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Proteomic datasets are often incomplete due to identification range and sensitivity issues. It becomes important to develop
methodologies to estimate missing proteomic data, allowing better interpretation of proteomic datasets and metabolic mechanisms
underlying complex biological systems. In this study, we applied an artificial neural network to approximate the relationships
between cognate transcriptomic and proteomic datasets of Desulfovibrio vulgaris, and to predict protein abundance for the proteins
not experimentally detected, based on several relevant predictors, such as mRNA abundance, cellular role and triple codon
counts. The results showed that the coefficients of determination for the trained neural network models ranged from 0.47 to
0.68, providing better modeling than several previous regression models. The validity of the trained neural network model was
evaluated using biological information (i.e. operons). To seek understanding of mechanisms causing missing proteomic data, we
used a multivariate logistic regression analysis and the result suggested that some key factors, such as protein instability index,
aliphatic index, mRNA abundance, effective number of codons (Nc) and codon adaptation index (CAI) values may be ascribed to
whether a given expressed protein can be detected. In addition, we demonstrated that biological interpretation can be improved
by use of imputed proteomic datasets.

1. Introduction

Application of various experimental “omics” tools has
enhanced our understanding of complex biological systems
in the past decade [1–8]. However, due to technical limita-
tions of these high throughput technologies and constraints
on experimental design, most of these high-throughput
“omics” datasets still suffer from significant missing values.
The incomplete data available has impeded scientists from
extracting correct information regarding cell metabolism. To
address the issue, attempts to apply computational tools to
impute missing values in various high throughput “omics”
datasets have been made [9–11]. The most successful exam-
ples of such efforts were for missing transcriptomic data [12].

Compared with transcriptomic dataset, proteomic
datasets suffer even more serious missing data since its
identification range and sensitivity are still not fully
comparable with transcriptomic measurements [13]. In

particular, when partial proteomics dataset was used in
various integrated “omics” studies, the undetected proteins
were simply assigned a “zero” value and were excluded from
relationship modeling, which could bias any conclusion
resulted from the integrated studies [14]. To overcome
this problem, several methods have been adapted from
the estimation of missing values in transcriptomic data to
estimate the missing proteomics values by using the available
measurements from other proteins, such as the k nearest
neighbor and Bayesian Principal Component Analysis
(BPCA) methods for imputing missing proteomic values in
gel-based proteomics dataset [15, 16], and by integrating
the GO (Gene Ontology) information into the proteomic
data imputation [17]. Based on the assumption that there
exists meaningful correlation between two types of datasets
[14], in recent years we have developed the Zero-inflated
Poisson (ZIP) linear regression model [18] and a stochastic
Gradient Boosted Trees (GBT) nonlinear model [19] to
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Figure 1: Partial dependency plots. Predicted protein abundance for given values of mRNA controlling the other predictors at their mean
values. (a) Dataset 1; (b) dataset 2.

uncover possible relationships between transcriptomic and
proteomic data and to predict protein abundance for the
proteins not experimentally detected.

As part of a continuous effort to develop statistical tools
for missing value imputation, we in the study applied an arti-
ficial neural network (ANN) approach to predict abundance
for experimentally undetected proteins for several cognate
transcriptomic and proteomic datasets of sulfate reducing
bacterium Desulfovibrio vulgaris [20–23]. The advantages of
artificial neural networks include ability to tackle complex
relationships and to deal with noisy data with missing
values, and its capability of generalization [24, 25]. In
the approach, a multilayer perceptron (MLP) with sigmoid
activation function in the single hidden layer was used to
capture the nonlinear relationship between transcriptomic
data and protein abundance. The top ten relevant predictors
for protein abundance identified in a previous study [19]
were used as inputs to the MLP for training the output
of the MLP to approximate the corresponding protein
abundance of each gene. The trained MLP was validated
using biological information. In addition, by using a multiple
logistic regression analysis, we quantified the contribution
of some sequence-based factors, such as mRNA abundance,
protein instability index, gene length, “effective number of
codons” (Nc), and CAI (Codon Adaptation Index) values
to missing proteomic values. We also demonstrated that
biological interpretation can be improved by using the
imputed proteomic datasets.

2. Materials and Methods

2.1. Datasets. Two datasets from Desulfovibrio vulgaris were
analyzed in this study. The datasets covers the same species,

although the experimental conditions are different and they
were obtained by two independent studies [19–23]. The raw
intensity values from both datasets were normalized using
a quantile normalization in an R package (caret) available
through the R project (http://www.r-project.org/). Absolute
fluorescence intensity and peptide hits were used as abun-
dance for transcriptomic and proteomic data, respectively
[26]. These datasets, labeled Dataset 1 and Dataset 2, will be
used throughout the article.

2.2. Genome Information. Gene annotated attributes, such as
sequence length, protein length, molecular weight, GC con-
tent, triple codon counts, and cellular functional categories
of all genes in the D. vulgaris genome were downloaded
from the comprehensive microbial resource (CMR) of TIGR
(http://cmr.tigr.org/) [22]. To define operons, we used the
distance-only approach, a relatively low threshold, in this
study to cover more of the possible operons. The genes that
are transcribed in the same direction and are with intergenic
region less than 15 base pairs were defined as one operon
[19].

2.3. Construction of Relationship between Proteomics and
mRNA through Artificial Neural Network. We trained an
artificial neural network to learn a particular function by
adjusting the values of the weights between neurons. It
has been shown that a multilayer perceptron with a single
hidden layer can approximate any continuous function to
arbitrary precision by increasing the number of neurons in
the hidden layer [27–29]. The weights connecting the input
signals as well as the number of neurons can be determined
by minimizing the sum of the squared difference between
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Figure 2: Prediction plot for proteins. Scatter plots of predicted protein abundance versus mRNA for proteins detected and undetected. (a)
Plot for genes with detected proteins for dataset 1; (b) plot for genes with undetected proteins for dataset 1; (c) plot for genes with detected
proteins for dataset 2; (d) plot for genes with undetected proteins for dataset 2.

the network outputs and target outputs for each set of input
signals. Nonlinear optimization methods in combination
with a backpropagation algorithm [30] were implemented to
find the optimal weights. The inputs to the network and the
targets were usually rescaled to [−1, 1]. The outputs of the
network were then rescaled back to approximate the targets
in original scale. In this work, we trained a multilayer percep-
tron to learn the nonlinear relationship between transcrip-
tomic data and proteomic data. The inputs were the tran-
scriptomic data and the target was the protein abundance.

A feed-forward network with a hidden layer can approx-
imate any continuous function with arbitrary precision,
which provides ANN the power to deal with nonlinear
relationship, also open a door to overfitting if too many
neurons are used in the hidden layer. To address the possible
overfitting, we implemented a cross-validation to prevent
overfitting. Through this method the data was partitioned
in K equal parts where K − 1 sets were used to train the
model and the other set was used to calculate prediction
errors [31]. This was repeated K times, hence K prediction
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errors values were computed one at every fold. An average
and standard deviation can be extracted to select the most
representative model for future prediction. Cross-validation
was generally effective to prevent overfitting. Beside cross-
validation to prevent overfitting, we also used some statistical
tools to diagnose the selected model. Once the best model
has been selected, based on cross-validation, the model was
evaluated based on its coefficient of determination (R2).
This coefficient represents the variation explained by the
model. Furthermore, to alternatively assess the goodness of
the model we studied the predictions of small sets of genes
which are grouped based on operon information. In order
to describe the variation within a data set, such as “molar
abundance” of proteins within one operon, we computed the
coefficient of variation (CV) for each set of proteins. The CV
is defined as the ratio of the standard deviation and the mean
of the “molar abundance” for a set of proteins [18, 19, 32]
where the calculation of CV score is independent of the
sample size. These coefficients of variations were computed
for all operons and compared to a distribution of permuted
CVs where permutation of genes was performed.

2.4. Analysis of the Factors Ascribed to Missing Protein
Measurements. For DNA and protein sequence features,
the BioPerl module was used to batch query and parse
results from the ExPASy ProtParam program, returning
“AliphaticIndex” and “InstabilityIndex”. CodonW was used
to perform correspondence analysis of both codon and
amino acid usages, returning the first four axes represent-
ing the major trends (AA axis1–4 for amino acid usage,
CR axis1–4 for Relative Synonymous Codon Usage). The fre-
quency of each base at the third codon position (synonymous
site, designated as A3s, T3s, C3s, and G3s), as well as two
additional measures on protein property such as Grand Aver-
age of Hydropathy (GRAVY) and AROMO, were also com-
puted with CodonW. The Codon Adaptation Index (CAI)
was computed with an in-house perl script using D. vulgaris
ribosomal protein genes as reference for highly expressed
genes. The calculation and analysis of these features were
described in several of our previous works [33–35].

A logistic regression model was used to assess how each
of the features attributes to whether a given protein will
be detected [36, 37]. Assume the features for a gene i are
x1i, . . . , xki. In logistic regression, the logit, natural log of the
odds, of the unknown probability, pi, that the protein is not
detected is modeled as a linear function of x1i, . . . , xki:

log it
(
pi
) = ln

(
pi

1− pi

)

= β0 + β1x1i + · · · + βkxki. (1)

The model is equivalent to

pi = exp
(
β0 + β1x1i + · · · + βkxki

)

exp
(
β0 + β1x1i + · · · + βkxki

)
+ 1

. (2)

The unknown coefficients are usually estimated by maxi-
mum likelihood using a method common to all generalized
linear models [35]. In the model, the parameter βj is the
additive effect on the log of the odds for a unit change in

the jth explanatory feature variable. That is, one unit change
of feature j, that is, xji indicates the odds changes eβj times.
Positive βj indicated that the probability that the protein will
not be detected is increased with increasing the jth feature.
By using a logistic regression analysis, the effects of relevant
features on whether a protein will be detected were quantified
and can be compared. And the fitted model can also be used
to predict the chance that any other proteins will not be
detected.

3. Results and Discussion

3.1. Determine the Variable Importance and Partial Variable
Dependence. In a previous study, we used the gradient
boosted trees (GBT) model to measure the contribution
of each of the 70 variables input variables to the RNA-
protein correlation, and the 10 top-ranked variables were
identified to be mRNA expression level, cellular role, and
several triple codon usages for the D. vulgaris datasets we
used (See Table 1 of Supplmentary Material available online
at doi: 10.1155/2011/780973) [19]. In this study, we used
the same top ten predictors as inputs to the artificial neural
network approach. The datasets used are consistent with
previous work for comparison. The results showed that
for all datasets, we observe a smooth relationship between
protein abundance and the abundance of corresponding
mRNA controlling the other predictors at their mean
values for each growth condition. The partial dependence
between protein and mRNA abundance tends to be smoother
when the abundance of mRNAs are in the high range
(Figure 1). Figure 2 shows the scatter plots of predicated
protein abundance versus mRNA for proteins detected and
undetected for datasets 1 and dataset 2, respectively. For both
datasets, under each growth condition, there are much fewer
genes with very high mRNA or protein abundance. Those
proteins undetected are mostly with very low predicted
protein abundance and observed mRNA abundance as
shown in Figures 2(b) and 2(d) for dataset 1 and dataset
2, respectively. The proteins undetected have much smaller
variance in predicted values especially for dataset 2 as shown
in Figure 2(d). In comparison, those detected proteins have
a larger range of protein abundance and are of very high
variability.

In the previous work of using GBT model to uncover
the nonlinear relationship between transcriptomic and pro-
teomic datasets, an interesting pattern, a plateau effect, was
observed in the partial dependence plot of mRNA abundance
versus protein abundance for high values of mRNA. This
is potentially due to the fact that protein abundance data
is sparse, with high variance, where the tree models do not
generate splits among the predictors [19]. In the neural
network model, the output of an MLP is an inherent smooth
function of the network inputs, hence a relatively smooth
prediction is always guaranteed. However, we can still see
the similar pattern that the curve becomes flat when the
variance for the mRNA abundance is high. For example, in
the region of high mRNA values there are a small number
of genes/peptides whose protein values ranges from (0,
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40) for Dataset 1 and (0, 500) for Dataset 2. This could
reflect problems with the sensitivity of the current proteomic
technologies for high abundant proteins.

3.2. Construction of the Nonlinear Artificial Neural Network
Model. A feed-forward network with a single hidden layer
was trained for each condition for both datasets with
mRNA abundance and other predictors as inputs and protein
abundance as target. The neural networks were trained using
the functions in the neural network toolbox provided in
standard software Matlab (7.0.1). The activation function for
the neurons in the hidden layer was the hyperbolic tangent
function, which is given by

f (v) = 1− exp(−v)
1 + exp(−v)

. (3)

The activation function of the output neuron is a pure linear
function, which is the weighted sum of the outputs from the
neurons of the hidden layer. The optimal number of neurons
in the hidden layer and the optimal weights were determined
using 10-fold cross-validation for training a neural network.
For each dataset under each experimental condition, the
networks with the same inputs but with different number of
neurons (from 5 to 12) in the hidden layer were each trained
using cross-validation to learn the relationship between the
mRNA features and protein abundance. The optimal number
of neurons in the layer was determined based on the one
generating the minimum averaged validation error.

Both transcriptomic and proteomic data were log-
transformed. For dataset 1, the genes with no missing value
for three out of four replicates were selected for model
training. The numbers of genes used for training were 354,
312, and 308 for the FL, LL, and LS conditions, respectively.
For each growth condition, the inputs to the multilayer
perceptron were the top ten predictors identified previously
[19] (See Table 1 at Supplementary Material). The optimal
network had 6, 6, and 9 neurons in the hidden layer for FL,
LL, and LS conditions, respectively. Coefficients of determi-
nations R2 were 0.47, 0.52, and 0.51 for FL, LL, LS conditions,
respectively. For dataset 2, a total of 986, 1001, and 986 genes
with no missing protein measurements were used for model
training for CT0, CT120, and ST120 conditions, respectively.
For each of the conditions, the inputs to the multilayer
perceptron were the top ten predictors identified previously
[19] (See Table 1 at Supplementary material). The optimal
network had 8, 7, and 6 neurons in the hidden layer for CT0,
CT120, and ST120 conditions, respectively. Coefficients of
determination R2 were 0.65, 0.62, and 0.68 for CT0, CT120,
and ST120 conditions, respectively.

3.3. Validation of the Prediction through the Nonlinear
Artificial Neural Network Model. The validation of the
model prediction was conducted through the calculation
of coefficient of variation (CV) across conditions for every
operon of D. vulgaris as described before [18, 19]. The genes
in the operons are considered to have less dispersion than
any random set of genes in terms of their gene expression
and/or protein abundance, because of their intrinsic biolog-
ical relationship. With relatively low threshold for operon

identification as described in Section 2, a total of 609 operons
were identified in D. vulgaris, which ranged from 2 to 13
genes per operon. To compare these CV values, we have
used a permutation test in the following manner: a CV is
computed from the predicted protein values for a permuted
number of genes. This step is repeated 2000 times through
resampling of genes without replacement. The number of
genes randomly selected is equal to the size of the gene group
to be compared to. For dataset 1, 82% to 89% of the operon
groups had smaller CV values than the permuted groups, and
for dataset 2, 79% to 89% of the operon groups had smaller
CV values than the permuted, demonstrating in general good
performance of the model prediction. The validation results
are summarized in Table 1.

To further demonstrate how the current measurement
of dispersion (CV) compares with the distribution of the
permuted coefficients of variation, we also calculated the
percentile score for all coefficients of variations, based on
the biological knowledge that genes from the same operon
should be less dispersed than permuted sets of genes and
the percentile scores are thus expected to be low. The results
showed that even though the calculated CV for most groups
was less than the mean CV value for permuted sets of genes,
the percentile scores shows that only a small collection of
these groups fall within a percentile less than 0.20. The
percentage of groups with percentile scores less than 0.2 is
43% to 57%, and 57% to 61% for dataset 1 and dataset 2,
respectively.

3.4. Comparison of Artificial Neural Network to Previous
Methods (GBT and ZIP). Similar to the GBT method,
the artificial neural network method aims to identify an
unknown and potentially nonlinear relationship between
proteomics and mRNA abundance data, which distinguish
them from the ZIP method, which carries zero-inflated
linear assumptions [18]. Another key difference is that GBT
and neural network methods utilized additional sequence
based information, such as cellular role, gene length, amino
acid usage, and codon usage known to be important for
translation efficiency to model the relationship between
transcriptomic and proteomic dataset, while the ZIP method
establishes the relationship between proteomic and mRNA
solely based on experimental transcriptomic and proteomic
dataset.

Some improvements were observed in terms of predic-
tion validation by the neural network model in comparison
to the GBT model. The percentage of operon groups with
CV smaller than permuted CV was 82% to 89% for dataset
1 in comparison to 75% to 79% for the GBT model. The
percentage of operon groups with CV smaller than permuted
CV was 79% to 89% for dataset 2 by the neural network
model in comparison to 75% to 82% by the GBT model.
For dataset 1, the percentage of groups with percentile scores
less than 0.2 is 43% to 57% in the neural network model
in comparison to 36% to 50% in the GBT model. For
dataset 2, the percentage of groups with percentile scores
less than 0.2 is 57% to 61% in the neural network model
in comparison to 32% to 54% in the GBT model. The
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Table 1: Model validation: correlated expressions of proteins in selective operons.

Dataset 1 Dataset 2

FL LL LS CT0 CT120 ST120

Operon CV PCV CV PCV CV PCV CV PCV CV PCV CV PCV

1 0.36 0.707 0.6 0.797 0.301 0.901 1.63∗ 1.248 0.814 1.186 1.269 1.286

2 1.6∗ 0.638 1.564∗ 0.725 1.48∗ 0.631 0.773 1.102 0.968 1.044 0.702 1.129

3 0.499 0.659 1.04∗ 0.766 0.563 0.866 1.295∗ 1.134 1.568∗ 1.106 1.324∗ 1.169

4 0.216 0.648 0.239 0.726 0.323 0.813 0.333 1.106 0.401 1.05 0.453 1.135

5 0.418 0.646 0.559 0.731 0.45 0.794 0.481 1.105 0.398 1.05 0.466 1.122

6 0.18 0.647 0.454 0.745 0.353 0.809 0.495 1.116 0.403 1.042 0.473 1.124

7 0.297 0.651 0.162 0.729 0.312 0.8 0.408 1.101 0.343 1.042 0.69 1.118

8 0.307 0.693 0.292 0.772 0.28 0.908 0.767 1.204 0.502 1.147 0.57 1.236

9 0.389 0.676 0.352 0.764 0.851 0.86 0.884 1.171 0.631 1.098 0.558 1.197

10 0.621 0.624 0.445 0.765 0.74 0.859 0.889 1.166 0.67 1.096 1.087 1.19

11 0.304 0.595 0.231 0.704 0.3 0.773 0.78 1.153 0.816 1.082 0.567 1.182

12 0.599 0.808 0.831 0.908 0.729 1.076 1.201 1.535 1.174 1.366 1.563∗ 1.528

13 0.353 0.646 0.435 0.723 0.531 0.826 0.366 1.118 0.532 1.06 0.369 1.124

14 0.359 0.665 0.407 0.73 0.267 0.752 0.653 1.157 0.825 1.087 0.597 1.18

15 0.381 0.717 0.707 0.801 0.78 0.922 0.691 1.246 0.838 1.166 0.674 1.293

16 0.299 0.749 0.538 0.833 0.307 0.989 0.613 1.342 0.456 1.252 1.059 1.372

17 0.321 0.649 0.219 0.726 0.222 0.806 0.657 1.059 0.492 0.943 0.529 1.046

18 0.473 0.645 0.486 0.723 0.628 0.767 0.474 1.164 0.539 1.091 0.578 1.185

19 0.592 0.741 0.479 0.824 0.631 0.982 1.68∗ 1.317 1.094 1.248 1.403∗ 1.342

20 0.767∗ 0.621 0.586 0.695 0.561 0.752 0.267 1.037 0.288 0.964 0.492 1.053

21 0.389 0.548 0.416 0.693 0.472 0.757 1.034 1.037 0.813 0.978 0.823 1.061

22 0.256 0.654 0.433 0.721 0.49 0.8 0.532 1.095 0.602 1.053 0.569 1.123

23 0.631 0.694 0.707 0.775 0.632 0.877 0.86 1.196 0.677 1.125 0.925 1.242

24 0.376 0.655 0.648 0.655 0.406 0.699 1.23∗ 1.099 0.927 1.031 1.138∗ 1.123

25 0.869∗ 0.674 1∗ 0.754 1.194∗ 0.85 2.337∗ 1.156 2.119∗ 1.094 2.303∗ 1.185

26 0.657∗ 0.618 0.683 0.736 0.747 0.856 0.696 1.151 0.52 1.114 0.7 1.176

27 0.378 0.85 0.452 0.938 0.432 1.104 0.588 1.631 0.667 1.445 0.771 1.629

28 1.013∗ 0.67 0.963∗ 0.764 1.526∗ 0.913 1.255 1.259 1.375∗ 1.181 1.332∗ 1.282

CV is computed by dividing SD by the mean of the prediction values for protein abundance for a specific set of genes (group). The protein prediction values
were normalized by molecular weight before CV calculation. PCV is the mean of CV values computed through permutation test for selected operons.
∗CV values greater than PCV.

coefficient of determination was 0.47 to 0.58 for dataset
1 and 0.62 to 0.68 for dataset 2 in the neural network
model in comparison to 0.39 to 0.58 for both datasets in
the GBT model, demonstrating the artificial neural network
model could be a good alternative in analyzing the missing
proteomic values.

3.5. Analysis of Factors Ascribed to Missing Protein Measure-
ments. Through the neural network model, the majority
of the proteins that were experimentally undetected were
predicted to have protein abundance with greater than 1.0
peptide hit. This thus tempted for us to look into the possible
factors which may be ascribed to the missing protein values.
To do so, we collected some of the protein or mRNA/DNA
sequence-based features which may affect protein detectabil-
ity for use along with experimental transcriptomic data in
a logistic regression procedure to determine their relative
contribution to detectability of proteins in the D. vulagris

genome. The features/measurements we used were from
the following several categories: (i) features related to gene
expressivity: experimental mRNA abundance data, Nc and
CAI values [33, 34], codon usage such as CR axis1-CR axis4,
T3s, C3s, A3s, G3s, GC3s, and GC content [35]; (ii) features
related to protein and RNA stabilities: protein instability
index and AliphaticIndex, and minimal free energy (MFE) of
RNA [35]; (iii) features related to protein solubility: protein
solubility indices such as Grand Average of Hydropathy
(GRAVY) [33]; (iv) amino acid usage such as AA axis1-
AA axis4, and others such as gene length [35]. The logistic
regression procedure in the SAS software package was used
to model the probability of whether a protein will be exper-
imentally detected given the features and measurements
for the gene/protein. The stepwise selection method was
used to select those most influential factors for indicating
missing proteomic value. Those highly correlated features
were removed automatically. The 0.05 significance threshold
was used for the stepwise selection. The mRNA abundance
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Table 2: Estimates of odds ratios of missing proteomic values for dataset 1.

Dataset 1 LL FL LS

effect Point
estimate

95% wald confidence
limits

Point
estimate

95% wald confidence
limits

Point
estimate

95% wald confidence
limits

log2 of mRNA 0.458 0.405 0.517 0.442 0.392 0.499 0.405 0.348 0.471

Protein instability index/10 1.628 1.379 1.922 1.493 1.282 1.739 1.539 1.297 1.825

log2 of gene length 0.477 0.373 0.608 0.517 0.415 0.644 0.419 0.324 0.543

Nc/10 0.465 0.271 0.798 0.446 0.272 0.732 0.314 0.174 0.566

CAI∗10 0.295 0.212 0.410 0.275 0.204 0.370 0.222 0.155 0.319

AA axis2∗10 1.368 1.193 1.569 1.326 1.170 1.502 1.323 1.166 1.501

CR axis3∗10 1.264 1.046 1.528 1.309 1.112 1.541 1.327 1.092 1.613

N MFE∗10 — — — — — — 1.880 1.178 3.000

AliphaticIndex/10 1.140 1.013 1.282 1.160 1.040 1.294 — — —

Table 3: Estimates of odds ratio of missing proteomic values for dataset 2.

Dataset 2 CT0 CT120 ST120

effect Point
estimate

95% wald confidence
limits

Point
estimate

95% wald confidence
limits

Point
estimate

95% wald confidence
limits

log2 of mRNA 0.407 0.370 0.448 0.451 0.412 0.494 0.499 0.459 0.542

Protein instability index/10 1.310 1.161 1.478 1.283 1.140 1.444 1.264 1.124 1.421

log2 of gene length 0.261 0.216 0.315 0.287 0.240 0.345 0.294 0.247 0.352

Nc/10 0.512 0.336 0.780 0.518 0.343 0.783 0.552 0.374 0.815

GRAVY∗10 0.914 0.862 0.970 0.914 0.863 0.968 0.923 0.873 0.977

CAI∗10 0.599 0.421 0.851 0.559 0.398 0.786 0.536 0.384 0.749

AA axis1∗10 0.686 0.627 0.750 0.681 0.624 0.744 0.686 0.629 0.749

AA axis2∗10 1.811 1.558 2.106 1.721 1.487 1.990 1.674 1.452 1.931

AA axis4∗10 0.827 0.747 0.916 0.837 0.757 0.925 0.846 0.767 0.934

CR axis1∗10 0.771 0.647 0.919 0.780 0.657 0.925 0.781 0.660 0.923

CR axis4∗10 0.716 0.635 0.808 0.706 0.627 0.795 0.725 0.645 0.814

and gene length values were both log2 transformed before
being used in the procedure. The protein stability index,
aliphaticIndex, and Nc values were divided by 10 and the
CAI, N MFE, GRAVY, AA axis1-AA axis4, and CR axis1-
CR axis4 were all multiplied by 10 so that they scaled to 1.
This standardization will not change the results, but make
illustration of the results easier.

Tables 2 and 3 present the odds ratio of each selected
factor for dataset 1 and dataset 2, respectively. The results
showed that some of the features are highly correlated
with probability of missing proteomic values. For dataset 1,
seven factors were indentified consistently by the regression
model. Among the features that are positively correlated with
probability of missing proteomic values (i.e., when the fea-
tures/measurement increase), protein instability index which
provides an estimate of the stability of a given protein in a test
tube [38] was found as the most significant factor for all three
growth conditions, and aliphaticIndex which is regarded as a
positive factor for the increase of thermostability of globular
proteins [39], was found significant for growth conditions
LL and FL, but not for condition LS. In addition, AA axis2
and CR axis3 correlated most strongly with GRAVY and G3s,
respectively, and they were also found significant in all three

growth conditions, while the N MFE was only significant
for LS condition (Table 2). For dataset 2, the features that
are kept in the regression model are more the same for the
three growth conditions in dataset 1, suggesting that these
factors could be universal across experimental platforms. Six
features that are significant for dataset 1 are also found to
be critical for all the conditions and affect the probability in
the same direction for dataset 2 include mRNA abundance,
protein instability index, gene length, Nc, CAI, and AA axis2
corresponding to GRAVY (Table 3). In general, the analysis
suggested that those proteins with smaller mRNA expression
values, smaller Nc value, higher protein instability index, or
high value of aliphaticIndex, have a greater probability to
have missing proteomic values in the D. vulgaris datasets.
Based on this preliminary analysis, it may be possible to apply
a logistic regression model to predict whether a given protein
will or will not be detected by choosing a proper threshold
for the predicted probability.

3.6. Data Interpretation Using Imputed Datasets. A total
of 308–354 proteins were experimentally identified for
dataset 1, and 986–1001 proteins were experimentally iden-
tified for dataset 2, which are slightly over 10–30% of
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the whole proteome in D. vulgaris. Through the ANN
modeling and imputation by integrating transcriptomic
and proteomic data, we were able to assign abundance
values to approximately 33–3400 proteins (dependent on
growth conditions), approximately 96–98% of the whole
proteomes in D. vulgaris. Using the imputed datasets, we
first analyzed the proteins involved in energy metabolism
when D. vulgaris was grown in three cultivation conditions
(LL: Lactate-based growth in Exponential phase; LS: Lactate-
based growth at Stationary phase; FL: Formate-based growth
at Exponential phase). As shown in Table 4, even for proteins
involved in energy metabolism such as ATP synthase which
are typically expressed at relatively high levels, significant
missing proteomic data was still obvious in the experimental
datasets, only two out of nine putative ATP synthase proteins
were experimentally detected under three growth conditions.
By analysis of the imputed protein abundance for all putative
ATP synthase proteins, a clear trend of downregulation
was observed for LS and FL condition when compared
with LL condition, which is consistent with the previous
data suggesting lactate is a favorable electron donor for D.
vulgaris [22]. When comparing lactate-based growth with
formate-based at the exponential phase, we found that
enzymes involved for formate utilization were predicted
to be upregulated during growth on formate (Table 4).
It has been reported that c-type cytochromes are highly
expressed in sulphate-reducing bacteria [20], however, only
low amounts of c-type cytochrome proteins have been
identified from D. vulgaris by the proteomic (Table 4),
probably due to the fact that c-type cytochromes undergo
a complex posttranslational maturation process involving
covalent attachment of heme groups [40]. Through the
ANN model, significant expression of various cytochrome
c proteins was predicted in D. vulgaris grown under three
conditions. In general, cytochrome c proteins were predicted
to have higher expression at the exponential phase in both
lactate- and formate-based media than the stationary phase,
consistent with their important roles in electron transfer
during fast growth [20]. Two cytoplasmic hydrogenases (Ech
and Coo) were previously assigned the putative function of
generating hydrogen in the cytoplasm [20]. In agreement
with previous prediction from the ZIP model [18], the
ANN model predicted that all subunits of Ech hydrogenase
(EchACDE) were upregulated, while all subunits of Coo
hydrogenase (CooHLUX) were down-regulated on formate-
based growth, suggesting their differential roles in H2

generation when grown with different carbon sources. We
also used the imputed data to analysis the stress responses
when the D. vulgaris cells were treated under salt stress.
The analysis allowed identification of some proteins which
were not experimentally detected, however, were predicted to
be upregulated under the salt treatment condition (ST120)
as compared with control (CT120) (Table 5). Among them
were transporters and various multidrug resistance proteins
and some signal transduction proteins. This list of proteins
can serve as putative candidates for further experimental
validation. In general, our analysis indicates that biological
interpretation may benefit from imputing missing data using
computational methods by integrating temporal transcrip-

tomic and proteomic data. The full list of all protein-
abundance predictions for all proteins has been provided in
the Table 2 of the supplementary material.

In conclusion, missing values in large-scale proteomic
analysis is a frequent problem and in some cases it has
created difficulty for accurate interpretation of proteomic
data for complex biological systems. However, in spite of
its obvious importance, the methodologies to deal with
missing proteomic data are still lagging well behind the
methods for transcriptomic analysis. In this study, we applied
an artificial neural network approach to approximate the
relationships between cognate transcriptomic and proteomic
datasets of D. vulgaris, and to predict protein abundance
for the proteins not experimentally detected based on
relevant predictors, such as mRNA abundance, cellular
role, and triple codon counts. The results showed that
the coefficients of determination for the trained neural
network models ranged from 0.47 to 0.68, providing better
description than several previous models [18, 19]. In an
attempt to identify possible causes for missing proteomic
values, a logistic regression analysis of various experimental
measurements and sequence-based features was performed
for the experimentally undetected proteins but with high
predicted protein abundance values. Although the results are
in general consistent with previous knowledge that proteins
with low possible expressivity and high instability will have
higher chance to be missed, in the study, we for the first time
quantified the odds ratio of each of those possible factors in
the D. vulgaris datasets. In addition, in a preliminary analysis
we demonstrated that biological interpretation could be
improved by using the imputed proteomic datasets. Finally,
although the model was well validated statistically, caution
needs to be exercised when interpreting experimental data
based on predicted protein expression values because the
predicted abundance values are constrained by the quality of
experimental proteomic data used as input, and a dearth of
large-scale quantitative predictors which can be included in
the model. Nevertheless, the initial success in applying the
ANN method is encouraging, and the model could serve as
a basis for developing more sophisticated models to further
improve the biology interpretation.
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