This 

becomes even more apparent when complex and unpredictable biology is taken into account. Current 

practice is to compare quantitative values of individual biomarkers with reference ranges, or 

thresholds, to make a diagnosis. These thresholds are often based on knowledge of variability within 

healthy and diseased populations. Very rarely, individualized biomarker values are used, which are 

based on prior baseline testing of an individual patient, age-specific reference ranges, or known 

variability within race or gender. The use of multiple (multiplexed) biomarkers, to make a single 

diagnosis, is even less common, though there are some examples where this is used. A complete blood 

count can be considered as a multiplexed biomarker test and patterns within a complete blood count 

are used to diagnose a wide range of hematological illnesses. These gross patterns are discernible by 

experienced clinicians and hematologists; however, the complete blood count is also a useful example to 

demonstrate the value of advanced pattern recognition. Complete blood count patterns, discovered using 

supercomputing and advanced biostatistics, have been shown to be highly predictive of cardiovascular 

outcomes [44]. Although single parameters—such as red cell distribution width—within a complete 

blood count are known to have modest predictive value [45], patterns otherwise imperceptible to humans 

appear to have a significantly higher predictive capacity for cardiovascular risk.  

Similarly, larger datasets, such as those seen in genomics, proteomics and metabolomics have the 

potential to reclassify and restratify patients with disease [46]. Unfortunately, the high volume of data 

from proteomic and metabolomic analysis rapidly exceeds the capacity of the human brain to 

comprehend and although the principles for using these technologies have been around for many years, 

the ability to rapidly visualize and interpret this data has hindered its emergence in the clinical setting. 

However, as already discussed, metabolomic profiling has found a place in the clinical laboratory in the 

identification of bacterial microbes. This clinical profiling requires only a desktop computer to run, 

however for biomarker discovery and the handling of very large datasets, such as whole genome 

sequences, high performance computing is required. In recent years, access to supercomputing resources 

has become more widespread and costs have dropped significantly. Web-based Cloud services such as 

Amazon Web Services, Microsoft Windows Azure and Google compute provide low cost storage and 

supercomputing to those with expertise and internet access.  

Furthermore, emerging next generation computer systems, such as Quantum computers, are also 

expected to be widely available through remote access. Quantum computation may revolutionize  

the approach to complex optimization problems commonly encountered in the search for genetic 

epistasis [47] and gene-environmental interactions (Figure 5).  
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Figure 5. Optimization Algorithms, Interactions and Exponential Computations. An 

optimization problem is posed when a number of variables, e.g., SNPs, in aggregate 

account for an outcome such as a disease or drug response. An example of such variables 

shown below demonstrates this in the context of binary light switches, each with an 

independent weighted influence (top left). The sum of their influence on the outcome is 

calculated using the equation (top right) and summed in a linear fashion (middle left), in a 

relatively simple calculation. In the discovery phase, these weightings would not be known 

and would be discovered iteratively, with high computational needs. If, however, the 

factors interact in a network (middle right) a far higher number of permutations exists. The 

number of permutations is an exponential function of the number of variables and requires 

exponential computations (bottom left and right) for each added variable. A number of 

potential solutions exist for a given minimal dataset, within which the optimization algorithm 

attempts to find the best solution. Quantum computers, such as D-Wave systems [48], are 

ideally suited for the exponential computations required for optimization algorithms and 

are anticipated to be revolutionary for medical diagnostics and imaging [49]. Graphic 

reproduced with permission from D-Wave systems, ―Hacking the Multiverse‖.  
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8. Cardiovascular Genomics and Handheld Point-of-Care Platforms 

Apart from inherited heart diseases, such as the Long QT syndrome, hypertrophic cardiomyopathy 

and familial cardiomyopathy, genomic medicine has not featured prominently in general cardiology 

practice. Pharmacogenomics for commonly used medication promises the greatest potential for 

introducing genomics into the mainstream. This has an emerging role in patients taking several 

common cardiovascular medications, including clopidogrel [50], statins [51], dabigatran [52] and 

warfarin [53]. The last two of these drugs are frequently used in patients with atrial fibrillation, which 

in itself is rapidly being rewritten as a genomic condition. Common variants in chromosomes, 4q25, 

1q21 and 16q22, have all been associated with atrial fibrillation in genome-wide association studies 

(GWAS) [54]. As an example, carriers of multiple variants within all of these loci are at five to  

six-fold increased risk of atrial fibrillation [55]. Clinical factors, combined with these common 

variants, are an important component of clinical risk prediction models. These clinical factors include 

patient height, left ventricular function (assessed by echocardiography) and left ventricular 

hypertrophy (assessed by either echocardiography or electrocardiography) is often available 

electronically and is well placed to be accessed by decision support software [56]. In addition to 

predicting disease, 4q25 variants have also been associated with the response to specific 

antiarrhythmic drug treatments [57], efficacy of direct current cardioversion (DCCV) and response to 

pulmonary vein isolation [58–60]. In the future, it is likely that genetic data will be integrated with 

imaging metadata to enhance clinical decisions regarding invasive procedures [56,58]. 

Integration of multiple diagnostic methods, such as imaging and ‗omics, appears to be the key to the 

advancement of sustainable medicine. However, the cost of purchasing multiple instruments with 

separate functions limits the potential for applying this at the bedside or in the clinic. There are few 

laboratory platforms that can perform metabolomic, proteomic and genomic analyses in a single 

instrument. At present, none perform these simultaneously; although promising, handheld point-of-

care technologies are emerging which may radically change that status quo. The rHealth sensor is an 

example of such a technology, which is currently in preclinical development. The instrument utilizes a 

novel microfluidics platform, nanotechnology and low cost sensors to provide rapid, sensitive and 

accurate analysis of multiple biomarkers (Figure 6). A convergence of mass spectrometry-type 

analytics and nanotechnology may be the key to reaching the breadth of analyte detection, high 

sensitivity and specificity required for applications in the field of personalized medicine [61,62]. Since 

mass spectrometry has yet to become a handheld instrument, it is probable that portable integrated 

systems, including multiple highly sensitive sensors, will perform this role. 
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Figure 6. Point of Care Diagnostic Platform. The rHEALTH sensor is a self-contained, 

general-purpose device utilizing microfluidics and nanotechnology. It delivers multianalyte 

single molecule detection capabilities and provides demonstrated 100-fold better limits of 

detection (LOD) than current ELISA and bead-based immunoassay technology, with  

896-fold multiplexing. 

 

Biological fluids and volatiles, other than blood, are already used in many clinical assays. Exhaled 

breath analysis is considered an undervalued source for biomarkers related to health. Existing 

indications for exhaled breath testing include nitric oxide detection in chronic asthma and hydrogen 

testing in patients with gastrointestinal bacterial overgrowth [63,64]. Recent research has shown that 

exhaled breath shows high promise as a biomarker for other health states [65]. Breath metabolite 

profiles, or fingerprints are extremely individualized, showing the possibility for the distinction of 

disease and tracking an individual‘s health over time [66]. There are many potential applications for 

the use of breath analysis in the management of cardiovascular disease. For instance, selected ion flow 

tube mass spectrometry (SIFT-MS) exhaled breath analysis has recently been shown to have diagnostic 

utility in patients with heart failure [67]. Breath markers of oxidative stress may have diagnostic use in 

patients with acute coronary syndrome [68] and can demonstrate the benefits of traditional relaxation 

therapies and beneficial changes in gene expression [69]. Portable electronic nose technology, such as 

the Jet Propulsion Laboratory (JPL) ENose, has the potential to translate these findings into a low cost, 

home-based diagnostic or therapeutic monitoring test (Figure 7). Self-monitoring one‘s health at home, 

with constant biofeedback, would be the ultimate vision for the future of healthcare, however 

significant impediments must be overcome before such breath testing can become a standard of care. 

These include methodological issues such as collection standards, and instrument sensitivity [70].  

In addition, the absence of a roadmap or atlas of breath gases and metabolites in health and disease 

reduces the clinical applicability of these emerging technologies.  
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Figure 7. Chemoresistive Sensor Array. The JPL Electronic Nose (ENose: below  

left) [71,72] is an event monitor designed and built for near real time air quality monitoring 

in crew habitats aboard the space shuttle/space station. This is an array-based sensing 

system which is portable (low volume and power), and designed to run continuously and 

autonomously. The sensor array is optimized to monitor (detect, identify, and quantify) for 

the presence of selected chemical species in the air at parts-per-million (ppm) to parts-per-

billion (ppb) concentration ranges. For each sensor (below right), resistance is recorded, 

the change in resistance is computed against a background, and the distributed response 

pattern (fingerprint or smellprint) of the sensor array is used to identify gases and mixtures 

of gases [71–73].  

 
 

As a demonstration for use in medical 

applications, the JPL ENose was used in a pilot 

study to detect and differentiate brain cancer cells. 

In this proof-of-concept study, the odor signatures 

of individual organs and glioblastoma and 

melanoma tumor cell lines were investigated [74]. 

This study showed that it is possible to use an 

electronic nose to distinguish between two types of 

tumor cells and between two types of organ tissue. 

(Opposite right) The JPL ENose sensor array 

fingerprint pattern of glioblastoma (U251) and a 

melanoma (A2058) cell line. 
 

9. Network Medicine: A Holographic Universe 

Quantifying nucleic acids, proteins and metabolites for diagnostic purposes is only one aspect of the 

use of genomic technologies. A further step is to take the dynamic information, delivered from 

genomic analysis, and visualize the complex interactive networks that make up biological systems, 

otherwise known as systems biology. This ‗systems‘ method has shown its utility in defining the 

pathophysiology of early disease, by demonstrating intermediate pathophenotypes (precursors) that 

eventuate as clinical disease. Network medicine is the title given to this field of study and its breadth 

covers not only molecular networks, but also at a larger scale, social networks. The impact of 

combining these approaches can be profound. For example, mycobacterial gene sequencing and social 

network analysis has been shown to be useful in identifying super-spreaders of multidrug resistant 
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tuberculosis [75]. Conceptually, interactive networks are a foreign concept to clinicians. These 

networks however demonstrate some consistent features such as being scale-free, clustered and also 

demonstrate emergent behavior, which is otherwise not evident from studying isolated network 

components [76]. A network analysis of the spread of obesity [77] and smoking behavior [78] has 

shown the ‗contagiousness‘ of an individual‘s actions amongst their nearest neighbors and 

demonstrates the potential for targeted interventions which could have wider community impact.  

Integrating multiple sources of genomic data has proven to be difficult, but network models have 

the capability of visualizing the highly complex and expansive universe of human physiology. This has 

provided tantalizing new perspectives on chronic disease diagnosis and treatment. Integrating multiple 

‗omic datasets into network models has been illuminating, but clinical publications using integrated 

‗omic data are rare. For example, Lin et al. used genomics, proteomics and metabolomics to identify 

the pathways affected by end stage cardiomyopathy [79]. Whilst this study failed in its primary goal to 

demonstrate a difference between end-stages of ischemic and nonischemic cardiomyopathy, its 

approach was remarkable in showing that biological pathways can be inferred from whole blood 

samples, rather than from specific organ tissue. Similarly, gene expression signatures from whole 

blood have been shown to reflect identical genes expressed in diseased aortic atheromatous tissue [80]. 

This ‗functional holography‘ of organ systems, through blood sampling, could be a significant step 

forwards in reducing the invasiveness and expense of medical diagnostic testing. The ability to infer 

end organ disease using gene expression profiling from blood is already currently available for the 

diagnosis of coronary artery disease [81] and cardiac transplant rejection in patients [82].  

Pharmacology can also be considered from a systems biology approach. Systems pharmacology 

would view the action of a drug to be multifaceted, with drug action occurring amongst a network of 

dynamic genes. High throughput pharmaceutical screening with genomics has created databases 

through which a drug‘s gene expression profiles can be matched with a corresponding ‗opposite‘ 

disease profile. Rather than using the empiric approach of evidence-based medicine, these profiles can 

be used to rapidly identify new disease indications for ‗old‘ medication. This process otherwise known 

as computational drug repositioning has been used to identify novel drug indications, which have 

shown efficacy in animal models and could have future clinical applications [83,84].  

In other ways, genomics has revealed the molecular underpinnings to disease and has led to the 

development of gene-specific therapies e.g., Kalydeco, Vertex Pharmaceuticals for cystic fibrosis. 

Unfortunately, for therapies such as Kalydeco, this drug development has proven to be prohibitively 

expensive [85]. Although this maintains the perpetuation of medicine for the wealthy, network 

medicine and computational drug repositioning have greater potential. Finding new uses for generic 

medication, through an inductive rather than deductive reasoning, may deliver cost efficient personalized 

medicine. This comes at an opportune time as the current paradigm of treating populations, on a  

one-size-fits all basis, appears to be failing. Off-target effects of drugs, such as statins, are becoming 

evident in population studies e.g., causing myopathy, renal failure [86] and diabetes [87]. Targeting 

network modules, rather than organs or diseases per se, with next generation therapeutics may lead to a 

significant advance, compared with the contemporary methods of treatment which have multiple 

unexpected effects. Nanomedicine holds an additional promise in that regard as it can be applied in not 

only diagnostic but also therapeutic applications. As the field of diagnostic and therapeutic medicine 

continues to converge the potential of theranostic (therapeutic diagnostics) nanomedicine is being 
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realized and a number of these agents have already reached regulatory approval in the field of 

oncology. Eventually, traditional high throughput screening of drug compounds may be surpassed by a 

more rational approach to therapeutic drug design which may occur using integrated genomic analyses 

on an individual patients (Figure 8) [88]. Computationally repurposed drugs may potentially be 

generated on site and delivered in a highly targeted basis, reducing overall exposure to agents, which 

may be systemically toxic [89]. Although this will take some years to emerge in clinical practice, these 

fields of basic science, once thought to be science fiction, seem on track to becoming a reality. 

Figure 8. Rational Design of a Theranostic using Proteomic and Metabolomic Network Data.  

  

 

 

Network analysis in Metacore™ using results from integrated 

proteomic/metabolomic exploration of cardiac ischemia in 

human subjects. Shortest path network identifies key 

biomarkers, hubs and therapeutic points of interest.  

Theranostic self-assembly using micelle encapsulated 

semiconductor silicon quantum dots. This incorporates 

a therapeutic and a surface targeting molecule, both 

identified with ‗omic network analysis.  

 

 
(A) Demonstration of opticomagnetic properties of co-encapsulated iron oxide 

and silicon nanoparticles. (B) Targeted micelles can be identified optically and 

can be identified in vivo or with magnetic properties aid in cell sorting ex vivo. 

10. Case Presentations 

Five cases are presented to demonstrate the diagnostic potential of the advanced diagnostic systems 

described. Case 1 shows the value of VECG analysis in the early sensitive detection of acute 

myocardial infarction in a case which otherwise would have been considered borderline for the 

diagnosis of STEMI by ECG and biomarker criteria. Case 2 describes a case where a diagnostic 

assumption was made based on a patient‘s exposure to a cardiotoxic chemotherapy agent. More 

expensive methods of diagnosis such as MRI may have been averted with the use of A-ECG and 

remission with treatment and recrudescence could have been tracked over time. Case 3 demonstrates a 
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patient with a borderline diagnosis, which was unclear using a coarse, contemporary method for 

assessing left ventricular function. Integration of imaging and gene sequencing data in this case may 

have had a higher diagnostic yield. Case 4 describes a patient presenting with the complication of stent 

thrombosis, following coronary artery stenting. This adverse event was, in part, due to drug failure 

caused by the patient carrying a loss of function enzyme responsible for metabolising a drug into its 

active form. A subsequent switch was made to an alternative treatment, not as dependent on the same 

enzyme. Ideally matching the right drug to the right patient would have occurred prior to this adverse 

event occurring. Case 5 describes a young patient with a rare genetic cardiomyopathy and muscular 

dystrophy. Her treatment has included contemporary heart failure medication, though these fail to 

address the underlying cause of her illness, a Lamin A missense mutation. The expression of this 

nonessential gene product could potentially be targeted with network medicine and computational drug 

repositioning. Alternatively targeted gene therapy could be delivered to knock down gene function. 

Unfortunately, as this patient suffers from a rare, orphan disease, a large scale, randomized controlled 

trial is unlikely to be performed. Alternatively, an n = 1 trial [90] with close scrutiny of efficacy and 

toxicity could be applied, but this is an anathema to the current evidence-based model of care. 

11. Discussion 

With aging populations, constrained financial systems, and enormous wastage within the current 

medical model of care, secondary care is becoming increasingly unaffordable and unsustainable. 

Greater decentralization of healthcare resources and supported autonomy will be necessary to reduce 

this burden cost. This will only be possible through advances in portable diagnostic systems, which are 

becoming increasingly accurate and smart due to advances in nanotechnology, electronics, 

bioinformatics and computer processing. Crowdsourced solutions such as the Tricorder X prize will 

likely propel this super-convergence of imaging, genomics, and low cost sensors into home-based 

integrated diagnostic systems [91]. In this paper, we have outlined a number of future space medicine 

technologies and demonstrated the value of integrating imaging, informatics, electrophysiology, and 

molecular technologies in a diagnostic to therapeutic continuum. Portability, low-cost, remote guidance 

with the preservation of autonomy are common needs in the delivery of community healthcare of both 

westernized and developing countries. These systems could potentially see wide usage in both ends of 

this spectrum. In addition, the systems demonstrated here are open-access and capable of receiving 

inputs from multiple vendor sources.  

Through the use of case studies, we have shown the technologies described in this paper to have 

higher diagnostic accuracy than current methods. Supportive clinical data of these and other similar 

technologies is soon to emerge on a population basis. The novelty of these technologies and potential 

for disruption to established clinical practice however may impede their introduction in healthcare 

systems, where revenue is generated from high revenue investigations. For example a truly patient-

centered approach to outpatient cardiovascular diagnostics in the future might consist of resting  

A-ECG together blood based biomarkers testing; followed up if a problem is identified with 

personalized ultrasound-based cardiac imaging. This non-invasive and inexpensive approach maintains 

sufficient accuracy whilst avoiding exposure of patients to any radiation during nominal, non-emergent 

outpatient diagnostic workups. It thereby also fulfills the crucial Hippocratic concept of ―first do no 
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harm‖. While concerns regarding cost have frequently been raised, abetted by the generally helpful 

maxim that ―less is often more‖, it should be understood that when the results of these inexpensive 

technologies are intelligently integrated by clinicians who comprehend the ―less is more‖ message, 

they typically result in prompter diagnosis, less need for invasive and expensive follow-up imaging. In 

addition, this leads to the improved stratification of patients into responder versus nonresponder groups 

for avoidance of expensive but potentially unnecessary and harmful treatment options.  

Academic clinical medicine has become incredibly resistant to change, in part due to years of 

advocating approaches that are at best ―evidence-based‖ only in the sense of populations, not in the 

more important sense of the individual. For instance, there is now an expectation in cardiovascular 

medicine that clinical adoption cannot occur until a large, multicentre, randomized-controlled 

outcomes trial has been performed. In addition, individual hypotheses are tested sequentially, a model 

that is ultimately not feasible for personalized medicine. Adoption of many of these technologies may 

initially need to occur more on the basis of inductive and personal rather than deductive and 

population-based approaches, realising that with close scrutiny and experience, the ideal applications, 

niches and algorithms for the use of these powerful technologies will reveal themselves over time.  

Even though the platforms for genomic science and bioinformatics are maturing, there are many 

areas unprepared for its implementation. Education of medical students, physicians in training and 

specialists is essential to ensure that the benefits and utility of these fields are not lost. Decision 

support and result visualization also need to be seamless and understandable. Novel engaging methods 

of reporting, using mobile devices, and interactive and intuitive visualizations will be needed. 

Augmented and virtual reality holds significant potential in this regard as an aid for teaching purposes, 

not only in remote and automated guidance, but also in demonstrating visuospatial problems such as 

3D cardiac anatomy and physiology. For example, virtual and augmented reality have been used in 

sonographer training for echocardiography and will probably be the only way for skilled procedures to 

be delivered into the hands of the unskilled [92]. 

The common theme within these technologies is personalization. Although it is widely held that this 

concept relates only to genomic medicine, it encompasses a far greater whole which includes 

delivering personally relevant information to patients. Reducing a person to images, physiologic data 

and DNA has added immense complexity to managing patients in practice and has the potential to 

dehumanise the patient interaction as less time may be spent in face to face contact [93]. Simplifying 

the delivery of genomic information by masking the underlying systems and reducing the perceived 

complexity will be required to make these technologies work in a busy clinical environment while 

maintaining a personal touch.  

In general, entrenched dogma changes slowly; however, excessively reductionist and population-

centric approaches to healthcare are increasingly giving way to newer, more integrative and individualized 

approaches. Whilst previously lacking an evidence base, some traditional forms of healthcare have 

long argued for the same focus on the individual as a collective whole. Remarkably, this has many 

parallels with genomics and perhaps, unsurprisingly, these traditional forms of healthcare are being 

shown to have a genomic basis [94]. Whilst westernized medicine has discarded centuries-old 

perceptions of health as excessively simple, these older, more integrative, ‗systems‘ perceptions may 

in fact have significantly greater relevance to the future of medicine than realized (Figure 9).  
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Figure 9. The Modern Vitruvian Man. Da Vinci‘s Vitruvian man, often used as a symbol 

of humanity, was drawn to demonstrate the proportions of the human body but with the 

purpose of relating man to nature. In his anatomical drawings and in Vitruvian Man, he 

considered a cosmografia del minor mondo (Cosmography of the microcosm). With 

increasing evidence that the human body comprises not only its own vast number of 

nucleic acids, proteins, metabolites, etc., but also those of its microbiome [95], Da Vinci‘s 

perception of the human body as a universe of interacting molecules is at once both  

late-medieval and ‗modern‘. It would seem that the only universe capable of containing the 

human person is an irreversibly personalizing universe [96]. 

 

Case 1: Acute Myocardial Infarction 

A 57 year old man with no previous cardiac history presented to hospital with 47 min of severe, 

central chest pain. A conventional ECG performed at admission (Figure 10A) had a negative 

automated call for myocardial infarction (MI) but showed isolated 1 mm ST elevation in leads V1 and 

V2. An hs-troponin I (hs-TnI) measured 42 ng/L (reference range 0–40). A provisional diagnosis of 

acute MI was made and medical treatment given. However, neither primary PCI nor fibrinolytic 

therapy was initiated because the criteria for ST-elevation MI were not met [>2 mm ST elevation in 

two contiguous precordial leads (V1–6), or 1 mm in limb leads (I, II, III)]. These criteria are based on 

normal population values of up to 2 mm of ST elevation in precordial leads (ACC/AHA guidelines [97]) 

or ≥2.5 mm in men <40 years of age, or in women up to 1.5 mm (ESC guidelines [98,99]). Serial 

ECGs on the patient 15, 30, 45, 60 and 120 min from presentation showed borderline changes of up to 

2 mm in a single precordial lead (movie), still not reaching the criteria for reperfusion therapy. Urgent 

angiography was performed, which showed an occluded mid left anterior descending artery. A 

subsequent echocardiogram showed normal wall thickness and preserved ejection fraction. In retrospect, 

A-ECG demonstrated serially progressive abnormalities in its derived vectorcardiographic component, 

horizontal plane (movie), and thus, strongly indicated the presence of an evolving (worsening) acute 

anterior MI prior to the return of the second troponin measurement, collected 12 h later. All logistic 

score-related and discriminant analysis-related A-ECG results were also highly positive for acute 

coronary syndrome (ACS) in all six recordings. The latter results are shown in (Figure 10B). 

http://youtu.be/I0PLBGV55lc
http://youtu.be/rup2Wod2qkk
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Figure 10. Conventional ECG for Case 1 (A); (B) A-ECG-related discriminant analysis 

results for six serial ECGs in Case 1 using multiple advanced ECG parameters.  

Red circle = Coronary Artery Disease and/or Acute Coronary Syndrome (CAD/ACS) 

population; Aqua circle = Left Ventricular Hypertrophy (LVH) population; Blue circle = 

Hypertrophic Cardiomyopathy (HOCM) population; Purple and Orange circles =  

Non-Ischemic (NICM) and Ischemic (ICM) Cardiomyopathy populations. 
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Case 2: Chemotherapy Associated Cardiotoxicity 

A 61 year old Maori woman with oestrogen and progesterone receptor positive, HER2 negative 

breast cancer was treated with an anthracycline based chemotherapy regimen. She presented seven 

months later with symptoms of heart failure and a clinical diagnosis of anthracycline cardiomyopathy 

but with unremarkable conventional ECG (Figure 11A). Several months subsequent to that, after 

initially responding to heart failure therapies, exertional dyspnoea recurred. A cardiac MRI at that time 

showed a scar pattern consistent with multivessel coronary disease. A-ECG-related discriminant analysis 

performed blindly in retrospect (Figure 11B) suggested nonischemic and/or ischemic cardiomyopathy 

at her first presentation (time point 1 in Figure 11B), even prior to the first echocardiogram, then initial 

improvement during a period of successful medical therapy (time points 2 and 3 in Figure 11B, noting 

gradual movement of results toward those of a known ―healthy population‖ in the large underlying 

database), and finally recrudescence (time point 4 in Figure 11B). Results suggest that A-ECG 

technology was not only capable of making the early non-invasive diagnosis of her condition, but also 

of non-invasively detecting the initial improvement followed by ultimate deterioration, as well as the 

definitive eventual diagnosis of ischemic cardiomyopathy (Figure 11C). A coronary angiogram 

confirmed critical anatomy. 

Figure 11. Conventional ECG for Case 2 (A); (B) A-ECG-related discriminant analysis 

results for Case 2 using multiple advanced ECG parameters. Red circle = Coronary Artery 

Disease (CAD) population; Aqua circle = Left Ventricular Hypertrophy (LVH) population; 

Blue circle = Hypertrophic Cardiomyopathy (HOCM) population; Purple and Orange 

circles = Non-Ischemic (NICM) and Ischemic (ICM) Cardiomyopathy populations; (C) 

Angiogram results for Case 2: occluded left anterior descending, left circumflex and right 

coronary arteries. 
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Figure 11. Cont. 
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Case 3: Hereditary Cardiomyopathy 

A 26 year old asymptomatic male athlete with a family history of idiopathic cardiomyopathy, in his 

father and uncle, presented for screening. Examination and a conventional ECG were considered 

normal. A transthoracic echocardiogram showed a mildly dilated left ventricle and low-normal ejection 

fraction 50%–55%. A differential diagnosis of athlete‘s heart versus subclinical cardiomyopathy was 

made. The advanced ECG result was abnormal and global longitudinal strain measured using open 

access software indicated significantly reduced systolic function GLS −8.7% (Figure 12) (Proprietary 

software −10.5%; Normal range 18.4% ± 0.4%). Next generation gene sequencing was not available 

due to the complexity and cost of obtaining this data, despite recent evidence showing Titin gene 

mutations as an important determinant of hereditary cardiomyopathy [100].  

Figure 12. Left ventricular global longitudinal strain (Software engineering by Jagir Hussan). 

 

Case 4: Pharmacogenomics and Stent Thrombosis 

A 41 year old man with a previous history of coronary artery disease presented with TnI negative 

unstable angina. He underwent an angiogram which proceeded to PCI with a Promus Element™ and 

second generation Xience™ drug eluting stents to obtuse marginal (OM) one artery and OM2, 

respectively. The procedure was uncomplicated. He returned five days later with TnI positive chest 

pain and ST depression on conventional ECG. Both OM stents were occluded with thrombus  

(Figure 13, white arrows demonstrating occluded branching arteries). An older stent in OM3 remained 
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patent. Rapid genotyping on a Nanosphere Verigene analyser indicated that he was a poor metabolizer 

of clopidogrel, and a heterozygote for the CYP2C19*2 allele. Further stents were deployed to both 

occluded arteries and he was placed on prasugrel 10mg once daily. 

Figure 13. Coronary angiogram demonstrating occluded OM1 and OM2 arteries. 

 

Case 5: Lamin A Associated Cardiomyopathy 

A 31 year old woman with diabetes, lipodystrophy and limb-girdle muscular dystrophy presented 

with atrial fibrillation and heart failure. An echo demonstrated a severe dilated nonischemic 

cardiomyopathy. She developed nonsustained ventricular tachycardia and a defibrillating pacemaker 

was implanted. Heart failure therapy was initiated and she responded but subsequently developed type 

II respiratory failure. A Lamin A associated disease was suspected (Figure 14 http://diseasome.eu/) and 

sequencing of the LMNA gene was performed, revealing a missense mutation in Exon 1 c.121C>T 

which has been previously associated with this condition [101]. A medline search identified treatment 

options of MEK1/2 inhibitors (currently in Phase I/II for oncology indications) or farnesyltransferase 

inhibitors. Lack of safety data and availability prevented the use of these agents. A network medicine 
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approach using computational drug repositioning has revealed converging druggable pathways with 

conventional therapies [102]. Alternative future options for this patient may include siRNA, delivered 

using nanoparticles, or gene-edited patient-specific induced pluripotent stem cells (iPS) and 

regenerative medicine [103]. 

Figure 14. Disease network relationships between cardiomyopathy and muscular dystrophy. 
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