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Therapeutic Advances in 
Vaccines and Immunotherapy

Artificial intelligence for chimeric antigen 
receptor-based therapies: a comprehensive 
review of current applications and future 
perspectives
Muqadas Shahzadi , Hamad Rafique , Ahmad Waheed , Hina Naz , Atifa Waheed ,  
Feruza Ravshanovna Zokirova  and Humera Khan

Abstract:  Using artificial intelligence (AI) to enhance chimeric antigen receptor (CAR)-
based therapies’ design, production, and delivery is a novel and promising approach. This 
review provides an overview of the current applications and challenges of AI for CAR-based 
therapies and suggests some directions for future research and development. This paper 
examines some of the recent advances of AI for CAR-based therapies, for example, using 
deep learning (DL) to design CARs that target multiple antigens and avoid antigen escape; 
using natural language processing to extract relevant information from clinical reports and 
literature; using computer vision to analyze the morphology and phenotype of CAR cells; using 
reinforcement learning to optimize the dose and schedule of CAR infusion; and using AI to 
predict the efficacy and toxicity of CAR-based therapies. These applications demonstrate the 
potential of AI to improve the quality and efficiency of CAR-based therapies and to provide 
personalized and precise treatments for cancer patients. However, there are also some 
challenges and limitations of using AI for CAR-based therapies, for example, the lack of high-
quality and standardized data; the need for validation and verification of AI models; the risk 
of bias and error in AI outputs; the ethical, legal, and social issues of using AI for health care; 
and the possible impact of AI on the human role and responsibility in cancer immunotherapy. 
It is important to establish a multidisciplinary collaboration among researchers, clinicians, 
regulators, and patients to address these challenges and to ensure the safe and responsible 
use of AI for CAR-based therapies.
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Introduction
An innovative method for curing cancer patients 
involves employing immune system components 
called cancer immunotherapy. In this context, 
several treatment approaches include antibodies 
that attach to proteins produced by cancer cells 
and prevent them from performing their intended 
functions.1 Alternative strategies include vaccina-
tions, native T-cell injections, and the use of 
immune cells that have been altered, such as nat-
ural killer (NK) or chimeric antigen receptor 
(CAR)-T cells.2 Tumor-reactive T-cell adoptive 
cell transfer (ACT) is a successful treatment strat-
egy for solid and hematological cancers.3 ACT 
causes tumor cells to become more powerful, 
enabling them to successfully eliminate cancerous 
cells in vivo.4 The acquisition of tumor-infiltrat-
ing lymphocytes, their extensive in vitro culture to 
achieve an appropriate frequency by the use of 
cytokines, and ultimately their transplantation 
into the patient were all necessary according to 

ACT guidelines.5 To specifically identify and 
eradicate tumor cells, the use of CAR-based treat-
ments (such as CAR-T cells and CAR-NK cells) 
has gained interest recently.6,7

The tumor microenvironment (TME) contains 
both human T cells and NK cells, which play a 
major role in tumor immune surveillance. While 
NK cells produce cytolytic granules, inflammatory 
cytokines, and chemokines that stimulate both the 
innate and adaptive immune systems, they also 
have strong antitumor effects. T cells normally 
provide long-lasting, antigen-specific, effector, and 
memory immune responses.8 It is now easier to 
genetically alter T and NK cells to produce tumor 
antigen-specific CARs because of advancements in 
cellular engineering methods.9,10

Artificial intelligence (AI) has undergone decades 
of intense development, and now it refers to a 
wide range of technologies, including DL, 
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machine learning (ML), and artificial neural net-
works.11–13 AI’s DL is a significant area13 and can 
automatically extract features from enormous 
datasets. Furthermore, DL may identify informa-
tion in pictures that the human eye is unable to 
detect.14–16 This has major implications for early 
tumor diagnosis using imaging data. AI can aid in 
tumor diagnosis and treatment as well. With its 
robust capacity for logical reasoning and learning, 
AI frequently uses multilayer neural network 
structures to imitate human thought processes 
exceptionally well.17,18 AI can make the quickest 
and most intuitive decisions to address issues, like 
the human brain. It is not simple to infer that AI 
has the potential to significantly optimize current 
investigations into cancer models.

AI is a remarkably sophisticated approach in the 
quest for computer-assisted cancer immunother-
apy. Although the technology is still distant from 
being widely used in clinical practice, it can 
expand its practical uses in the response to immu-
notherapy with the growing amount of clinical 
data and better AI techniques. We anticipate a 
bright future in which AI will probably change the 
way cancer immunotherapy is performed, ulti-
mately leading to better patient safety and 
healthcare.

Landscape of cancer immunotherapy

Various approaches to cancer immunotherapy 
and its current state
CAR T-cell therapy.  An increasing number of peo-
ple are turning to CAR T-cell therapy as a means 
of treating cancer and other diseases.19 Medical 
treatment for multiple myeloma, acute lympho-
blastic leukemia, and B-cell lymphoma may now 
include CAR T-based medications. Furthermore, 
their potential use is also being investigated in the 
management of non-small-cell lung cancer,20 
glioblastoma tumors,21 human immunodeficiency 
virus,22 heart damage, etc. CAR T treatments can 
mobilize the patient’s immune system to begin an 
intentional assault on cancer cells that gives them 
the edge.23 Although CAR T-cell treatments show 
potential as cancer therapies, their efficacy is lim-
ited because the TME contains signals that inhibit 
the immune system.24 It has been shown that the 
programmed cell death protein 1 (PD-1) signal-
ing pathway considerably reduces T-cell activity in 
the TME, particularly in adoptive CAR T-cell 

therapy. The immunological checkpoint receptor 
PD-1 (CD279) is more highly expressed in acti-
vated T cells.25

An immunosuppressive response is triggered 
when programmed cell death ligand 1 (PD-L1) or 
programmed cell death ligand 2 (PD-L2) binds to 
PD-1. This response reduces regulatory T-cell 
activity and enhances apoptosis of effector T 
cells, hence suppressing inflammatory T-cell 
activity.26 Although PD-L2 expression is low, 
PD-L1 is abundant across many cancer types, 
contributes to immune evasion, and decreases the 
efficacy of CAR T cells.26 To reestablish the effi-
cacy of CAR T cells in TMEs rich in PD-L1, it is 
of great importance to suppress the interactions 
between PD-1 and PD-L1. As a result, preserving 
CAR T efficacy in PD-L1-rich TMEs requires 
investigating whether preventing PD-1 and 
PD-L1 interactions is a feasible approach.27 While 
blocking antibodies in conjunction with CAR 
T-cell therapy has several benefits, using them 
alone might cause autoimmune responses and 
systemic reduction of PD1 activation.28

Since the present method of CAR T therapy 
involves producing autogenic T cells that express 
the exogenous CAR, it is feasible to include tar-
geted PD-1 suppression to produce CAR T cells 
with reduced PD-1 signaling while preserving the 
PD-1 pathway in some manner. To disrupt the 
PD-1 pathway, researchers have investigated sev-
eral techniques, including CRISPR-Cas9-
mediated ablation of PD-1 and CAR engineering, 
with encouraging results,29,30 using a combination 
of a soluble anti-PD-1 single-chain variable frag-
ment (scFv) and the creation of a short hairpin 
RNA that targets PD-1. However, most of these 
methods rely on changing the genome in some 
way, either by introducing new genes via viral 
vectors or by CRISPR-Cas9 genome editing. 
Because T cells continue to become sensitized to 
this anti-inflammatory signaling pathway, this 
suggests that the consequences of PD-1 inhibi-
tion are long-lasting and might cause autoim-
mune reactions. T cells possess an inherent 
mechanism called the RNA-induced silencing 
complex that can temporarily mute genetic tran-
scripts. Thus, a fascinating and mostly unex-
plored alternative to traditional approaches is the 
transitory interruption of the PD-1 signaling 
pathway by RNA interference at the transcrip-
tome level.30
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Immune checkpoint inhibitors.  Immune check-
point inhibitors, also known as ICIs, are mono-
clonal antibodies (mAbs) that target the inhibitory 
checkpoint molecules that are expressed on the 
cell membranes of CD4+ T cells and antigen-
presenting cells.31,32 The discovery of ICIs has 

opened a new front in the fight against various 
types of cancer, including melanoma, kidney can-
cer, and lung cancer. It is expected that this will 
lead to a change in the current standard treat-
ments for many cancers.33 Table 1 shows some of 
the important ICIs.

Table 1.  Some important ICIs and their description.

Immune 
checkpoint 
inhibitor

Description References

Lung cancer There are becoming greater instances where ICIs may be applied alone, 
without the need for chemotherapy or targeted treatment. ICIs may be 
used as either a primary or secondary therapy for NSCLC.
Comparing cancer patients with NSCLC treated with PD-1 inhibitors 
against chemotherapy, several studies discovered 5-year OS rates 
ranging from 13% to 25% in the second line of treatment and up to 32% in 
the first line.
Regulatory approval of PD-1 or PD-L1 inhibitors for NSCLC increased 
OS for patients with metastatic cancer; at present, most NSCLC patients 
receive PD-1/PD-L1 inhibitors as part of their regular treatment, 
frequently as first-line therapy

34–36

Melanoma Melanoma is a kind of skin cancer. It is caused by the uncontrolled 
proliferation of abnormal melanocytes.
Recent studies into the molecular basis of illness have led to innovative 
treatment methods, such as ICIs and targeted therapies, which 
are successful against melanoma although interferon therapy and 
chemotherapy are ineffective. The anti-CTLA-4 medication ipilimumab 
was the first to achieve FDA clearance for melanoma therapy.
Only 3 years later, in 2008, pembrolizumab was approved to treat 
metastatic melanoma.

37,38

Renal cell 
carcinoma

Immunotherapy is used to treat patients with progressed ccRCC. Methods 
that target many pathways at once include TKIs and intracellular tyrosine 
kinase inhibitors for vascular endothelial growth factor receptor VEGFR.
Ipilimumab and nivolumab, two ICIs used together, are also used to treat 
ccRCC.
Patients with metastatic ccRCC treated with ipilimumab with nivolumab 
had similar PFS to those treated with TKIs and ICIs in the second-line 
setting.

39–41

Head and neck 
cancer

HNSCC ranks as the sixth most common form of cancer worldwide. 
There are approximately 830,000 new cases and over 430,000 deaths 
documented each year.
The monoclonal anti-PD-1 antibodies nivolumab and pembrolizumab 
were the first ICIs authorized for the treatment of recurrent HNSCC.
These immunotherapeutic medications work by blocking the PD-1/PD-L1 
pathway, which blocks inhibitory signals to increase the T-cell-induced 
cellular immune response.
Data from clinical studies of ICIs for HNSCC show that only a small 
proportion of patients benefit from treatment, highlighting the 
significance of careful patient selection before initiating immunotherapy.

42–45

ccRCC, clear cell renal cell carcinoma; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; HNSCC, head and neck 
squamous cell carcinomas; ICIs, immune checkpoint inhibitors; NSCLC, non-small-cell lung cancer; OS, overall survival; 
PD-1, programmed cell death protein 1; PFS, progression-free survival; TKIs, tyrosine kinase inhibitors; VEGFR, vascular 
endothelial growth factor receptor.

https://journals.sagepub.com/home/tav


M Shahzadi, H Rafique et al.

journals.sagepub.com/home/tav	 5

Therapy based on ICIs is also emerging as an 
appropriate choice due to its significant antitu-
mor effects.46 However, the therapeutic value of 
ICIs is limited by tumor resistance to ICIs and 
ICI-mediated toxicity. Overall, approximately 
60% of patients do not have a clinically significant 
response to therapy with ICIs.47 Changes in the 
TME that maintain angiogenesis and prevent 
immune cell antitumor responses are mostly 
responsible for the development of resistance to 
ICIs and other cancer immunotherapies. The 
genes, inflammation, unusual neovascularization, 
and other variables involved in tumor immune 
resistance are all part of the problem.47 Combining 
chemotherapy with inhibitors of angiogenesis and 
immunotherapy for cancer has solid evidence due 
to the essential role of angiogenesis in tumor pro-
gression and opposition to immunotherapies.48,49

Challenges and limitations of immunotherapy 
in clinical practice
The trial design must identify significant results 
with regard to the medicine’s particular features, 
pharmacokinetic (PK)/pharmacodynamics (PD) 
profile, and clinical behavior if the drug is to be 
considered a success.50,51 Clinical studies that are 
not optimized may not pose the appropriate ques-
tions; therefore, the results may not reflect the 
agent’s true potential. Many patients do not react to 
ICIs, although their appeal depends on their ability 
to provide long-term and even full responses. 
Whenever thoughts such as pseudoprogression 
(PP) or hyperprogression (HP) develop in relation 
to ICI treatment, it may be difficult for clinicians to 
determine whether a patient has a real therapeutic 
impact.52 When compared to traditional oncology 
components, the adverse effects of ICIs tend to be 
more variable in terms of their duration, frequency, 
and severity. Immune-related adverse events 
(irAEs) might be different depending on the modal-
ity class; however, the adverse reactions of ICIs are 
generally the same yet have a wide frequency 
range.53 First, irAEs caused by ICIs tend to damage 
a single organ instead of many organs simultane-
ously.54 Second, toxicity often does not start until 
much later in treatment (about the fourth week for 
ipilimumab55 and around the tenth week for 
nivolumab).56 The toxic effect caused by ICIs is not 
inversely proportional to the dose; therefore, reduc-
ing the dosage may not prevent future adverse 
effects.57 Since ICI combination techniques more 
accurately represent immunological damage, they 

are often used to stop therapy permanently. Thus, it 
has been shown that 42% of melanoma patients 
receiving chemotherapy combined with nivolumab 
and ipilimumab had to stop treatment due to any 
drug-related adverse events.58 These occurred at a 
rate of 13% in the nivolumab arm and 15% in the 
ipilimumab arm.58

Innovation and personalized approaches
Biomarkers, personalized medicine, imaging 
technologies, and wireless monitoring devices 
have all advanced greatly because of the enor-
mous amount of data obtained from each cancer 
patient’s unique physiological and clinical fea-
tures (i.e., genomics, radiomics, metabolomics, 
and other omics). AI has become a useful tool for 
doctors to provide higher-quality treatment.59 Its 
enormous data analysis abilities may help provide 
personalized therapy utilizing its recommenda-
tions. AI may have a major effect on a variety of 
processes, such as cancer prevention, medication 
development, and genomic-based therapies.60 
Molecular biologists and computer scientists are 
working together to acquire new insights into 
tumor biology due to advances made possible by 
AI. Since cancer is a genetic illness, oncology 
would obtain the most significant benefits from 
advances in AI. Analyzing DNA methylation in 
tumors may help with categorization and progno-
sis. The potential for machine-determined DNA 
methylation to classify over 70% of tumors classi-
fied by humans holds great promise for revolu-
tionizing cancer prognosis and therapeutic 
choices. In a seminal study from Capper et al.,61 
82 different types of brain cancers could be accu-
rately classified with a 93% success rate using 
whole-genome methylation studies conducted on 
tumor specimens using the Illumina 
HumanMethylation450 (450 k) or Methylation 
EPIC (850 k) array platforms. The authors 
asserted a much greater level of accuracy when 
compared to pathologists. Watson for Oncology, 
a particular assistant-decision system, has shown 
satisfactory concordance with the choices made 
by multidisciplinary groups. This may facilitate 
quick, less resource-intensive decision-making at 
the patient level.62

The role of AI in cancer immunotherapy
Figure 1 shows molecular oncology and the role of 
artificial intelligence in cancer immunotherapy. 
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AI in predicting immunotherapy responses
The ability to program computers to carry out 
particular tasks and then provide decision sup-
port systems is an important way forward for the 
field of AI medicine; early findings show that it 
can correctly differentiate between immunohis-
tochemically scored subtypes of cancer, tumor 
biomarkers, and prognostic indicators.63 In addi-
tion, the use of AI techniques in cooperation 
with modern technology holds enormous poten-
tial for optimizing healthcare by reducing the 
prevalence of misdiagnoses and enhancing the 
individualized nature of patient care.64 With 
immunotherapy’s impressive advancement and 
widespread use in cancer treatment, it remains a 
challenge to choose the patients most likely to 
benefit from treatment. Effective immunother-
apy is increasingly probable now that AI can 
help anticipate a patient’s susceptibility to 
immune checkpoint blockade (ICB) treatments 
by the creation of immunotherapy-associated 
scores.65 In future AI practices, there is still  
a shortage of integrated ICB response predic-
tion models, which is a barrier caused by the 

undetermined impact of solo predictive bio
markers, the difficulty of integrating different 
biomarkers into one system, and the fact that 
there were previous challenges.

Using AI, it is possible to recognize major histo-
compatibility complex (MHC) features related to 
immunotherapy response with an accuracy of 
90% or higher.66 In addition, AI may be applied 
to perform consistent evaluations within institu-
tions prior to the clinician’s assessment. Thus, 
patients may benefit more from cancer immuno-
therapy if AI is applied to the field.67

AI predicting the efficacy of immunotherapy
Acquiring, filtering, segmenting, extracting, and 
selecting features from multiscale medical data 
from the training cohort is the first step in using 
AI to predict the efficacy of immunotherapies. 
Then, features are fed into the AI for learning and 
modeling.68,69 Genomics, proteomics, pathology 
tissue, computed tomography (CT)/MR imag-
ing-omics, and many other types of multiscale 

Figure 1.  Molecular oncology and AI.
AI, artificial intelligence.
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medical data are all within the boundaries of  
possibility. Training AI to accurately identify 
which patients need further testing, such as 
whole-genome sequencing, or to determine 
whether immunotherapy will be beneficial for a 
certain patient is the ultimate aim. It also helps in 
determining whether an immunotherapy treat-
ment will be effective.

Existing approaches to predict the outcomes of 
immunotherapy
The existing approaches that are being used for 
the prediction of immunotherapy are summarized 
in Table 2.

Evidence suggests that PD-L1 expression,  
TME, tumor immunology locus, TP53 mutations, 

Table 2.  Existing approaches that are currently in use to predict cancer immunotherapy.

Approach Outcomes References

Use of 
histopathological 
features

Histopathological tissue sections are considered the gold standard 
for tumor diagnosis because of the wide range of information 
they provide on the progression of the disease, treatment options, 
and prognosis. However, traditional histopathology methods fall 
short of the precision medicine standard because they depend 
on specialists to manually extract information from extremely 
complex pictures.
AI may be used to precisely determine immunohistochemical 
staining data in pathology slides and segments to detect tumor 
cells.
Therefore, histopathology analysis-based machine learning 
algorithms provide fresh approaches to predicting tumor 
immunotherapy response.

69–72

Use of genomics Advancements in NGS technology and thorough genomic and 
transcriptome screening are now accessible. Genome sequencing 
of tumor microenvironment cells (including cancer cells, stromal 
cells, and immune cells) reveals treatment impact aspects and 
provides a way to develop databases to analyze tumor drivers.
WGS is the gold standard for genomic data, but extracting 
information from genes, phenotypes, and the regulatory 
relationships between them requires AI and deep learning 
techniques in particular.
Gene expression and variation levels of platelet-related genes 
are also shown to have a substantial correlation with the 
immunotherapy response and prognosis of triple-negative breast 
cancer patients

73–76

Other strategies AI has been used in a wide range of tumor immunotherapy 
studies. Some indicators, such as plasma cytokine 
interleukins and circulating tumor cell DNA, are used to rule 
out hyperprogressive or pseudoprogressive illness after 
immunotherapy.
Individuals with metastatic melanoma currently have access to a 
serum proteomics test model based on AI that can predict their 
response to ICIs.
By creating a practical instrument for tumor in vitro culture, 
growth analysis, medication screening, and tissue collection, AI in 
organoids is anticipated to tackle the safety and personalization 
concerns linked to traditional prediction tools.

77–80

AI, artificial intelligence; ICIs, immune checkpoint inhibitors; NGS, next-generation sequencing; WGS, whole-genome 
sequencing.
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anaplastic lymphoma kinase (ALK) rearrange-
ments, gut microbiota, Fc gamma receptor poly-
morphisms, serum complement levels, and other 
anomalies in microRNAs all have a role in 
immunotherapy response.81,82 It is possible to 
greatly improve prediction accuracy by merging 
these data with data from diseased sections and 
imaging histology to obtain multiomics inte-
grated data. Organs that resemble tumors are 
useful for testing immunotherapies, as they can 
reproduce tumor conditions in vitro while still 
producing immune-tumor interactions.83 By cre-
ating a practical instrument for tumor in vitro 
culture, growth analysis, medication screening, 

and tissue collection, AI in organoids is antici-
pated to tackle the safety and personalization 
concerns linked to traditional prediction tools.84 
By analyzing the cell necroptosis index and anti-
gen presentation pathways, AI may be able to 
forecast ICB reactions.85 Table 3 shows different 
methods that use AI to forecast the results of 
immunotherapy.

Precision medicine and AI: Future synergies
AI and precision medicine are merging to aid in 
resolving some of the most difficult challenges in 
patient-specific treatment. Five examples of 

Table 3.  Different methods use AI to forecast the results of immunotherapy.

Forecast method Prediction indicators Results References

Liquid biopsy Cancer cell DNA in 
circulation, serum 
complement levels, 
cytokines, etc.

A real-time detection approach for 
targets like PD-1 may be used with 
circulating tumor cells; a favorable 
correlation between dropping circulating 
tumor DNA and better overall survival 
was found; and the success of 
immunotherapy was connected with 
serum C1q and LDH levels.

83

Multiomics data Radiomics, proteomics, 
epigenomics, 
transcriptomics, 
genomics, etc.

AI models based on multiomics 
provide an opportunity to understand 
the disease’s underlying information 
flow. The model’s components may 
be evaluated to see whether they 
independently exacerbate the condition 
or if they cooperate to alleviate it.

86

Medical data Information on the 
population’s health 
status, past medical 
history, test findings, 
etc.

Data on patients’ ages, sexes, medical 
histories, conventional lab tests, and 
follow-up CT scans may be used to build 
predictive models that differentiate 
immunotherapy-age responders from 
non-responders.

87

Tumor organoids Microenvironment of 
the tumor, interaction 
between the tumor and 
immune system, etc.

Organoids are a great way to study the 
effectiveness of immunotherapy as they 
are so close to the actual tumor tissue.

85

Others Issues with microRNAs, 
recombination, or 
mutations in genes, 
bacteria in the digestive 
tract, etc.

Treatment with anti-PD-1 was 
associated with changes in miRNA 
expression levels, ALK rearrangement, 
EGFR mutation, and the variety of 
microbes in the gut.

82

ALK, anaplastic lymphoma kinase; CT, computed tomography; EGFR, epidermal growth factor receptor; LDH, lactate 
dehydrogenase; PD-1, programmed cell death protein 1.
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personalized healthcare convictions that present 
inherent difficulties, however, may be responsive 
to improvement with the help of AI88 as shown in 
Figure 2.

Therapy planning and considerations
Table 4 shows the therapy planning and consid-
erations (genomic, environmental, and clinical) 
with their possible outcomes and references.

Figure 2.  An overview of how precision medicine and AI combined help in enhancing personalized care.
AI, artificial intelligence.

Table 4.  Genomic, environmental, and clinical considerations.

Considerations Outcomes References

Genomic 
considerations

Genome-informed prescription may be one of the first areas where the efficacy of precision 
medicine may be shown on an extensive level. To generate real-time suggestions, however, 
machine-learning algorithms must be developed to determine which patients are most likely 
to benefit from a certain treatment based on their genetic data. Fast and high-throughput 
genome interpretation has been successfully accomplished using AI techniques; hence, this 
use case was an early example of this convergence.
Radio genomics is another field that was spawned by the first successful use of AI’s 
paradigm in image recognition. Radio genomics is a relatively new study subject in the area 
of precision medicine that focuses on the establishment of connections between cancer 
imaging qualities and gene expression to determine an individual’s chance of experiencing 
toxicity as a result of radiation treatment

89

Environmental 
considerations

The incorporation of environmental issues into management plans requires having sufficient 
personal and environmental information, which may impact a patient’s risk for a bad result, 
as well as knowledge about different forms of treatment and the circumstances under which 
each choice may be perfect. An excellent instance of this is the difficulty in determining 
whether or not some patients are homeless.

90

Clinical 
considerations

AI has emerged as an essential component in this process. Researchers analyzed 30 
comorbidities using machine learning classifiers to determine which patients in critical care 
would benefit most from long-term tracheostomy implantation and mechanical ventilation. 
Various clinical data and complications tracked at the clinic have been used for training AI 
models to predict organ malfunction and failure in other research

91

AI, artificial intelligence.
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Biomarker discovery and personalized 
immunotherapy
AI methods allow computers to become better 
over time at conducting a certain activity; the 
result is systems for decision-making that show 
potential in their ability to differentiate between, for 
example, immunohistochemistry scores, cancer 
subtypes, and biomarkers.92 In addition, as 
Thompson et al.64 investigated, AI, with its superior 
computational technology, may have the capacity to 
rebuild the specialty by minimizing mistakes and 
increasing parameters such as the specificity of 
patient therapy and dosage control. Although 
immunotherapy represents a major advancement in 
the treatment of cancer, it may be difficult to deter-
mine whether some patients will benefit from it. 
Effective cancer immunotherapy was previously 
improbable, but the emergence of AI has raised the 
probability due to its ability to anticipate treatment 
impact through the development of immunother-
apy prediction scores such as immunoscore and 
immunophenoscore.65 Both scores were designed 

to assist doctors in determining the probability of 
recovering from ICB treatment.

However, several restrictions need more studies, 
such as the absence of ICB response prediction 
models that can include multiple biomarkers and 
the unknown predictive ability of specific bio-
markers. Integrating an AI-based diagnostic algo-
rithm with clinicians’ interpretations was shown 
to improve the precision of diagnoses for difficult-
to-identify cancer subtypes in prior research.92  
AI achieves a recognition accuracy of 91.66%  
for the MHC, patterns linked to immunotherapy 
response.66 In addition, AI may be used to stand-
ardize tests across institutions, which reduces the 
requirement to depend on the interpretation of 
physicians, which can be naturally subjective 
occasionally.67,93 Thus, the use of AI in cancer 
immunotherapy might result in beneficial out-
comes for patients such as the chronology of 
major breakthroughs of AI applications in cancer 
immunotherapy is shown in Table 5.

Table 5.  Chronology of major breakthroughs of AI applications in cancer immunotherapy.

Year Major breakthrough References

2014 An AI neural network model was able to show how dendritic cell-based 
immunotherapeutic medicine works.

94

2016 The CT image’s predictive radiomic traits were used to find the best 
immunotherapy response.

2017 Tumor immunogenicity determinants were identified using an ML 
method.

An artificial neural network could be able to identify T-cell epitopes for 
tumor antigens that are important in cancer immunotherapy.

2018 A radiomics signature assessed CD8 cell tumor invasion to predict 
immunotherapy patient outcomes.

Deep learning based on MRI was created to improve the diagnosis and 
treatment of prostate cancer.

Immune signature-based ML classification of TNBC helped stratify 
patients’ treatment responses.

2019 AI-based models can distinguish pituitary metastases from ICB-induced 
hypophysitis.

A multiscale CNN method was established for volumetrically segmented 
lung tumors.

MMR status may be predicted from H&E-stained histology slides using 
deep residual learning.

(Continued)
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Year Major breakthrough References

A neural model might effectively characterize the tumor immune 
microenvironment.

2020 Medical images as well as large amounts of patient data are effectively 
handled by AI algorithms which increases the treatment optimization

95

2021 Medical imagery and genetic sequences that were subjected to 
AI-powered examination provide useful information for cancer 
immunotherapy, helping to choose patients, improve treatment, and 
predict individual outcomes.

96

2022 A vital role is played by AI such as the delineation of tumor boundaries 
which, in turn, improves the accuracy of treatment planning

97

Effective, fast, and reliable solutions for cancer immunotherapy are 
provided by deep learning and machine learning models that are present 
on distributed datasets

98

2023 Prediction of immunotherapy response, antibody design, and neoantigen 
recognition

99

AI, artificial intelligence; CNNs; convolutional neural networks; CT, computed tomography; ICB, immune checkpoint 
blockade; ML, machine learning; TNBC, triple-negative breast cancer.

Application of AI in current challenges of 
immunotherapy
Immunotherapy has made significant contribu-
tions to the development of cancer treatment in 
the clinic. The number of immunotherapy medi-
cation approvals, particularly in the class of ICIs, 
has been rising in conjunction with the advance-
ment of therapies in the clinical and preclinical 
context.100,101 Therapies targeting T-cell immun-
oreceptors with immunoglobulin as well as ITIM 
domains, activation of lymphocyte gene 3 and 
T-cell immunoglobulin and mucin-domain 3,  
are currently in clinical trials or development  
for cancer immunotherapy, among many other 
new therapies targeting other prospects. 
Pembrolizumab, avelumab, and ipilimumab are 
three FDA-approved medications that target the 
inhibitory molecules PD-1, PD-L1, and CTLA-
4. Although many molecular targets and treat-
ments are very efficient, approximately 20% to 
50% of patients truly react to therapy. There has 
been an increase in interest in the processes caus-
ing immune checkpoint resistance. Arlauckas 
et  al.102 discovered that macrophages present in 
tumors rapidly removed anti-PD-1 mAbs from T 
cells, reducing the effectiveness of the immune 
system’s cytotoxic T-cell responses. Impaired 
establishment of T-cell memory and inadequate 

production of antitumor T cells are two more 
possibilities.103 As a result, there is an immediate 
requirement to establish methods for determining 
which patients may benefit most from immuno-
therapy. However, irAEs have emerged as persis-
tent effects of checkpoint blockade, highlighting a 
significant clinical issue in ensuring the safe 
administration of these inhibitors.

Some irAEs, such as colitis or rash, appear quickly 
after using ICIs, whereas others, such as hypo-
physitis or liver damage, arise steadily. Some 
irAEs, such as dermatitis or pneumonitis, are eas-
ily treated because of the organ’s intrinsic regen-
eration capacity, while others, such as adrenal 
corticosteroids and insulin insufficiency, cause 
permanent tissue damage because of the death of 
endocrine organs.104 In addition, the severity and 
frequency of irAEs greatly increase when combi-
nation therapies are used. Wolchok et al.105 found 
that anti-CTLA-4 with anti-PD-1 treatment 
increased the risk of significant irAEs, such as 
inflammation of the heart and brain, in up to 60% 
of patients. These symptoms are most likely due 
to checkpoint networks’ physiological role in reg-
ulating adaptive immunity and preventing auto-
immunity. Therefore, identifying the causes of 
irAEs and developing strategies for reducing their 

Table 5.  (Continued)
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effects are becoming serious issues. To fully rec-
ognize and understand the biological processes of 
irAEs, a thoroughly accurate, standard database 
of irAEs has been developed.106 The identified 
irAEs may be used as a benchmark against which 
to evaluate the accuracy of automated irAE 
extractions from other data sources, and they may 
lead the way for the development of computa-
tional techniques to learn about irAEs and, ulti-
mately, ensure the safety of cancer therapy. 
Finally, expensive treatment might cause signifi-
cant individual costs for patients as well as pres-
sures on the national healthcare system. The 
potential use of AI technology in cancer research 
and therapy has become clearer.

AI approaches face challenges in the same way 
that a resident physician would: by first observing 
the patient, then using algorithms to filter varia-
bles and look for combinations that accurately 
predict results. Several areas of medicine have 
used AI-based strategies, the most common being 
pathology and radiology, and in certain instances, 
these techniques have exceeded the performance 
of human experts.107 For example, the integration 
of AI into pathology would provide enhanced 
diagnostics and a better workflow, permitting 
physicians to evaluate and exchange pictures rap-
idly and utilize computational algorithms to assess 
significant findings to obtain a more enlightened 
and thorough cancer diagnosis. Medical images 
include an abundance of information that could 
assist in diagnosis, response to therapy, and prog-
nosis, and these algorithms may be able to use 
this information in ways that would be invisible to 
a human investigator. In a backward study, Wang 
and Xu106 established a semisupervised DL 
approach to data extraction from CT scans for 
predicting high-grade serous ovarian cancer 
recurrence. Searching for diagnostic and prog-
nostic biomarkers and describing tumor cell phe-
notypes are only two examples of the expanding 
use of AI in immunotherapy. Effland et al.108 used 
a DL-based variation network for joint recon-
struction of images and segmentation to show 
how immune cells communicate with melanoma 
cells. By studying the antigen-presenting path-
way, AI may be able to predict how the body 
would react to ICB. The low patient response 
rate, irAEs, and high hospitalization costs associ-
ated with cancer immunotherapy are only a few of 
the problems that AI provides as a possible solu-
tion. Houy and Le Grand109 discovered that 

immunotherapy might benefit from the use of AI 
tools to improve the therapy schedule, which 
could lead to a reduction in irAEs by enabling the 
use of lower dosages and more cost-effective 
therapies.

AI in clinical diagnostics
The early detection and diagnosis of cancer 
patients, as well as their consequent treatment, 
depend on the development of highly accurate AI 
algorithms for the early identification of the dis-
ease.17 The use of AI in clinical diagnostics has 
the potential to improve the treatment of patients. 
Clinical diagnostics could become more effective 
with the use of cancer screening methods, includ-
ing mammography, radiography, and image pro-
cessing.110 AI algorithms have already been 
established with enormous datasets, and they 
demonstrate enhanced diagnosis compared to 
medical professionals. The efficacy of AI-assisted 
diagnostics in identifying cancer at diverse and 
complicated stages has been demonstrated across 
a variety of clinical datasets.110 The Food and 
Drug Administration of the United States has 
given its approval to the use of a number of AI 
systems that are currently under development for 
use in some aspects of cancer treatment, such as 
the detection of suspicious lesions in cancer and 
the interpretation of magnetic resonance imaging 
or CT.111 Several AI algorithms exist for cancer 
detection, tumor classification, treatment trend 
analysis, and dataset assessment.111 For instance, 
AI algorithms exist to identify breast abnormali-
ties and to determine lung nodules in patients 
with lung cancer.112,113

AI and new emerging technologies
AI and other cutting-edge technologies are cur-
rently changing patient care as they expand across 
the healthcare system. The amount of data that is 
now available has increased at an exponential 
rate, which may be used in the process of early 
diagnosis and making clinical decisions.114 The 
change brought about by AI in the field of bio-
medical research is essential for the development 
of the idea of precision medicine. Alongside the 
growth of the field of precision medicine has 
come an even more significant change in the 
knowledge of the processes involved in the early 
identification of cancer through the use of digital 
technologies. In the field of cancer research, AI 
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has mostly focused on predicting risk with the 
expectation that using risk information would 
impact both health habits and treatment results.115 
Insights and techniques for translating AI knowl-
edge into effective treatment may be obtained by 
studying the science of early death in cancer. AI 
has already been used in a variety of healthcare 
contexts. For instance, AI has created a smart-
phone app called Diagnosis for evaluating and 
annotating medical pictures and videos based on 
strong connections between cancer prognosis and 
the efficacy of subsequent therapy.114

AI has the potential to accelerate the creation of 
advanced medicines, innovative designs, and cut-
ting-edge therapeutic approaches. The predictive 
prediction of biological processes enabled by 
advanced big data analysis with AI has the poten-
tial to speed up the transformation of discoveries 
into new therapies and improve the precision with 
which complicated diseases are treated.114 For 
instance, DeepMind, a firm supported by Google, 
has developed a tool that can make instant diag-
noses of a variety of diseases. Diabetic retinopa-
thy, age-related macular degeneration, and cancer 
may all be detected in their earliest stages.114,116 
The National Institute of Health has also created 
the Big Data to Learning program to fund the 
study and creation of methods for incorporating 
big data and data science into the field of bio-
medical research. Clinical care that is led by AI 
may have a significant impact on cancer preven-
tion, detection, and treatment.114 The use of AI in 
cancer treatment has the potential to increase 
diagnostic precision and treatment efficiency, 
leading to improved patient outcomes. To ana-
lyze images of patients with prostate, breast, and 
brain cancers, scientists developed computer 
algorithms.117 It may be used in clinics as a tool to 
aid with diagnosis, clinical decision-making, and 
the prediction of patient outcomes. Commonly 
altered gene predictions, biomarker detection, 
picture interpretation, and cancer diagnosis are 
all within AI’s abilities.117

Drug discovery and development
The process of drug discovery and development 
is extremely time-consuming, expensive, and dif-
ficult. It can often take more than 10 years from 
the discovery of molecular targets until a pharma-
cological product can be licensed for sale and 
made accessible to the public. Any rejection that 

occurs throughout this period has a significant 
influence on the organization’s profitability; in 
fact, a large number of medication candidates fail 
at some point during the development process 
and never make it to market. In addition, there 
are growing regulatory challenges, as well as the 
problems of constantly identifying medication 
compounds that are far better than what is already 
being marketed. Because of this, the process of 
developing new drugs is difficult and inefficient, 
and any new medication products that are effec-
tive in accessing the market come with an expen-
sive cost.118 In the most recent few years, there 
has been considerable growth in the quantity of 
data that can be accessible to evaluate the activity 
of medicinal compounds and biological data. 
This is because an increasing number of tasks are 
being computerized, as well as because new 
experimental methods such as parallel synthesis 
and speech-to-text synthesis that are based on 
hidden Markov models have been developed.

However, mining of large-scale chemistry data is 
needed to efficiently classify potential drug com-
pounds, and ML techniques have shown great 
potential.119 Since the 1990s, numerous methods, 
including support vector machines, neural net-
works, and random forests, have been employed 
to build models that assist in the process of drug 
development. In recent years, DL has started to 
be implemented in practice as a result of an 
increase in the quantity of data as well as a con-
tinual increase in computer power. During the 
process of discovering new drugs, several steps 
may be made more efficient with the help of ML. 
This involves the prediction of drug molecule 
properties and activities, the development of new 
pharmacological compounds through de novo 
design, the analysis of drug–receptor interactions, 
and the estimation of drug reactions.120

New applications of AI in developing cancer 
drugs and in making precision medicine
AI is the demonstration of intelligence by 
machines designed by humans. Cybernetics, 
computer engineering, neuroscience, and linguis-
tics are all included in this field of study. Many 
people put the origins of AI at the 1956 Dartmouth 
Conference. As the field of AI has continued to 
grow rapidly over the last several decades, its defi-
nition has broadened to include not only ANNs 
and DL but also other technologies.11 DL is a 
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type of AI that may automatically extract features 
from enormous datasets. In addition, DL is capa-
ble of interpreting information from images that a 
person’s vision cannot.14

Anticancer drug development with the help of AI
AI is used to predict the effectiveness of antican-
cer treatments and to assist in the creation of new 
anticancer drugs. Large-scale screening data fre-
quently show an association between cancer cell 
genetic diversity and therapeutic efficacy; how-
ever, responses between various malignancies and 
drugs may differ significantly. Based on the pre-
sent mutation position of a malignant cell genome, 
the model is used to forecast the efficiency of anti-
cancer drugs. Another team of researchers, Wang 
et al.48 developed an ML method termed elastic 
net regression to generate a model of drug suscep-
tibility. In patients with gastric cancer, ovarian 
cancer, and endometrial cancer, ML algorithms 
have been found to effectively predict treatment 
susceptibility.121 The framework predicts resist-
ance among people who have recently been pre-
scribed tamoxifen, people who have been treated 

for stomach cancer with 5-FU, and those who 
experienced endometrial cancer treated with 
paclitaxel. All these patients had a dismal 
prognosis.

This research shows that AI has great potential 
for determining which cancer drugs will be effec-
tive. AI is also essential in the fight against resist-
ance to cancer treatments. The use of AI is also 
important in the battle against cancer drugs that 
have become resistant.122 AI can rapidly compre-
hend how cancer cells build resistance to cancer 
treatments by studying and analyzing data on 
large drug-resistant tumors, which may assist in 
improving pharmaceutical development and 
use.123 AI has the potential to improve several 
aspects of cancer treatment, including imaging, 
treatment, screening, detection, and medication. 
AI has the potential to improve cancer diagnostics 
and treatment. Currently, cancer imaging repre-
sents the cutting edge of AI application across all 
areas of cancer research. Medical imaging and AI 
can complement one another to help find cancer 
therapies.123 Table 6 describes how AI can be 
used with different types of cancer therapies.

Table 6.  Combination of AI and different cancer therapies.

AI and therapies Description References

AI and 
chemotherapy

AI in the field of cancer therapy is mostly focused on the changing 
relationship between drugs and individuals undergoing treatment. 
AI has made significant improvements to the management of 
chemotherapy drugs, the forecasting of chemotherapy drug 
resistance, and the optimization of chemotherapy programs.
Deep learning-based screening system accurately predicted which 
patients might benefit from PARP therapies by recognizing cancer 
cells with HR abnormalities at a 74% detection rate. Researchers were 
able to differentiate between the efficacy of two chemotherapy drugs, 
Taxol and gemcitabine, due to their investigation into the association 
between chemotherapy and patient genetics.

123,124

AI and 
radiotherapy

Incorporating AI systems with radiation therapy for cancer is an 
emerging field.
Radiomics is a method of collecting pictures from radiographs. A 
prediction model was developed by integrating deep learning with 
radiomics to assess the efficacy of bladder cancer treatment.

125,126

AI and 
immunotherapy

Cancer immunotherapy, treatment effectiveness measurement, and 
physician assistance for methodological drug approach improvements 
are common areas of AI use.
Cancer immunotherapy might be more effective, and the rate of 
cancer neoantigen detection could be higher. The primary function of 
AI in disease radiation is to autonomously construct treatment plans 
after identifying potentially vulnerable tissues and disease targets.

127

AI, artificial intelligence; HR, homologous recombination; PARP, Poly (ADP-ribose) polymerase.
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Development of AI tools for cancer management
Incorporating AI into health data might lead to 
the development of valuable clinical tools that aid 
in cancer care. A growing number of AI approaches 
based on health imaging are showing excellent 
promise as practical therapeutic aids in many con-
texts.13 A few examples include risk classification 
of patients, medication response prediction, mul-
tidimensional heterogeneous data prediction of 
recurrence and survival, and prediction of tumor 
genetic traits and association with tumor spread.128 
The development of AI solutions based on images 
still requires access to massive, quality-controlled 
datasets, even with these notable advancements.129 
Overcoming that problem remains difficult. To 
construct these imaging biological databases, sev-
eral technical and operational challenges must be 
resolved, including image and data harmoniza-
tion, data curation and annotation, picture pre-
processing and annotation, and various legal and 
ethical constraints.130,131 Therefore, the number, 
quality, and representativeness of datasets con-
tinue to be significant limiting factors in the pro-
cess of developing prediction tools for cancer 
management.

The goal of this project is to aid in the develop-
ment, testing, and preliminary clinical validation 
of AI technologies that may assist oncologists in 
the estimation of crucial clinical endpoints in the 
field of cancer.132 It includes tools for manipulat-
ing images, extracting data from radiomics, 
arranging treatments, and making prognostic 
forecasts. After these have been verified, Open 
Challenges will be held to encourage other out-
standing developers to make use of 
CHAIMELEON’s tools to create their models. 
This project will use a methodological technique 
termed continuous learning, which will enable 
seamless updating of the models, including the 
addition of new descriptions and instruction, to 
gradually enhance performance throughout the 
project’s time frame. It is thought that this con-
tinuous learning approach would provide the 
repository’s structure with considerable flexibility 
in terms of algorithm performance and dataset 
management. However, a great number of AI 
models that predict parameters associated with 
disease identification as well as therapy outcomes 
have been produced in recent years.133–135

Challenges and ethical considerations
As a result of its complexity and multidimension-
ality, medicine has almost dropped behind other 
sectors about the impact of big data and AI tech-
nology. This has led to technological obstacles in 
the process of designing and evaluating solutions 
that apply to a wide variety of populations.136,137 
In fact, intrinsic biases and miseducation of algo-
rithms are becoming more significant problems in 
the context of the fact that they are being used in 
regular clinical practice. Concerns have been 
expressed about the generalizability and accuracy 
of AI, as well as methodological restrictions that 
might arise during algorithm development. In 
addition, the current situation of AI is becoming 
more fragmented in the field of medicine. In addi-
tion, inadequate verification might restrict clini-
cal translation.138

Methodological challenges
Trust in the algorithms of AI depends on valida-
tion.  Problems with AI generalizability and 
repeatability, as well as methodological con-
straints during algorithm creation, make the cur-
rent AI ecosystem incredibly fragmented, despite 
AI’s indisputable capacity to improve cancer 
patient care and substantially impact oncology 
as a whole.138 Most AI research to date has been 
retrospective, and randomized controlled studies 
comparing treatment outcomes with and  
without an AI-based clinical decision support 
system are very rare in cancer.137 Few investiga-
tions have been conducted, despite significant 
advancements in internal validation methodolo-
gies, which has led to a decrease in trust in the 
validity and applicability of the research.139 A 
further issue is that AI-based models have a 
biased geographic distribution, which limits 
their applicability to populations with different 
demographics and different healthcare systems. 
The algorithms’ collider bias and inaccurate 
association production are both caused by these 
variables, which impact the characteristic distri-
bution directly between the training and valida-
tion cohorts.137 Benchmark datasets that 
represent different patient cohorts should be uti-
lized extensively to improve algorithm generaliz-
ability and accuracy, as shown in certain 
international collaborations.137
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Data supervision: Data distribution change and 
calibration deviation
Aligning a bidirectional data flow from patients to 
algorithms for training and from learned algo-
rithms back to patients is necessary to achieve the 
aim of enhancing cancer therapy, highlighting the 
need to integrate data science with clinical prac-
tice.140 ML algorithms are very contextual and 
time-sensitive; their responses change based on 
the specifics of each dataset’s development. We 
are unable to take the effectiveness of one para-
digm and apply it to another age or organization 
since clinical settings are diverse and unpredicta-
ble. By improving its characterization using inde-
pendent data and calibrating the model, common 
cause variation, the known and predictable por-
tion of the system’s variability may be reduced. A 
change in the dataset’s shared percentage of the 
inputs and the target variables is the root cause of 
special cause variations, which are unexpected 
declines in model performance. For organizations 
to make any changes that are needed to the model 
or data collection and development, it is crucial to 
monitor AI for things such as calibration drift and 
special-cause variability.141,142 The purpose of 
model updating, in contrast to AI monitoring, is 
to either maintain or improve upon a model’s 
prior performance by incorporating new data or 
changing conditions.137

Critical assessment and gaps in research
The study of programming computers to act in 
ways that resemble human intellect is known as 
AI. For decision-making and other activities, it 
uses computers programmed to follow algorithms 
designed by humans or acquired automatically.69 
ML, a branch of AI, is the process by which a 
computer may train itself to perform better by 
adding information to an already existing model 
in a repetitive way.92 In DL, a specialization of 
ML, mathematical algorithms are used to create 
systems with many interconnected “brains,” or 
computer layers, to mimic human intelligence. 
This category includes neural networks with a 
variety of topologies, including recurrent, convo-
lutional, and long-term short-memory networks. 
Artificial neural networks, which can apply math-
ematical rules to data in a number of ways, may 
be very useful for evaluating unstructured data.143

In the medical industry, unstructured data are 
often used to record qualitative and subjective 

information gathered using patient–provider 
interactions or picture collecting. Applying AI to 
unstructured text often benefits from DL algo-
rithms such as natural language processing 
approaches and recurrent neural networks. The 
most popular and effective AI architectures for 
exploring image data are convolutional neural 
networks. Essential components of building and 
validating ML models include selecting the right 
problem, collecting data, preprocessing (includ-
ing anonymization), training, testing, optimiza-
tion, assessment, and external validation.144 
Developing a trustworthy ML model that may be 
used in clinical practice involves several steps 
(Figure 3). Model consistency requires ongoing 
monitoring of results and applications after 
deployment to detect and prevent performance 
degradation due to model drift. Furthermore, 
prospective clinical studies with problem-specific 
metrics are needed to evaluate the therapeutic 
value of ML models. The receiver operating char-
acteristic (ROC) curve is the gold standard for 
classification tasks in medicine. An indication of a 
test’s accuracy in predicting the frequencies of 
true positives and false positives is the area under 
the ROC curve. Sensitivity, specificity, and accu-
racy may also be evaluated with the use of the 
confusion matrix.

AI governance can be summarized as “a system of 
rules, practices, processes, and technological 
tools that are employed to ensure an organiza-
tion’s use of AI technologies aligns with the 
organization’s strategies, objectives, and values; 
fulfills legal requirements; and meets principles of 
ethical AI followed by the organization.” As AI is 
being used in an increasing number of fields, both 
public and private, it has become a topic for gov-
ernance.145,146 AI is an umbrella term for a variety 
of related but separate areas of study, including 
data interpretation, ML, and adaptive informa-
tion systems.147

Future prospects and unresolved questions
As an increasing number of medical records and 
images have become public, it is important to 
note that most of these datasets lack proper tag-
ging, classification, quality control, or correlation 
to a particular diagnosis. One of the difficult 
aspects of creating an AI system is gathering and 
organizing the necessary data, which is a time-
consuming process that requires the expertise of 
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doctors.148 This restriction is especially wide-
spread in approaches that make extensive use of 
enormous amounts of information, such as con-
volutional neural networks. Methods that do not 
depend on labels or human oversight, such as 
uncontrolled and self-supervised methods, might 
be the answer. Experiments with unsupervised 
learning methods that do not need labels, such as 
variation autoencoders and generative adversarial 
networks, have shown positive results.69 While a 
self-supervised method for segmenting and clas-
sifying lung diseases on chest X-rays and tested 
on the National Institutes of Health chest X-ray 
dataset yielded remarkable results, an unsuper-
vised DL method for automatic segmentation of 
chest CT showed an accuracy of up to 98%.149 
We expect that research into therapeutic applica-
tions of AI will go into these areas. To incorpo-
rate AI into daily clinical practice, a number of 
requirements must first be fulfilled. Integrating 
AI technology into image archiving and commu-
nication systems is one of these, as well as the 
development of platforms that allow connectivity 
among various AI applications to construct a net-
work of powerful tools. Screening for lung nod-
ules and finding image-based biomarkers are two 
examples of the kinds of laborious and recurring 

duties that may be automated with the help of AI. 
This will be achieved with the help of AI, which 
will pave the way for the eventual automation of 
these processes. These discoveries will hopefully 
make it possible to characterize diseases in a man-
ner that is noninvasive and reproducible, which 
will result in an improvement in treatment and 
bring personalized medicine one step closer to 
reality.150

Challenges
The use of AI in biomedical imaging has the 
potential to revolutionize several fields, including 
lung cancer detection, prognosis, and treatment 
strategies. This will greatly enhance patient care 
once it is used in clinical practice. However, there 
currently exist a number of barriers that prevent 
the broad use of AI in regular work routines. AI 
tool development requires a massive volume of 
high-quality data. Despite the abundance of lung 
cancer datasets, there is a shortage of consistent 
imaging, clinical, and laboratory data that pre-
vents the development of effective algorithms.151 
Therefore, it is important to gather information 
from a wide variety of sources, highlighting the 
significance of sharing information and working 

Figure 3.  Steps involved in AI-based models to be used for diagnosis in healthcare.
AI, artificial intelligence.
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together in scientific research. The Cancer 
Imaging Archive is an example of an ever-growing 
open-access image database that has a large data-
set on cancer and is a valuable resource for aca-
demics looking to confirm local work.152 
Collaboration is one of the most important 
aspects of AI research in the medical field. This is 
because multidisciplinary groups are necessary 
for the development of reliable models that may 
impact routine clinical practice. Radiologists, 
doctors, engineers, and programmers all work 
together in these groups, and they all learn from 
each other in a two-way, mutually beneficial 
process.

The study design is another significant restric-
tion. In particular, a large portion of the literature 
on lung cancer outcome prediction has focused 
on very small patient populations.153–155 Results 
from AI models trained on a few case series are 
results that are difficult to generalize and hence 
useless in real clinical practice. Without further 
validation in other cohorts, the reliability and 
therapeutic utility of the findings cannot be con-
firmed. Prior to their use as clinical diagnostic 
tools, models built using historical data must be 
validated in a prospective scenario since they also 
have analogous constraints. It is important for 
researchers working on AI models to keep in 
mind that a comprehensive picture of lung cancer 
requires data from several sources. The recom-
mendations suggest applying multivariate analysis 
with features other than imaging, such as family 
history and clinical and genetic data, to generate 
more comprehensive models.156 One of the big-
gest obstacles AI must overcome before it can be 
used in the clinic is reproducibility since the radi-
omics process (from picture capture to model 
validation) may vary widely from study to study 
and institution to institution.157

For instance, the signal-to-noise ratio and derived 
picture features may be affected by the diversity 
of image capture procedures between institutions. 
It also indicates that differences in imaging char-
acteristics and values across patients are more 
likely the result of differences in capture parame-
ters than in tissue biology. One way around this 
restriction is to avoid using features that are very 
sensitive to changes in the acquisition and recon-
struction settings. Using open imaging standards, 
for instance, might help standardize image cap-
ture as another option.

Recent advancements in the use of AI for CAR 
design and CAR efficacy
Recently, Qiu et  al.158 created CAR-Toner, an 
AI-powered PCP (positively charged patch) com-
putation tool. It also gives suggestions on how to 
improve the PCP score, but more research is 
needed to find out exactly what effect these 
changes have on the specificity and affinity of 
CAR antigen binding. However, this state-of-the-
art technology is poised to advance the field of 
CAR-T design to the next level, paving the way 
for AI-driven advancements in CAR-T design.

One way to make an AI-based platform for 
choosing specific TCRs (T-cell receptors) that 
works well is to follow the steps suggested by 
Bujak et al.159 Bujak et al.159 recommended col-
lecting patient samples and creating a database 
of pHLA (peptide-human leukocyte antigen) 
and TCR sequences. The multicenter observa-
tional trial included patients with stage II, III, or 
IV colon cancer adenocarcinoma from eight dif-
ferent hospitals. The patient recruitment process 
involved the registration of 100 participants. 
Bujak et al.159 extracted and cryopreserved mon-
onuclear cells from peripheral blood, collected 
samples of primary tumor tissue and peripheral 
blood, and carried out nucleic acid extraction 
(DNA and RNA) in 86 instances. Furthermore, 
they subjected 57 samples to RNA sequencing 
for gene expression profiling and whole exome 
sequencing to detect somatic mutations. 
According to Bujak et al.,159 the findings of their 
research may significantly impact the manage-
ment of patients with colorectal cancer. A big 
database of pHLA:TCR sequences was made by 
the observational clinical study by Bujak et al.159 
This database will help make the AI-based plat-
form for TCR selection. The outcomes so far 
show that patient enrollment and sample collec-
tion were effective, setting the stage for more 
research and the creation of a novel tool to speed 
up and improve TCR selection for precision can-
cer therapy.

Recently, Martarelli et al.160 used AI to help them 
study the molecular dynamics and molecular 
docking of different anti-CD30 mAbs clones. 
They wanted to find the best scFv (single-chain 
variable fragment) binding before engineering 
CAR-T cells. The virtual computational scFv 
screening, surface plasmon resonance, and func-
tional CAR-T cell tests all worked the same way 
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to attach to and kill tumors in the lab and living 
things. Martarelli et al.160 concluded that the cre-
ation of new CAR constructions might be 
advanced by the suggested quick and inexpensive 
in silico analysis, which would also significantly 
cut down on expenses, time, and the requirement 
for using lab animals.

Conclusion
Cancer is a complex and heterogeneous disease 
that poses significant challenges for diagnosis, 
prognosis, and treatment. AI, especially DL and 
radiomics, has shown great potential to improve 
the clinical management of cancer patients by 
providing data-driven insights from medical 
imaging. However, there are still many limitations 
and barriers that need to be addressed before AI 
can be widely adopted in routine practice. These 
include the quality, availability, and diversity of 
data, the validation and generalization of models, 
the reproducibility and standardization of meth-
ods, and the ethical and regulatory issues of AI 
applications. To overcome these challenges, mul-
tidisciplinary collaboration, open sharing, and 
transparent reporting are essential. Moreover, AI 
should not be seen as a replacement for human 
expertise, but rather as a complementary tool that 
can augment and enhance the decision-making 
process. Ultimately, the goal of AI is to improve 
the quality of care and outcomes for cancer 
patients and to support the development of preci-
sion medicine.
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