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Abstract
Background: Abnormalities in myocardial metabolism and/or regulatory genes have been implicated in left 
ventricular systolic dysfunction. However, the extent to which these modulate left ventricular diastolic function (LVDF) 
is uncertain.

Methods: Independent component analysis was applied to extract latent LVDF traits from 14 measured 
echocardiography-derived endophenotypes of LVDF in 403 Caucasians. Genetic association was assessed between 
measured and latent LVDF traits and 64 single nucleotide polymorphisms (SNPs) in three peroxisome proliferator-
activated receptor (PPAR)-complex genes involved in the transcriptional regulation of fatty acid metabolism.

Results: By linear regression analysis, 7 SNPs (4 in PPARA, 2 in PPARGC1A, 1 in PPARG) were significantly associated with 
the latent LVDF trait, whereas a range of 0-4 SNPs were associated with each of the 14 measured echocardiography-
derived endophenotypes. Frequency distribution of P values showed a greater proportion of significant associations 
with the latent LVDF trait than for the measured endophenotypes, suggesting that analyses of the latent trait improved 
detection of the genetic underpinnings of LVDF. Ridge regression was applied to investigate within-gene and gene-
gene interactions. In the within-gene analysis, there were five significant pair-wise interactions in PPARGC1A and none 
in PPARA or PPARG. In the gene-gene analysis, significant interactions were found between rs4253655 in PPARA and 
rs1873532 (p = 0.02) and rs7672915 (p = 0.02), both in PPARGC1A, and between rs1151996 in PPARG and rs4697046 in 
PPARGC1A (p = 0.01).

Conclusions: Myocardial metabolism PPAR-complex genes, including within and between genes interactions, may 
play an important role modulating left ventricular diastolic function.

Background
Both animal models of left ventricular (LV) pressure-
overload and clinical studies in humans with hyperten-
sion implicate abnormal myocardial metabolism in the
development of hypertensive heart disease (HHD) which
is characterized by phenotypes such as LV hypertrophy
(LVH), left ventricular diastolic dysfunction (LVDD), left
ventricular systolic dysfunction (LVSD), and/or the devel-
opment of heart failure (HF). Myocardial fatty acid
metabolism is a key modulator of HHD phenotypes and

peroxisome proliferator-activated receptor (PPAR)-com-
plex genes play a critical role in regulating these meta-
bolic processes [1-3].

The assessment of LV diastolic function (LVDF) by
Doppler echocardiography is challenging due to the age-
dependency of measurements, the confounding effect of
LVH, and the non-linear distribution of many LVDF
parameters such that no single measurement has
emerged that defines LVDD [4-6]. As LVDD lies on a con-
tinuum between normal LVDF and diastolic heart failure
(DHF), it represents a relevant clinical diagnosis for sev-
eral reasons. LVDD, in the presence of normal LV systolic
function, occurs in approximately 25% of adults 45 years
of age or older and is a multivariate predictor of all-cause
mortality after controlling for age, sex, and LVSD (haz-
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ards ratio >8)[6]. The most severe form of LVDD, DHF,
accounts for 40-50% of the approximately 5.7 million
patients with HF in the US[7].

We have previously shown that independent compo-
nent analysis (ICA)-derived latent traits of HHD can be
used to enhance the detection of genetic association[8].
Herein we apply ICA to derive a single latent LVDF trait
from multiple echocardiography-derived indices (or
"endophenotypes") of LVDF. We tested the hypothesis
that PPAR-complex gene variants modulate LVDF traits
by examining individual SNP associations and within-
gene and gene-gene interaction effects.

Methods
I. Study population
Caucasian adults (n = 403) were analyzed from among a
multi-racial cohort of consecutive subjects (n = 543) gen-
otyped as part of a prospective genotype-phenotype asso-
ciation study of hypertensive heart disease at Washington
University. Subjects exhibited a wide-range of cardiovas-
cular and/or metabolic phenotypes, and also included
healthy volunteers. Exclusion criteria included: 1) His-
panic ethnicity; 2) incomplete echocardiogram; 3) LVH
due to conditions other than hypertension (i.e, hypertro-
phic cardiomyopathy); 4) significant valvular heart dis-
ease (regurgitation and/or stenosis > mild); or 5)
significant systemic disease (i.e. malignancy, creatinine
≥0.22 mmol/dL [2.5 mg/dL]).

Subject demographics were assessed by interview.
Heart rate, blood pressure, and anthropomorphic mea-
surements were obtained according to a standard proto-
col[9]. All subjects had blood drawn for fasting glucose,
insulin, and lipids; DNA was extracted from peripheral
blood leukocytes. The study was approved by the Human
Research Protection Office at Washington University; all
subjects provided written informed consent.

II. Echocardiography
The echocardiographic study was performed with an
ultrasound system (Acuson-Siemens Sequoia, Mountain
View, CA) using a 3.5-MHz array transducer. LV end-sys-
tolic and end-diastolic volumes were calculated according
to the "method of discs" to derive LVEF (normal LV sys-
tolic function defined as LVEF ≥50%)[10]. LV mass was
measured by the area-length method and indexed by
height2.7 (LVM/Ht2.7) to adjust for body habitus[11]. LVH
was defined as LVM/Ht2.7 >51 g/m2.7 for men and >49.5 g/
m2.7 for women[12]. Pulse-wave Doppler (PWD)-derived
transmitral indices were recorded from the four-chamber
view at the mitral valve leaflet tips to determine the early
diastolic transmitral (E-wave) and atrial (A-wave) veloci-
ties (m/s), the E/A wave velocity ratio, E-wave decelera-
tion time (DT, in ms); the isovolumic relaxation time
(IVRT, in ms) was measured by continuous-wave Doppler

from the apical 5-chamber view[13]. Tissue Doppler
Imaging (TDI)-derived early diastolic myocardial velocity
was obtained from a 2.5 mm sample at the septal and lat-
eral mitral annulus in the apical four-chamber view (E'sep
and E'lat, A'sep and A'lat, respectively, in cm/s) with the
average value represented as a "global" value (E'gl and A'gl,
in cm/s) [13-15]. The mitral E-wave/E' ratio was calcu-
lated to estimate the LV filling pressure (E/E'sep, E/E'lat,
and E/E'gl)[16,17]. All reported measurements represent
the average of three consecutive cardiac cycles obtained
by a single observer blinded to clinical status. The intra-
class correlation coefficients for echocardiographic indi-
ces measured in our lab are: 0.75-0.88 for LV structure
(i.e., LV mass/volumes) and 0.82-0.97 for PWD- and TDI-
derived indices of LV diastolic function (i.e., E-, A-waves,
DT, IVRT, and E').

III. PPAR-complex genes genotyping and quality control
SNPs in three PPAR-complex genes (i.e., PPARA, PPARG,
and PPARGC1A) were genotyped using Illumina BeadAr-
ray technology; 22 PPARA, 17 PPARG, and 39
PPARGC1A were selected to provide dense coverage and
for compatibility in the multiplex reactions. Excluded
from analysis were SNPs a) that deviated from Hardy-
Weinberg equilibrium (HWE, p < 0.01), b) with minor
allele frequency ≤5%, and/or c) with genotype call rates
≤90%. Maximal tolerated individual missing rate was
50%.

IV. Statistical analysis
A. Extract latent LVDF trait by ICA
Initial quality control was performed on each of the
echocardiography-derived endophenotypes by univari-
ate analysis; those with an absolute skewness >1.5 or
absolute kurtosis >2.0 were log-transformed for the fac-
tor analysis. Potential confounding effects were adjusted
by regression of the values over a cubic age polynomial
within sex group; residuals from the regression were used
for ICA and further analyses.

We used a freely available implementation called Fas-
tICA (version 1.9) available in R (v. 2.7.0) to analyze the
residuals of a matrix of the echocardiography-derived
endophenotypes by pre-specified numbers of latent com-
ponents[8,18,19]. For each component, the output from
ICA consists of the extracted independent component
(IC) represented by column vectors of the matrix of load-
ings on the echocardiography-derived endophenotypes
and the coefficients of the extracted IC for each subject.
The coefficients were then used to represent the individ-
ual latent LVDF trait values in subsequent analyses.
Spearman's correlation between several traditional risk
factors (systolic and diastolic blood pressure, body mass
index, insulin, total cholesterol, triglycerides, LDL-C,
HDL-C) and the latent LVDF trait were performed.
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B. Select latent LVDF trait from extracted ICs
Loadings of each IC were examined for overrepresenta-
tion of the echocardiography-derived endophenotypes,
which may reflect the importance of a particular IC. Indi-
vidual IC's were treated as a potential latent LVDF trait
and its clinical characteristics were characterized by
examining risks of LVDF in cohorts defined by the
median of corresponding IC coefficients (groups
assigned as "High-Risk" and "Low-Risk"). The means of
each of the 14 echocardiography-derived phenotypes
were compared to gauge the IC's capability of separating
risks. Three expert echocardiographers (JMJ, LdlF, VGD-
R) independently assessed the distributional characteris-
tics of these measures and selected the IC that yielded the
most clinically relevant separation between groups; by
consensus the IC was selected to represent the latent
LVDF trait for subsequent analysis.
C. Genetic association analysis of the selected latent LVDF 
trait
HWE was tested by χ2 test with 1 degree of freedom to
identify SNPs with potential systematic bias resulting
from genotyping errors. Linear regression analysis was
performed to test for associations between the selected
latent LVDF trait (represented by the IC coefficient) and
the PPAR-complex candidate SNPs. In each regression
model, covariates for age, sex, hypertension status, and
LVM/Ht2.7 were included. All regression analyses of
genetic association were performed by SAS (v. 9.1.3, SAS
Institute Inc., Cary, NC).
D. Explore potential SNP-SNP (within-gene and gene-gene) 
interactions
For identification of SNP-SNP interactions of potential
importance to LVDD, a two-step procedure was applied:
Step 1) detection of interactions within individual candi-
date genes (within-gene), and Step 2) identification of
between-gene interactions (gene-gene). To deal with the
large number of variables representing individual SNPs,
their interactions, and their potential for collinearity,
ridge regression analysis was performed (R package
"penalized" version 0.9); ridge regression effectively elimi-
nates many variables that are irrelevant to the trait of
interest and effectively eliminates the collinearity prob-
lem[20,21]. In Step 1, for each candidate gene, ridge
regression was applied to a model including all SNPs
within that gene and their pair-wise interactions. SNPs
that had main and/or interaction effects selected by the
ridge regression were retained. In Step 2, all retained
SNPs and their pairwise interactions (including those
between genes) were entered into a general model. Ridge
regression was again applied to the general model to
identify a final set of important SNPs and interactions
that together is significantly associated with the LVDD
trait. Finally, conventional linear regression was applied

to the selected SNPs and interactions to derive the signif-
icance levels of the associations.
E. Statistical power and adjustment for multiple testing
Quanto (v.1.2, http://hydra.usc.edu/gxe) was used to esti-
mate statistical power (set at 80% at a significance level of
0.05 with a 2-sided alternate hypothesis)[22]. The power
calculation assumed that an associated SNP has minor
allele frequency of 0.2 and a locus-specific heritability of
at least 2%. To adjust for multiple testing, the method of
false discovery rate was applied in SAS.

Results
I. Clinical and echocardiographic characteristics
The clinical and echocardiographic characteristics are
shown in Tables 1 and 2, respectively. The majority of
subjects had normal LV systolic function; mild LV systolic
dysfunction (LVEF 40-49%) was present in only 1.9% of
the population; 17% of subjects had LVH. Distributional
characteristics of the variables are shown in Additional
File 1, Table S1.

II. Extraction and identification of latent LVDF components
ICA analyses were performed by extracting 2, 3, and 6
components. Each extracted latent LVDF component was
denoted by a letter "E", followed by a first digit which
denoted the predefined number of components, and a
secondary digit which denoted the individual compo-
nent. For example, E21 refers to the first extracted com-
ponent of a total of 2 latent components (Figure 1; figures
for all extracted components in Additional File 1, Figures
S1-S3). The collective loading pattern across the echocar-
diography-derived endophenotypes reflects the capability

Table 1: Clinical characteristics of study subjects (n = 403).

Age (yrs) 50 ± 13

BMI (kg/m2) 30 ± 6

Male, n (%) 187 (46)

SBP (mmHg) 123 ± 16

DBP (mmHg) 79 ± 9

Heart rate (beats per min) 66 ± 11

Diabetes mellitus, n (%) 57 (14)

Hypertension, n (%) 147 (37)

Creatinine (mg/dL) 0.9 ± 0.2

Glucose (mg/dL) 95 ± 27

Total Cholesterol (mg/dL) 195 ± 36

Triglycerides (mg/dL) 140 ± 93

LDL-C (mg/dL) 115 ± 31

HDL-C (mg/dL) 53 ± 15

Values represent the means ± 1 standard deviation or the 
number (%). BMI, body mass index; DBP, diastolic blood pressure; 
HDL-C, high density lipoprotein cholesterol; LDL-C, low density 
lipoprotein cholesterol; SBP, systolic blood pressure.

http://hydra.usc.edu/gxe
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of a component to summarize a common source of regu-
lation or an underlying interaction observed among
genes. The component E61 had the highest loadings on
E'sep, E'lat, E'gl, E/E'sep, E/E'lat, and E/E'gl compared to all
other components in the loading of plots (Figure 1) and
was thus selected as the latent LVDF endophenotype
(Additional File 1, Table S2). The Spearman's correlation
coefficients between several traditional risk factors (sys-
tolic and diastolic blood pressure, body mass index, insu-
lin, total cholesterol, triglycerides, LDL-C, HDL-C) and
the latent LVDF trait were determined (Additional File 1,
Table S3). With the exception of LDL-C and total choles-
terol, the remaining risk factors were significantly corre-
lated with the latent LVDF trait.

III. Ascertainment of quality of selected latent LVDF trait
The entire cohort was grouped as "High Risk" or "Low
Risk" based on the medians of the individual latent LVDF

trait values (i.e. individual ICs corresponding to each
extracted component). Clinical characteristics and
echocardiographic measurements in the "High-risk" and
"Low-risk" groups are shown in Table 3 and Table 4,
respectively. E61 resulted in the highest loadings on the
TDI-derived echocardiographic variables, and thus,
resulted in the most distinct separation of these LVDF
echocardiography-derived measures (Additional File 1,
Tables S4-6).

IV. Genetic association analysis of the latent LVDF trait
After applying exclusion criteria, the resultant dataset
consisted of 64 SNPs (15 PPARA, 14 PPARG, and 34
PPARGC1A). Individual locus information including
allele frequencies and HWE p-values for all 78 SNPs
(Additional File 1, Tables S6A-C) and the Haploview link-
age disequilibrium displays for each gene (Additional File
1, Figures S4-6) are shown in the supplement. By linear
regression analysis of single SNPs (after adjustment for
covariates), 7 SNPs (4 in PPARA, 2 in PPARGC1A, 1 in
PPARG) were significantly associated with the latent
LVDF trait (E61), whereas a range of 0 to 4 SNPs were
associated with each of the 14 echocardiography-derived
endophenotypes (Table 5). The frequency distribution of
the P values derived from the latent LVDF trait exhibited
a higher degree of statistical significance than those
derived from the echocardiography-derived endopheno-
types (Additional File 1, Figure S7).

V. Within-gene and gene-gene interactions
In the within-gene analysis, significant SNPs (8 in
PPARA, 12 in PPARGC1A, and 4 in PPARG) for each of
the three genes were retained for the final best-fit model
(log likelihood: -276.1, -281.2 and -281.6, respectively;
Table 6 and Figure 2). PPARGC1A SNPs rs12500214 sig-
nificantly interacted with both rs2970847 and rs7672915
(p = 0.02 and 0.009, respectively); rs768695 significantly
interacted with both rs2970847 and rs2970853 (both p =
0.03); and rs4235308 significantly interacted with
rs7672915 (p = 0.007). No significant within-gene inter-
actions were found among PPARA and PPARG SNPs.

In the gene-gene analysis, rs4253655 in PPARA signifi-
cantly interacted with rs1873532 (p = 0.02) and
rs7672915 (p = 0.02), both in PPARGC1A. Significant
interactions were also found between rs1151996 in
PPARG and rs4697046 in PPARGC1A (p = 0.01). No
gene-gene interactions were found between PPARA and
PPARG genes.

VI. Power calculation and false discovery rate
The study sample of 403 subjects provided adequate
power to detect association of any SNP with a heritability
≥0.02 and an allele frequency ≥0.2 (power ≥81%, signifi-
cance level α = 0.05). Although there was a significant
association for several individual SNPs in single SNP

Table 2: Echocardiographic measurements of study 
population (n = 403).

LVEF (%) 64 ± 6

LVM/Ht2.7 (g/m2.7) 41.5 ± 10.1

E-wave (m/s) 0.72 ± 0.16

A-wave (m/s) 0.57 ± 0.17

E/A ratio 1.35 ± 0.48

DT (ms) 207 ± 38

IVRT (ms) 94 ± 18

LA diameter (cm) 3.9 ± 0.5

E'sep (cm/s) 10.1 ± 2.7

E'lat (cm/s) 13.2 ± 3.5

E'gl (cm/s) 11.7 ± 2.9

A'sep (cm/s) 10.8 ± 1.7

A'lat (cm/s) 10.8 ± 2.2

A'gl (cm/s) 10.8 ± 1.7

E/E'sep 7.5 ± 2.4

E/E'lat 5.8 ± 2.0

E/E'gl 6.5 ± 2.1

LV diastolic septal wall (cm) 1.0 ± 0.2

LV diastolic posterior wall 
(cm)

1.0 ± 0.1

LV systolic diameter (cm) 3.2 ± 0.5

LV diastolic diameter (cm) 5.0 ± 0.5

% of subjects with LVH 17.4%*

A, late diastolic mitral flow velocity; DT, deceleration time; E, early 
diastolic mitral flow velocity; EF, ejection fraction; E'gl, E'lat, E'sep, 
early diastolic mitral annular velocity (global, lateral, and septal, 
respectively); E/E'gl, E/E'lat, E/E'sep, ratio of early mitral flow to the 
early mitral annular velocity (global, lateral, and septal, 
respectively); IVRT, isovolumic relaxation time; LA, left atrial; LV, 
left ventricular.
* male 18.1%, female 16.6%
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analysis, none remained significant after adjustment for
multiple testing by the False Discovery Rate.

Discussion
In this study, we show genetic association between
echocardiography-derived endophenotypes of LVDF and
SNPs in three PPAR-complex genes involved in the tran-
scriptional regulation of fatty acid metabolism. ICA was
used to extract latent LVDF traits from 14 echocardiogra-

phy-derived endophenotypes used clinically to evaluate
diastolic function. We found that the latent LVDF trait
identified relevant profiles of echocardiography-derived
endophenotypes that could be clinically recognized as
representing individuals of either High- or Low-Risk of
LVDD. By use of linear regression analysis, 7 SNPs (4 in
PPARA, 2 in PPARGC1A, 1 in PPARG) were significantly
associated with the latent LVDF trait. In PPARA, 2 SNPs
were clustered around intron 6 and two were in introns

Figure 1 Plots of echocardiography-derived phenotype loadings of two latent LVDD-related components, E21 (left) and E61 (right). In order 
to facilitate comparisons, the phenotypes on both graphs were reordered from lowest to highest according to the loadings of E21 (chosen arbitrarily). 
For comparison, note that E61 has higher loadings for both LV filling indices (i.e., E/E') and LV relaxation indices (i.e., E'); in contrast E21 exhibits similar 
loadings for LV relaxation indices but much lower loadings for LV relaxation, thus E61 is the selected component.

Table 3: Clinical characteristics of the high-risk (n = 201) and low-risk groups (n = 202) using E61.

Low-Risk Group High-Risk Group

Age (yrs) 49.4 ± 13.0 50.6 ± 12.0

BMI (kg/m2) 31.5 ± 5.5 28.2 ± 6.4

Male, n (%) 88 (44) 99 (49)

SBP (mmHg) 125 ± 17 121 ± 16

DBP (mmHg) 81 ± 9 77 ± 8

Heart rate (beats per min) 67 ± 11 65 ± 11

Diabetes mellitus, n (%) 39 (19) 18 (9)

Hypertension, n (%) 81 (40) 66 (33)

Creatinine (mg/dL) 0.8 ± 0.2 0.9 ± 0.2

Glucose (mg/dL) 98 ± 31 92 ± 23

Total Cholesterol (mg/dL) 197 ± 35 193 ± 36

Triglycerides (mg/dL) 150 ± 85 129 ± 99

LDL-C (mg/dL) 116 ± 31 112 ± 31

HDL-C (mg/dL) 51 ± 14 56 ± 15

Values represent the means ± 1 standard deviation or the number (%). BMI, body mass index; DBP, diastolic blood pressure; HDL-C, high 
density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure.
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1A and 2A, adjacent to alternate promoters. The signifi-
cant PPARGC1A SNPs were located in introns 1 and 7.
The single significant PPARG SNP (rs3856806) is a syn-
onymous coding SNP in Exon 7 (H447H).

Complex phenotypes such as LVDF arise from multiple
gene-gene and gene-environment interactions, each con-
tributing a small effect to the overall expression of the
trait. A consideration of epistasis, or gene-gene interac-
tions, may identify a portion of the unexplained risk (i.e.,
"missing heritability" [23]) noted in the overwhelming
majority of genetic studies of complex diseases. It is
therefore of particular importance to investigate potential
gene-gene interactions in the complex mechanisms
responsible for LVDF. In the present study, an exploratory
analysis of SNP-SNP interactions by ridge regression
yielded potentially important findings. First, significant
associations detected by modeling both main effects and
interactions were largely different from those by main
effects alone; with the only exception of rs3856806, which
had a relatively strong marginal effect, suggesting that the
single-SNP scan approach may only be appropriate for
variants with strong signals. Second, all gene-gene inter-
actions involved PPARGC1A, probably reflecting the
important regulatory role of this gene. Thus, metabolic
modulation of left ventricular diastolic function by
PPAR-complex genes may be an important mechanism in
the development of LVDD and may contribute to the
pathogenesis of DHF. This is the first study to show a

genetic association between LVDF and PPAR-complex
genes in humans.

Regulation of myocardial metabolism and cardiac 
structure/function by PPAR-complex
Alterations in myocardial fatty acid metabolism have
been shown in both animal models and in humans to be
an important determinant of the presence and develop-
ment of hypertensive heart disease-related traits includ-
ing hypertension, LVH, LVSD, and LVDD[3,24]. The
normal fasting adult mammalian heart derives approxi-
mately two-thirds of ATP from the oxidation of fatty
acids[25]. Under normal physiologic conditions, the heart
is able to switch the energy substrate utilization from
fatty acid to carbohydrates during the fed state, however
under pathologic conditions the heart loses this meta-
bolic plasticity[26]. For example, our group has previ-
ously shown that fatty acid metabolism is decreased in
patients with heart failure and is a strong predictor of LV
mass in patients with hypertension and in normotensive
controls[27]. Metabolic modulation of the heart occurs
primarily at the transcriptional level through the coordi-
nated regulation of enzymes and proteins in specific met-
abolic pathways. PPAR-complex genes, transcription
factors and coactivators known to regulate the expression
of fatty acid transport and oxidation genes, have been
shown in elegant transgenic models to modulate the
pathophysiology of LV systolic and diastolic dysfunc-
tion[3,28-36]. The PPARA gene has been identified as a

Table 4: Descriptive statistics for primary echocardiographic endophenotypes in E61.

Low-Risk Group High-Risk Group

E (m/s) 0.67 ± 0.14 0.76 ± 0.16

A (m/s) 0.52 ± 0.15 0.63 ± 0.18

E/A 1.41 ± 0.52 1.30 ± 0.42

DT (ms) 210 ± 39 204 ± 37

IVRT (ms) 95 ± 19 92 ± 18

E'lat(cm/s) 14.7 ± 3.3 11.8 ± 3.1

E'sep(cm/s) 11.1 ± 2.8 9.1 ± 2.1

E'gl(cm/s) 12.9 ± 2.9 10.4 ± 2.4

A'lat(cm/s) 10.6 ± 2.3 11.0 ± 2.0

A'sep(cm/s) 10.8 ± 1.8 10.7 ± 1.6

A'gl(cm/s) 10.7 ± 1.8 10.9 ± 1.5

E/E'lat 4.7 ± 1.0 6.9 ± 2.2

E/E'sep 6.3 ± 1.3 8.7 ± 2.5

E/E'gl 5.3 ± 1.1 7.6 ± 2.2

Values represent the means ± 1 standard deviation. A, late diastolic transmitral inflow velocity; A'gl, A'lat, A'sep, late diastolic mitral annular 
velocity (global, lateral, and septal, respectively); DT, deceleration time of transmitral E wave; E, early diastolic transmitral inflow velocity; E'gl, 
E'lat, E'sep, early diastolic mitral annular velocity (global, lateral, and septal, respectively); E/E'gl, E/E'lat, E/E'sep, ratio of early transmitral flow to 
the early mitral annular velocity (global, lateral, and septal, respectively); IVRT, isovolumic relaxation time.
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Table 5: P-values of genetic association study for candidate SNPs with lent LVDD trait: ICA and 14 echocardiography-derived endophenotypes.

Locus Gene 
context

ICA
E61

Risk allele Echocardiography-derived LVDF endophenotypes

E A E/A DT IVRT E'sep E'lat E'gl E/E'sep E/E'lat E/E'gl A'sep A'lat A'gl

PPARGC1A

rs12500214 I-2 0.01 0.02 0.04 0.026 0.028 0.009

rs3736265 E-9 0.03

rs3755862 I-7 0.038 A 0.03

rs3774902 I-1 0.034 T

rs3774921 I-10 0.021

rs768695 I-12 0.011 0.018

rs7672915 I-2 0.049

rs7677000 I-2 0.04

PPARA

rs4253623 I-1A 0.045 G 0.04

rs4253655 I-B 0.028 0.043

rs4253681 I-2A 0.039 C 0.005 0.009

rs4253725 I-3 0.042 0.044

rs4253760 I-6 0.021 G 0.04 0.02

rs4253765 I-6 0.02 C 0.02

PPARG

rs1797912 I-1 0.026

rs2972162 I-4 0.04 0.02 0.029

rs3856806 E-7 0.006 T

E-, exon; I-, intron. Only p values < 0.05 are shown.
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"master switch" for the metabolic remodeling of the
heart, particularly when coactivated by PPARGC1A [36-
39]. PPARA expression is down-regulated in the adapted,
hypertrophied pressure-overloaded heart and reactiva-
tion of PPARA by an agonist is associated with contractile
dysfunction[40]. Cardiac-restricted overexpression of
PPARA results in hypertrophy, the activation of gene
markers of pathologic hypertrophic growth, and in sys-
tolic dysfunction[32]. PPARG, on the other hand, plays a
critical role in modulating the substrate environment of
the heart by its actions in adipocytes[41]. Myocardial
fatty acid metabolism has also been more specifically
associated with indices of LV diastolic function in animal
models and in humans[1-3,42,43]. In an animal study,
PPARA reduced myocardial fibrosis and prevented the
development of diastolic dysfunction[44]. Ciglitazole (a
PPARG agonist) has also been shown to attenuate LVDD
in pressure-overloaded rats[45]. PPARGC1A is a key reg-
ulator of cardiac energy metabolism; overexpression of
PPARGC1A in the murine heart leads to a modest
increase in mitochondrial number, derangements of
mitochondrial ultrastructure, and development of cardio-
myopathy[32,46]. Thus, there is ample evidence to sup-
port a critical role for PPAR-complex genes in regulating
cardiac structure and function. However, the precise
molecular mechanisms by which these alterations may
modulate LVDF remain uncertain.

Several lines of evidence support the existence of genetic
association between LVDF and PPAR-complex genes in
humans. Recent reports have shown associations between

cardiovascular traits and 4 of the 19 SNPs indentified in the
present study. The most widely published among these, a
synonymous coding PPARGC1A SNP rs2970847 (T394T),
has been associated individually, in combination with other
PPARGC1A SNPs in haplotype blocks, and in gene-gene
interactions with relevant traits including diabetes risk, glu-
cose uptake, obesity, and DNA damage in a variety of popu-
lations [47-54]. Intriguingly, this SNP has also been
associated with non-hypertensive LVH in a cohort includ-
ing 270 hypertrophic cardiomyopathy and 2486 hyperten-
sive patients (with and without LVH), yielding an odds ratio
1.49 (95% confidence interval, 1.15-1.98)[55]. The signifi-
cant PPARGC1A SNP rs4697046 has also been linked with
plasma glucose and DNA damage[56]. In our study, this
SNP was found to interact with two other PPARGC1A
SNPs, although these SNPs were not found to share signifi-
cant linkage disequilibrium (data not shown), thus impli-
cating cis-acting regulatory elements.

This study also identified two SNPs (rs3856806 in
PPARG and rs4253623 in PPARA) as associated with MI
risk [57-59]. The rare allele of PPARG SNP rs3856806 has
been linked with not only coronary artery disease pro-
gression, but also with pro-inflammatory cytokines
(MMP9 and TNFα), plasma homocysteine levels, and
obesity [60-62]. The minor allele of PPARA alternate pro-
moter SNP, rs4253623, along with another significant
PPARA promoter SNP rs4253681, is clustered adjacent to
alternatively-spliced untranslated exons 1A and 2A and
may play a role in regulating PPARA gene expression by
mediating the expression of the 6 alternative spliced vari-

Table 6: Significant Gene-Gene interactions in three PPAR-complex genes with latent LVDD endophenotype (E61).

Gene Locus Gene
Context

Main
Effect

P
Value

Within-Gene
Interaction

P
value

Gene-Gene
Interaction

P
Value

PPARGC1A rs12500214 Intron 2 Y 0.047 Y
(rs2970847)

0.0278 N 0.0094

PPARGC1A rs7672915 Intron 2 N Y
(rs12500214)

0.0092 N

PPARGC1A rs2970847 Exon 8 Y 0.037 Y
(rs768695)

0.0276 N

PPARGC1A rs768695 Intron 12 N Y
(rs2970853)

0.0262 N 0.0318

PPARGC1A rs4235308 Intron 2 N Y
(rs7672915)

0.0068 N

PPARGC1A rs2970870 Promoter Y 0.025 N N

PPARG rs3856806 Exon 7 Y 0.010 N N

PPARGC1A rs1873532 Intron 10 N N Y
(PPARA, rs4253655)

0.0214

PPARGC1A rs4697046 Intron 2 N N Y
(PPARG, rs1151996)

0.0163

PPARGC1A rs7672915 Intron 2 N N Y
(PPARA, rs4253655)

0.0212

N, no; Y, yes.
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ants resulting from 4 different promoters[63]. Thus, it is
plausible that variants in PPAR-complex genes may mod-
ulate LVDF-related traits in humans. However, all these
possible mechanisms deserve to be explored further in
animal models.

Utility of ICA for study of genetic association
The present study was performed using state-of-the-art
analysis techniques in genetic epidemiology and repre-
sents a continuation of our study of the genetics of hyper-
tensive heart disease through analysis of
endophenotypes, which lay proximal along the pathway
from observed clinical phenotype to genotype[8]. The
latent factor analysis by ICA was used to address the mul-
tidimensional data in which non-Gaussian structure such
as clustering and independence represent important
components. Although several echocardiographic mea-
sures are considered jointly to clinically ascertain LVDF,
the precise diagnosis of LVDD remains controversial and
there currently exists no universally accepted diagnostic
criteria[4,64,65]. Furthermore, many echocardiographic
endophenotypes are characterized by age-dependency

and non-linear associations with disease severity, pre-
senting additional challenges for genetic association stud-
ies of this common, complex disease. The ICA trait is
extracted from a panel of measured echocardiography-
derived endophenotypes, which themselves represent
traits more proximal to the genetic underpinnings, and as
such has emerged as an important tool in the study of
complex diseases[66,67]. ICA is well-suited to the study
of LVDF because it effectively reduces the number of
dimensions by identifying linear representations of the
original endophenotypes. The ICA-derived latent LVDF
trait showed significant associations with 7 PPAR-com-
plex SNPs, whereas a range of 0 to 4 SNPs were associ-
ated with each of the 14 echocardiography-derived
endophenotypes. The frequency distribution of P values
showed a greater proportion of significant associations
with the latent LVDF trait than for the measured echocar-
diography-derived endophenotypes, suggesting that anal-
yses of the latent trait improved detection of the genetic
underpinnings of LVDF. Thus, use of ICA-derived latent
LVDF trait improved our ability to detect the genetic
underpinning of LVDD, as our group and others have

Figure 2 Significant SNPs and their interactions (within-gene and gene-gene), with corresponding p-values identified by the two-step 
ridge regression analysis are shown. SNPs are grouped by the candidate genes (i.e., PPARGC1A, PPARA and PPARG); significant interactions are 
shown by bidirectional arrows between two interacting SNPs: within-gene (arrows within boxes) and gene-gene interactions (arrows between boxes).
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previously shown for other echocardiography-derived
endophenotypes[8,68].

The ridge regression method was used to handle col-
linearity among SNPs, and thus allowed for testing many
SNPs simultaneously. Since these three PPAR-complex
genes are all related to fatty acid metabolism, and LVDD
is a complex disease, epistasis may contribute to LVDF.
Thus, there was a real possibility of collinearity among
SNPs, a result of multiple makers exhibiting strong link-
age disequilibrium (LD) in a single genomic region. The
presence of LD between SNPs at neighboring loci can
make it difficult to distinguish functionally relevant varia-
tions from nonfunctional variations. However, the appli-
cation of ridge regression to the evaluation of SNP-SNP
interactions provided a robust method to control for the
effect of collinearity.

Finally, we investigated within-gene and gene-gene
SNP-SNP interactions using a two-stage procedure as
outlined in the methods. This led to interesting findings
of interaction effects that were not detected by testing for
marginal effects alone. This last issue is of particular
importance as supported by recent studies in yeast show-
ing that "pure" interactions (with little or negligible mar-
ginal effects) are both real and important[69].

Conclusions
ICA-derived latent LVDF traits improved the ability to
detect genetic underpinnings of LVDF. Significant genetic
associations were found between PPAR-complex gene
variants and LVDF, suggesting that these genes may be
involved in the pathogenesis of this complex disease.
Although these findings of association are suggestive,
these results need to be validated by mechanistic studies
in animal models. Pharmacologic modulation of myocar-
dial substrate environment, PPAR-complex genes, and/or
both may be an important target to restore myocardial
metabolic function and thus normalization of left ven-
tricular diastolic function.
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