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Abstract

Background

HIV vaccine trials routinely measure multiple vaccine-elicited immune responses to com-

pare regimens and study their potential associations with protection. Here we employ unsu-

pervised learning tools facilitated by a bidirectional power transformation to explore the

multivariate binding antibody and T-cell response patterns of immune responses elicited by

two pox-protein HIV vaccine regimens. Both regimens utilized a recombinant canarypox

vector (ALVAC-HIV) prime and a bivalent recombinant HIV-1 Envelope glycoprotein 120

subunit boost. We hypothesized that within each trial, there were participant subgroups

sharing similar immune responses and that their frequencies differed across trials.
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Methods and findings

We analyzed data from three trials–RV144 (NCT00223080), HVTN 097 (NCT02109354),

and HVTN 100 (NCT02404311), the latter of which was pivotal in advancing the tested pox-

protein HIV vaccine regimen to the HVTN 702 Phase 2b/3 efficacy trial. We found that bivar-

iate CD4+ T-cell and anti-V1V2 IgG/IgG3 antibody response patterns were similar by age,

sex-at-birth, and body mass index, but differed for the pox-protein clade AE/B alum-adju-

vanted regimen studied in RV144 and HVTN 097 (PAE/B/alum) compared to the pox-protein

clade C/C MF59-adjuvanted regimen studied in HVTN 100 (PC/MF59). Specifically, more

PAE/B/alum recipients had low CD4+ T-cell and high anti-V1V2 IgG/IgG3 responses, and

more PC/MF59 recipients had broad responses of both types. Analyses limited to “vaccine-

matched” antigens suggested that some of the differences in responses between the regi-

mens could have been due to antigens in the assays that did not match the vaccine immuno-

gens. Our approach was also useful in identifying subgroups with unusually absent or high

co-responses across assay types, flagging individuals for further characterization by func-

tional assays. We also found that co-responses of anti-V1V2 IgG/IgG3 and CD4+ T cells

had broad variability. As additional immune response assays are standardized and vali-

dated, we anticipate our framework will be increasingly valuable for multivariate analysis.

Conclusions

Our approach can be used to advance vaccine development objectives, including the char-

acterization and comparison of candidate vaccine multivariate immune responses and

improved design of studies to identify correlates of protection. For instance, results sug-

gested that HVTN 702 will have adequate power to interrogate immune correlates involving

anti-V1V2 IgG/IgG3 and CD4+ T-cell co-readouts, but will have lower power to study anti-

gp120/gp140 IgG/IgG3 due to their lower dynamic ranges. The findings also generate

hypotheses for future testing in experimental and computational analyses aimed at achiev-

ing a mechanistic understanding of vaccine-elicited immune response heterogeneity.

Introduction

The current global HIV incidence-to-prevalence ratio of 0.05 indicates that without more

effective prevention tools the total number of people living with HIV globally will continue to

increase [1]. The quest to design a safe and effective preventative HIV vaccine, which is

believed to be a critical tool for controlling the current HIV pandemic [2, 3], has been hindered

by pathogen variability and immune escape, a lack of knowledge of immune correlates of pro-

tection, and an incomplete understanding of the variation in vaccine-induced immune

responses [4]. New quantitative approaches may help to tackle these pressing problems.

Out of the six phase 3 preventative HIV vaccine efficacy trials that have been performed to

date [5–10], only the RV144 trial of a recombinant canarypox vector vaccine (ALVAC-HIV of

clade AE) and a bivalent recombinant HIV-1 Envelope (Env) glycoprotein 120 (gp120) subunit

vaccine (AIDSVAX B/E) prime-boost regimen (hereafter referred to as the PAE/B/alum regi-

men, where “P” stands for “pox-protein”), conducted in an HIV-seronegative population in

Thailand where HIV subtype CRF01_AE B/E is dominant [11, 12], demonstrated modest vac-

cine efficacy [9]. Although the estimated efficacy was 31% at Month 42, the RV144 trial
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nevertheless provided the first evidence that vaccination can prevent HIV acquisition [9].

Immune correlates analyses of RV144 vaccine recipients revealed that IgG binding antibody

responses to the HIV Env V1V2 loop were inversely correlated with risk of HIV infection [13,

14], whereas certain Env-specific IgA antibody responses were positively correlated with risk

of HIV infection [13, 15]. Subsequent analyses identified additional correlates of risk, includ-

ing polyfunctionality of Env-specific CD4+ T-cell responses [16–18]. Further analyses also

suggested that host factors such as immunogenetics, body mass index (BMI), and other demo-

graphic variables influence immune responses to HIV vaccination and/or vaccine efficacy

[19–24]. The HIV Vaccine Trials Network (HVTN) has been designing and conducting stud-

ies to build upon these results, as detailed below.

In the HVTN 097 trial, the PAE/B/alum regimen tested in the RV144 trial was administered

to participants in South Africa, where HIV subtype C, as opposed to subtype AE, predomi-

nates. Cellular and humoral responses previously found to correlate with risk of HIV infection

in the RV144 trial were then assessed, as were potential associations of race/ethnicity, sex-at-

birth, and age with vaccine-matched and cross-clade responses [25]. A major conclusion from

the HVTN 097 trial was that immune responses found to inversely correlate with risk in the

RV144 trial were elicited at similar (or sometimes greater) rates/magnitudes in a South African

population compared to the RV144 Thai population.

For the HVTN 100 trial, which was also performed in South Africa, the PAE/B/alum regimen

was regionally-adapted to use a subtype C gp120 in the ALVAC vector and two subtype C

recombinant gp120s (ALVAC-gp120C), the alum adjuvant was changed to MF59, and an addi-

tional boost was added in the immunization series. This vaccine regimen, hereafter referred to

as the PC/MF59 regimen, represented the first effort to modify and potentially improve upon

the original PAE/B/alum regimen [26]. Analysis of the HVTN 100 results revealed that the PC/

MF59 regimen elicited humoral and cellular responses that were associated with reduced risk

of HIV acquisition in RV144, although with different response patterns, as further described

here. All four of the pre-specified criteria for advancement of the PC/MF59 regimen into a pre-

ventative efficacy trial were met, leading to the launch of the ongoing HVTN 702 phase 2b/3

efficacy trial of PC/MF59 versus placebo in South African men and women at risk of HIV

acquisition.

Comparisons of vaccine-elicited immune responses within and across trials are important.

Technological advancements have enabled increasingly large numbers of immune responses

to be assessed in vaccine trials, raising the question of how best to compare multiple vaccine-

induced responses across trials. One successful approach has been to synthesize several

immune responses into score-type variables and to assess their associations with HIV acquisi-

tion [10, 13, 27]. In an alternative approach, Chung and colleagues used unsupervised learning

techniques (hierarchical clustering and principal component analysis) to analyze six antibody

Fc effector functions and 58 related biophysical measurements and identify vaccine-specific

humoral signatures, finding further evidence to support IgG V1V2-targeting responses in pro-

tective immunity [18, 28]. Buoyed by these successes, we reasoned that developing additional

multivariate approaches to globally compare immune response profiles across trials could help

advance vaccine development objectives, including: A) to characterize and compare immuno-

genicity across vaccine regimens and other participant factors at a greater multivariate resolu-

tion than many previous analyses; B) to identify unusual vaccine response profiles of interest

that could be missed by lower-dimensional analyses; C) to aid the design of immune correlates

of risk and protection studies; D) to aid the interpretation of correlates of risk and protection

analysis results; and E) to guide the selection of assays for future vaccine trials.

Toward these stated goals, we describe an unsupervised learning framework for analyzing a

large number of immune responses measured from one or more trials and apply this
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framework to compare the immune response profiles of the pox protein HIV vaccine regimens

studied in the RV144, HVTN 097, and HVTN 100 trials. A key element in this framework is

the use of a bidirectional power transformation (BDPT) that transforms quantitative immune

response measurements with a distinctively bimodal distribution, which increases the segrega-

tion of participants into responder versus non-responder categories. Further, BDPT-trans-

formed immune response readouts within an assay are on a comparable quantitative scale,

enabling direct comparison of intra-assay responses. The use of assay-specific threshold values

in the BDPTs also allows for assay responses to be compared across different trials. Visual

comparisons across assays are also facilitated, because all variables share the comparable scal-

ing and the rank order of responses from high to low (i.e. monotonicity) is preserved. How-

ever, the biological interpretation of cross-assay comparisons remains a challenge just as with

non-transformed data. Another key element in our framework is the hierarchical organization

and visual display of immune response data, a strategy that has gained substantial traction for

unsupervised learning in high dimensional data analyses [29], to generate “immune response

landscapes.”

Our approach provides new insights for each of the five objectives noted above, three of

which we highlight briefly. First, comparison of immune response patterns defined by both

anti-V1V2 IgG/IgG3 responses and CD4+ T-cell responses between the two vaccine regimens

showed that a sizable subgroup of RV144 vaccine recipients had robust and broad V1V2-tar-

geting antibody responses yet very low CD4+ T-cell responses. In contrast, a subgroup of

HVTN 100 vaccine recipients had very strong CD4+ T-cell responses yet wide variability

across antigens in V1V2-targeted antibody responses. Relatedly, the analysis revealed a cluster

of about 40% of HVTN 100 vaccine recipients with broad antibody and CD4+ T-cell co-

responses. Thus, the PC/MF59 regimen could have an advantage for efficacy in HVTN 702, if

such co-responses are important for protection. Second, the vaccine landscape analysis facili-

tated identification of subgroups with rare multivariate response patterns: e.g. vaccine recipi-

ents with a complete absence of a response despite receiving all vaccinations, or on the other

extreme vaccine recipients with high response breadth across all immune response variables

covering many antigen specificities for both humoral and cellular responses. Such an output

would flag unusual participants for an independent adjudication. Third, the analysis of HVTN

100 showed a broad dynamic range of immune responses defined by anti-V1V2 IgG/IgG3

antibodies and/or Env-specific CD4+ T cells, suggesting that there will be high power for

studying correlates and co-correlates of risk based on these assays. In contrast, efficacy trials of

these regimens will not be able to study immune responses defined by anti-gp120/gp140 anti-

bodies and/or Env-specific CD8+ T cells as correlates or as co-correlates of risk due to low

overall dynamic ranges.

Results

Study participants

All participants selected for immunogenicity assessment remained HIV-uninfected and

received all 4 planned immunizations through Month 6 (defined as per-protocol). Peripheral

blood mononuclear cells (PBMCs) and plasma (RV144) or serum (HVTN 097, HVTN 100)

samples were collected from each selected participant at 2 weeks after the Month 6 vaccination

and were used to assess immune responses for the current analysis. We used data from 24 pla-

cebo recipients and 201 vaccine recipients from the RV144 trial, 18 placebo recipients and 73

vaccine recipients from the HVTN 097 trial, and 37 placebo recipients and 185 vaccine recipi-

ents from the HVTN 100 trial for this assessment (Table 1). The vaccine groups of each study

did not significantly differ by age, BMI or sex-at-birth (all p-values >0.05) (Table 1). While all

Immune response landscapes in HIV vaccine trials
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three trials enrolled both males and females, each vaccine arm had a higher percentage of male

than female vaccine recipients − 61%, 55%, and 61%, respectively. In South Africa, women

generally have a higher BMI than men [30]. BMI data were not collected in RV144.

Immune response landscapes

The immune response measurements that were common across the trials included 20 intracel-

lular cytokine staining (ICS) measurements of gp120-specific CD4+ or CD8+ T-cell responses

and 44 antibody responses as assessed by the binding antibody multiplex assay (BAMA) (S1

Table). Utilizing globally normalized and transformed immune responses, we performed two-

way hierarchical clustering to organize participants and immune response variables based on

their similarity. The resulting heatmaps allow for valid quantitative comparisons across partici-

pants (rows) with respect to multiple immune responses (columns). Across columns, all ICS

and BAMA responses underwent BDPT onto a comparable scale. While negative values from

-2 to 0 correspond to non-responders, most of the positive transformed values (corresponding

to responders) are less than 10. Values larger than 10 were truncated to 10 when constructing

the heatmaps to facilitate visual interpretation. Euclidean distances were calculated (on BDPT-

transformed scales) between all pairs of immune measures as well as between all participants,

enabling two-way clustering and facilitating visualization of ICS and BAMA responses on the

same heatmap. Given the monotonic nature of BDPT (i.e., the quantitative order of trans-

formed values is the same as their original values), transformed values within an assay are

directly comparable; comparisons across assays can reveal patterns of within-assay relative

highs and lows, but the direct comparison needs to be cautious.

Fig 1 shows the landscape of immune responses to PAE/B/alum and PC/MF59. The 64

immune response variables were grouped into four column clusters. The first cluster of

Table 1. Demographic information by treatment assignment (placebo vs vaccine) for RV144, HVTN 097, and HVTN 100 per-protocol participants.

RV144 HVTN 097 HVTN 100

n (%) Placebo Vaccine Placebo Vaccine Placebo Vaccine

24 (100%) 201 (100%) 18 (100%) 73 (100%) 37 (100%) 185 (100%)

Age (y) 18–20 4 (16.7) 56 (27.9) 7 (38.9) 27 (37.0) 8 (21.6) 44 (23.8)

21–25 14 (58.3) 97 (48.3) 8 (44.4) 29 (39.7) 18 (48.6) 78 (42.2)

� 26 6 (25.0) 48 (23.9) 3 (16.7) 17 (23.3) 11 (29.7) 63 (34.1)

Sex-at-birth Female 12 (50.0) 79 (39.3) 9 (50.0) 33 (45.2) 18 (48.6) 73 (39.5)

Male 12 (50.0) 122 (60.7) 9 (50.0) 40 (54.8) 19 (51.4) 112 (60.5)

Male BMI� Underweight nc nc 1 (11.1) 11 (27.5) 2 (10.5) 15 (13.4)

Normal nc nc 8 (88.9) 23 (57.5) 15 (78.9) 79 (70.5)

Overweight nc nc 5 (12.5) 2 (10.5) 16 (14.3)

Obese nc nc 1 (2.5) 2 (1.8)

Female BMI Underweight nc nc 3 (9.1) 5 (6.8)

Normal nc nc 3 (33.3) 12 (36.4) 4 (22.2) 25 (34.2)

Overweight nc nc 1 (11.1) 12 (36.4) 8 (44.4) 25 (34.2)

Obese nc nc 5 (55.6) 6 (18.2) 6 (33.3) 18 (24.7)

Race/Ethnicity Thai Asian 24 (100) 201 (100)

Black 18 (100) 73 (100) 37 (100) 185 (100)

1) BMI data, body mass index (kg/m2), are missing for 4 placebo recipients in HVTN 097 and 1 vaccine recipient in HVTN 100. The “underweight”, “normal”,

“overweight”, and “obese” categories correspond to BMI values of <18.5, 18.5–25, 25–30, and�30, respectively.

2) nc, not collected. BMI data were not collected in RV144.

https://doi.org/10.1371/journal.pone.0226803.t001
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Fig 1. Landscape of immune responses to the PAE/B/alum and PC/MF59 regimens. The heatmap was generated by two-way hierarchical clustering of

participants and immune response variables based on their similarity after bi-directional power transformation of the immune response measurements. The 64
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responses included mostly CD8+ T-cell responses, together with one IgG and one IgG3

response, and was characterized by uniformly low values across vaccine recipients; we refer to

it as the “CD8+ T-cell/NR” (non-response) cluster. The adjacent cluster included only CD4

+ T-cell responses (“CD4+ T-cell” cluster). In this cluster, all CD4+ T-cell response variables

showed substantial variation across vaccine recipients and were highly correlated with each

other (as demonstrated later). The next column cluster consisted of anti-V1V2 IgG and IgG3

antibody responses (“V1V2-Ab” cluster). Wide variability was observed across V1V2

responses in this cluster. The far-right cluster consisted entirely of anti-gp120 and anti-gp140

IgG and IgG3 responses (“gp120/gp140 Ab” cluster). Notably, all response variables in this

cluster were elevated with limited variation among vaccine recipients.

The trial participants were grouped into four distinct clusters. From top to bottom, the first

participant cluster included individuals whose vaccine response was characterized by a robust

CD4+ T-cell response (“Strong CD4+ T-cell” cluster, blue). Participants in the adjacent cluster

had more variable V1V2-Ab responses (“Variable V1V2-Ab” cluster, green), while retaining

strong CD4+ T-cell and anti-gp120 responses. The next adjacent cluster, the largest of all four

participant clusters, had a relatively weak CD4+ T-cell response (“Weak CD4+ T-cell” cluster,

red). The bottom “non-response” cluster included all placebo recipients together with two vac-

cine recipients. As expected, almost none of the measured immune responses were detected in

any of the placebo recipients. The basic immune response patterns of the participant clusters

were recapitulated in a radar plot of the data (Fig 2A). All four participant clusters tended to

have limited CD8+ T-cell responses. Three of the vaccine recipient clusters showed consis-

tently elevated anti-gp120 and anti-gp140 IgG and IgG3 antibody responses. In contrast, the

CD4+ T-cell and V1V2-Ab responses were more varied across the participant clusters.

We next tested whether participant clusters were distributed differently across the studies,

after excluding those non-responses, and found highly significant differences (Chi-squared

test; P-value < 0.001) (Fig 2B). Visual inspection suggested that these differences were driven

mostly by the difference in vaccine regimens (PAE/B/alum vs PC/MF59); the difference in clus-

ter distribution across the two PAE/B/alum study populations (RV144 and HVTN 097) was not

significant (P-value = 0.219).

The immune response landscape of the 538 participants across the RV144, HVTN 097, and

HVTN 100 trials, using the full set of 307 immune responses, is shown in Panel A of S2 Fig.

Missing values (white) are present, because many immune measurements were generated for

only one of the trials. Trial-specific immune response landscapes for RV144 (Panel B of S2

Fig), HVTN 097 (Panel C of S2 Fig), and HVTN 100 (Panel D of S2 Fig) were also generated.

Comparison of the PAE/B/alum regimen in Thailand and South Africa

Comparison of the immune response landscapes between RV144 and HVTN 097 enabled con-

clusions to be drawn about the responses elicited by the PAE/B/alum regimen in a Thai popula-

tion versus the same regimen in a black South African population. We compared these two

trials excluding some of the immune response variables included in Fig 1, namely CD8

+ response variables because of generally absent/low responses, and gp120/140-Ab response

variables due to their consistently elevated levels and low variability. Excluding these response

clusters netted 29 response variables in the CD4+ T-cell and V1V2-Ab clusters for further

immune response measurements shared across RV144, HVTN 097, and HVTN 100 participants were used. Columns designate immune responses; cluster,

response, gene, and clade information are given in the top 4 color-coded bars. Rows designate participants; cluster, study, and treatment assignment

information are given in the three color-coded bars on the left. Dendrograms on the top and left illustrate column and participant clustering, respectively.

Immune response measurement values are designated by color according to the key shown in the upper left.

https://doi.org/10.1371/journal.pone.0226803.g001
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analysis. We also excluded placebo recipients, all of whom were in the non-response cluster.

The participants and responses were then re-clustered (Fig 3). As expected, the immune

responses were grouped into CD4+ T-cell and V1V2-Ab clusters, and the participants were

grouped into two row clusters: the top participant cluster included participants who tended to

have variable CD4+ T-cell responses and strong anti-V1V2 IgG and IgG3 antibody responses

(“Variable CD4+ T-cell & strong V1V2-Ab” cluster). Meanwhile, participants in the bottom

cluster tended to have weak CD4+ T-cell responses and variable anti-V1V2 IgG and IgG3 anti-

body responses (“Weak CD4+ T-cell & Variable V1V2-Ab” cluster). Both RV144 and HVTN

097 vaccine recipients appeared to cluster randomly into these two participant clusters (Chi-

squared test; P-value = 1.00).

Comparison of the PAE/B/alum and PC/MF59 regimens

Given the lack of evidence of a significant difference between the RV144 and HVTN 097

immune response landscapes, we pooled data from these two trials and compared them with

data from the HVTN 100 trial, to assess whether there were landscape differences between the

PAE/B/alum and PC/MF59 vaccine regimens. We used the same set of participants and the

same 29 immune responses that showed substantial variation among vaccine recipients in all

three trials and performed unsupervised learning and clustering (Fig 4A). Again, the CD4+

T-cell and V1V2-Ab response clusters were distinct. The 459 vaccine recipients were grouped

into four participant clusters: the top cluster (green) included participants who had relatively

weak anti-V1V2 IgG and IgG3 antibody responses (“Variable CD4+ T-cell & weak V1V2-

Ab”). The adjacent cluster (blue) included a group of participants whose CD4+ responses

tended to be fairly strong with a variable anti-V1V2 IgG and IgG3 response (“Very strong

CD4+ T-cell & variable V1V2-Ab"). The next adjacent participant cluster (red) included par-

ticipants who had relatively low CD4+ T-cell response to absent and whose anti-V1V2 IgG

Fig 2. Summary of participant cluster immune response patterns and distribution of participant clusters across studies. A) Radar plot showing the

distribution of immune responses in each of the four participant clusters shown in Fig 1. Each colored line represents one participant cluster and each vertex

represents an immune response. B) Distribution of participant clusters across the RV144, HVTN 097, and HVTN 100 trials. Each column represents one trial;

participant clusters are designated on the left-hand side and are color-coded.

https://doi.org/10.1371/journal.pone.0226803.g002
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Fig 3. Landscape of immune responses in Thai and South African populations to the PAE/B/alum regimen. The heatmap shows 29 selected immune

response measurements of RV144 and HVTN 097 vaccine recipients. Columns designate immune responses; cluster, response, gene, and clade information are
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and IgG3 responses were relatively strong (“Low CD4+ T-cell & strong V1V2-Ab”). The bot-

tom participant cluster had variable CD4+ T-cell responses and broadly elevated anti-V1V2

IgG and IgG3 responses (“Variable CD4+ T-cell & broad V1V2-Ab”).

Bekker et al. [26] noted that HVTN 100 participants had lower binding antibody responses

to many V1V2 antigens compared to RV144. The landscape analysis provided additional

insights about the CD4+ T-cell and V1V2-specific Ab co-response. For example, three addi-

tional observations can be made from Fig 4A: (a) almost all vaccine recipients with both strong

CD4+ T-cell and strong V1V2-Ab responses received PC/MF59 (blue, participant cluster

“Very Strong CD4+ T-cell & variable V1v2-Ab”); (b) almost all recipients of either vaccine

who lacked CD4+ T-cell responses had medium V1V2-Ab responses (red, participant cluster

"Low CD4+ T-cell & strong V1V2-Ab"), and, for PAE/B/alum recipients in this cluster, many

had breadth of antibody responses to almost all of the V1V2 antigens; and (c) only PC/MF59

recipients sometimes lacked V1V2-Ab responses yet had medium-to-strong CD4+ T-cell

responses (green, participant cluster "Variable CD4+ T-cell & weak V1V2-Ab").

The above analysis revealed that the bottom two vaccine recipient clusters appeared to be

enriched for RV144 and HVTN 097 vaccine recipients, whereas the top two clusters appeared

to be enriched for HVTN 100 vaccine recipients. Consistent with this observation, vaccine

recipient cluster membership was significantly associated with trial membership in RV144 or

HVTN 097 versus HVTN 100 (Chi-squared test P-value = 2.2x10-16). This significant associa-

tion indicated that PC/MF59 tended to elicit higher CD4+ T-cell responses, yet lower

V1V2-Ab responses than PAE/B/alum.

To gain further insight into the bivariate distribution of CD4+ T-cell and V1V2 Ab

response we generated two-dimensional scatter plots of the participants in RV144 plus HVTN

097 (Fig 4B) and HVTN 100 (Fig 4C), colored by participant clusters. For each participant, an

average CD4+ T-cell (x-axis) response value and an average V1V2 Ab response value (y-axis)

were computed (Fig 4B and 4C). They revealed that while the distributions of the V1V2-Ab

response values were similar across response clusters in RV144+HVTN 097 versus HVTN 100,

the CD4+ T-cell responses generally showed a greater range in HVTN 100, particularly for the

“Variable CD4+ T-cell & weak V1V2-Ab” cluster, where the CD4+ T-cell responses ranged

much higher in magnitude in HVTN 100.

Vaccine recipients with unique immune response profiles

The clustered multivariate immune response landscapes enabled identification of vaccine

recipients with unique immune response patterns, such as per-protocol vaccine recipients

with complete “non-take” (no or limited immune responses across all variables, thus clustering

with placebo recipients) despite having received all 4 immunizations through Month 6. We

observed two such vaccine recipients: one who participated in HVTN 097 and the other who

participated in HVTN 100 (Fig 1). Both were male and black, with BMI values of 17.5 and

17.4, putting each at the 11% and 5% percentile of all males in the respective trials.

Of equal interest are vaccine recipients with an unusually strong and consistent immune

response pattern. For example, 97 PC/MF59 recipients (the top participant cluster in Fig 1)

were clustered together with the “Strong CD4+ T-cell” cluster, and had strong CD4+ T-cell

responses, in addition to gp120-Ab and V1V2-Ab responses. We noted that the average CD4

+ T-cell response probability density appeared to center on ~5, and 8 vaccine recipients fell in

given in the top 4 color-coded bars. Rows designate participants; cluster and study information are given in the two color-coded bars on the left. Dendrograms

on the top and left illustrate column and participant clustering, respectively. Immune response measurement values are designated by color according to the

key shown in the upper left.

https://doi.org/10.1371/journal.pone.0226803.g003
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Fig 4. Immune response landscapes for the PAE/B/alum and PC/MF59 regimens. A) Heatmap of the same 29

immune response measurements combining RV144 and HVTN 097 vaccine recipients (pooled) and HVTN 100
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the right tail with the threshold value of 9 (Fig 5). Density distributions of these 8 individual

CD4+ T-cell responses showed the “Strong CD4+ T-cell” with their response levels approach-

ing 15. Interestingly, all vaccine recipients were male and all of them participated in HVTN

100. They also tended to have a normal BMI (7 normal and 1 overweight), although their dis-

tribution did not differ significantly from that of the others (p = 0.22).

Associations of demographics with cluster membership

Based on the CD4+ T-cell, gp120-Ab and V1V2-Ab response clusters, all participants were

clustered into four participant groups: Strong CD4+ T−cell, Variable V1V2−Ab, Weak CD4

+ T−cell and non-response. Age, sex-at-birth, and BMI were tested for an association with the

immunologically-defined clusters. None of the three covariates were associated with partici-

pant cluster membership (p-value>0.05) (Table 2).

Assays and antigens with uniform lack of vaccine response

The immune response landscapes also facilitated identification of immune response variables

that were absent across all (or almost all) vaccine recipients. For example, the CD8+ T-cell col-

umn cluster (Fig 1) included 12 such immune responses, including ten gp120-specific CD8

+ T-cell variables and two gp41-specific antibody responses (IgG and IgG3) (S2 Table). Prior

to normalization and transformation, the original CD8+ T-cell responses indicated that across

participants the median percent of CD8+ T-cells expressing cytokines was 0% and the mean

and median levels of gp41-specific IgG and IgG3 were 5.5 and 3.3, respectively; after normali-

zation and transformation, the median values of all 12 responses were near −1.00.

Dynamic ranges of immune responses

Among BAMA readouts, the interquartiles of anti-V1V2 IgG/IgG3 antibody responses were

modest, ranging from 3.6 to 5.2, while their 10% and 90% quantiles were much wider, from -1

to 5.5 (Fig 6). On the other hand, BAMA readouts from anti-gp120 IgG/IgG3 antibody

responses had narrow dynamic ranges, from 4.6 to 5.2 with the 10% and 90% quantiles, respec-

tively. For ICS readouts, CD4+ T-cell responses had large dynamic ranges with the interquar-

tile (-0.97, 5.1) and 10%-90% quantiles (-1.1, 6.7). In contrast, CD8+ T-cell responses had 10%

and 90% quantiles of (-1.1, -0.8).

Redundant immune responses

Applying a rank-based method, we computed pairwise correlation coefficients between all

immune responses within each immune response cluster, excluding the CD8+ T-cell response

cluster (Fig 7). Correlations were computed across participants in all three studies. The distri-

butions of the estimated Spearman correlations for responses in the CD4+ T-cell cluster and

those in the V1V2-Ab cluster each consisted of a wide single peak, centered around 0.6~0.7.

Using a threshold for high correlation of 0.75, 38% and 27% pairs of the immune responses in

vaccine recipients. Columns designate immune responses; cluster, response, gene, and clade information are given in

the top 4 color-coded bars. Rows designate participants; cluster and study information are given in the two color-

coded bars on the left. Dendrograms on the top and left illustrate column and participant clustering, respectively.

Immune response measurement values are designated by color according to the key shown in the upper left.

Scatterplots of participant-specific average values of CD4+ T-cell and anti-V1V2 antibody responses in (B) RV144 and

HVTN 097 and (C) HVTN 100. Ellipsoids of bivariate normal distributions, based on respective empirical means and

co-variances, are used to approximately cover 90% empirical bivariate observations. Panels B and C are shown on

BDPT-transformed scales.

https://doi.org/10.1371/journal.pone.0226803.g004

Immune response landscapes in HIV vaccine trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0226803 January 30, 2020 12 / 28

https://doi.org/10.1371/journal.pone.0226803.g004
https://doi.org/10.1371/journal.pone.0226803


Fig 5. Distribution of CD4+ T−cell response magnitude (BDPT-scaled) among 100 participants in all three trials with strong CD4+ T−cell responses.

The densities of the different CD4+ T-cell responses (color coded) and the average CD4+ T-cell response are shown by response level.

https://doi.org/10.1371/journal.pone.0226803.g005
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these two clusters were highly correlated. Interestingly, the correlation distribution of

responses in the gp120/gp140-Ab cluster appeared to be bimodal, with one peak centering on

0.6 and a second peak around 0.9, with the latter peak including highly correlated gp120/

gp140-Ab responses. Using the same high correlation threshold of 0.75, 69% of the pairs of

immune response measurements in this cluster were highly correlated.

Analysis of vaccine-matched immune responses

Both ICS and BAMA responses are measured using HIV antigens that may or may not be

matched to one of the immunogens in each of the vaccine regimens. We identified six classes

of BAMA or ICS measurements that were made using at least one vaccine-matched antigen

for each of the three trials: (1) Env-specific IFN-γ\IL-2\CD154+ CD4+ T-cell, (2) Env-specific

IFN-γ\IL-2\CD154+ CD8+ T-cell, (3) anti-gp120 IgG binding, (4) anti-gp120 IgG3 binding,

(5) anti-V1V2 IgG binding, and (6) anti-V1V2 IgG3 binding. Based on these vaccine-matched

immune responses, participants were hierarchically organized into six row clusters (Fig 8A).

Similar to the analyses above, we tested whether participants in the three trials were distributed

proportionately among the six participant clusters (Fig 8B). We assigned each cluster a six-

digit number in which each position takes the value of 0, 1 or 2, corresponding to a low, high

or highest response, for each of the six vaccine-matched immune responses. For instance, the

top participant cluster, 011011, consisted of participants with low CD8+ T-cell, high

IgG3-V1V2, high CD4+ T-cell, low IgG3-gp120, high IgG-V1V2, and high IgG-gp120

responses. The second cluster from the top shared the same response pattern as the top cluster,

with the exception of low CD4+ T-cell and high IgG3-gp120 responses. The next two clusters,

011111 and 012111, all had high responses except for CD8+ T-cell, with the 012111 cluster

having a much higher CD4+ T-cell response than the 011111 cluster. Cluster 111111 had high

responses for all six vaccine-matched responses. Cluster 001111 had low CD8+ T-cell and

IgG3-V1V2 responses, while all other responses were elevated. Across these six participant

clusters, cluster membership was significantly different across three trials (Chi-squared p

<0.001). Moreover, pairwise comparisons found significant differences among all trials (all p

<0.001). These differences seemed to be driven by distinct clusters of non-responders for the

IgG3 antibody and CD4+ T-cell responses. For example, one cluster of HVTN 100 vaccine

recipients had very low gp120-specific IgG3 responses and one cluster of RV144 vaccine

Table 2. Results from analyzing cluster membership with three demographic covariates (age, sex-at-birth and BMI), from 538 vaccine and placebo recipients in all

three trials with 64 immune responses (shown in Fig 1).

Participant Cluster Membership Strong CD4+ T-cell Variable V1V2-Ab Weak CD4+ T-cell Non-Response P-value1

n (%) 100 (100%) 69 (100%) 288 (100%) 81 (100%)

Age (y) 18–20 23 (23) 17 (24.6) 87 (30.2) 19 (23.5) 0.223

21–25 51 (51) 28 (40.6) 123 (42.7) 42 (51.9)

�26 26 (26) 24 (34.8) 78 (27.1) 20 (24.7)

Sex-at-birth Female 37 (37) 31 (44.9) 117 (40.6) 39 (48.1) 0.223

Male 63 (63) 38 (55.1) 171 (59.4) 42 (51.9)

BMI (kg/m2) (0,18.5] 9 (10.5) 5 (7.7) 18 (17.1) 5 (8.8) 0.222

(18.5,25] 46 (53.5) 33 (50.8) 60 (57.1) 30 (52.6)

(25,30.5] 21 (24.4) 18 (27.7) 19 (18.1) 11 (19.3)

(30.5,100] 10 (11.6) 9 (13.8) 8 (7.6) 11 (19.3)

1Each p-value was computed by 100,000 permutations.

https://doi.org/10.1371/journal.pone.0226803.t002
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recipients had very low V1V2-specific IgG3 responses. In contrast, these low responses were

not generally associated with low gp120 or V1V2-specific IgG responses, which were much

less variable across the clusters. The CD4+ T-cell polyfunctionality score also contributed to

differences between the trials. A cluster of mostly HVTN 097 participants had very low CD4

+ T-cell responses while clusters of HVTN 100 participants had the highest responses; these

observations were similar to those based on combined analyses of vaccine-matched and mis-

matched responses.

Discussion

Our multivariate unsupervised learning and visualization approach differs from univariate

approaches that have previously been applied to data from these trials in several ways. Instead

of examining how different vaccine regimens may elicit shifts in population-level parameters

of individual measures, i.e. assessing changes in response mean or median values, our

Fig 6. Dynamic ranges of the 64 immune responses shared across the three trials. The ranges of the immune

responses after bi-directional power transformation are shown (25th percentile to 75th percentile, thicker lines; 10th

percentile to 90th percentile, thinner lines). Lines are color-coded by response type.

https://doi.org/10.1371/journal.pone.0226803.g006
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approach considered the entire multivariate immune response profile. This approach enabled

us to evaluate if subgroups of participants sharing similar vaccine-induced immune response

profiles could associate with key meta-groups of interest (defined by vaccine regimen or demo-

graphics) and that the frequencies of these subgroups differed across meta-groups. Identifica-

tion of participant subgroups was enabled by integration of diverse immune response

measures; similarly, combining data from multiple trials revealed how immune response mea-

sures were related to one another. Using our approach, the participant clusters and the

immune response measurements defining each cluster generate hypotheses that can be tested

in future experimental and computational analyses, with the aim of better understanding the

mechanisms underlying response heterogeneity. As vaccine efficacy is a complex set of interre-

lated immune responses, our approach puts individually evaluated immune responses into an

interrelated and multivariate framework allowing one to interrogate these relationships more

comprehensively.

By comparing the immune response landscapes of the PAE/B/alum regimen in the RV144

versus HVTN 097 trials, we first recapitulated the findings of Gray et al. [25] − that the

Fig 7. Distributions of study-adjusted rank-based Spearman correlations between immune variables within each of the three immune

response clusters. Correlations were computed across participants in all three studies. The density (y-axis) indicates the relative number of immune

response variable pairs with a given correlation (x-axis). “High correlation” was defined as a correlation greater than the threshold value of 0.75

(dashed line).

https://doi.org/10.1371/journal.pone.0226803.g007
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landscapes are comparable between the Thai and South African populations, with most vac-

cine recipients exhibiting broad V1V2-specific antibody responses. In addition, through multi-

variate analysis of antibody and T-cell responses, we found substantial variability in the joint

responses, including a small subgroup with complete non-take for both antibody and T-cell

responses despite receiving all vaccinations, a small subgroup with strong responses across all

variables, a large subgroup with a broad V1V2 antibody response combined with no CD4+ T-

cell response, and a large subgroup with a broad V1V2 antibody response combined with a

strong CD4+ T-cell response.

We also confirmed the individual assay findings of Bekker et al. that V1V2 antibody

responses tended to be stronger and broader for the PAE/B/alum vaccine regimen compared to

PC/MF59, whereas the latter regimen elicited stronger and broader CD4+ T-cell responses

[26]. Our joint antibody and CD4+ T-cell analysis revealed that almost all vaccine recipients

with both strong V1V2 antibody and gp120-specific CD4+ T-cell responses received PC/MF59,

almost all recipients of either vaccine with absent CD4+ T-cell responses had medium and

broad V1V2 antibody responses, and only PC/MF59 recipients sometimes lacked V1V2

responses yet showed medium-to-strong CD4+ T-cell responses. Cumulatively, these results

demonstrate how the approach enables the characterization and comparison of immunogenic-

ity across vaccine regimens and other participant factors at a greater multivariate resolution

than previous analyses.

Fig 8. Immune response landscape of vaccine-matched responses and participant clustering based on vaccine-matched immune responses. A) Heatmap

showing the vaccine-matched CD8+ T-cell polyfunctionality, anti-V1V2 IgG3 antibody binding, CD4+ T-cell polyfunctionality, anti-gp120 IgG3 antibody

binding, anti-V1V2 IgG antibody binding, and anti-gp120 IgG antibody binding measurements used to organize participants into the six row clusters. B) The

distribution of participants in each trial (column) in each cluster is represented by the row height. Box size is proportional to the number of participants.

https://doi.org/10.1371/journal.pone.0226803.g008
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The work also demonstrates the utility of multivariate unsupervised learning and visualiza-

tion for the other vaccine development objectives outlined in the Introduction. For instance,

we identified two vaccine recipients (one in HVTN 097 and one in HVTN 100) who lacked

responses for all assayed immune responses and hence appeared to have “complete non-take”

despite having received all vaccinations. In addition to being of biological interest, this finding

has value for data control, prompting extra checking of correct administration of treatment

assignment. We also identified three separate subgroups of vaccine recipients for whom vacci-

nation induced only V1V2-targeting IgG or IgG3 responses, only CD4+ T-cell responses, or

both response sets.

Our investigation of dynamic response ranges of the four response clusters identified in the

landscape containing all 64 immune responses shared across the three trials (Fig 1) showed

that both gp120-specific CD4+ T-cell responses and V1V2-specific IgG/IgG3 antibody

response clusters had broad dynamic ranges that will provide ample statistical power for

immune correlates analyses of HVTN 702. In contrast, CD8+ T-cell responses and gp120-spe-

cific IgG/IgG3 antibody responses had limited dynamic ranges (uniformly low levels and uni-

formly high levels, respectively), precluding immune correlates analyses using these responses.

Note that while BDPT transformed values were used for the computation, patterns of dynamic

ranges for untransformed values were similar (not shown).

Our analysis of vaccine-matched immune responses showed that some of the inter-trial var-

iability we observed based on all responses, could be explained by the comparison of responses

to vaccine-matched and -mismatched antigens. For example, the cluster of mostly HVTN 100

participants with relatively weak V1V2-specific IgG and IgG3 Ab responses (Fig 3, “Variable

CD4+ T-cell & weak V1V2-Ab” cluster) was not evident in the responses to vaccine-matched

V1V2- or gp120-specific IgG. Instead, we observed a clear cluster of RV144 participants who

had a very low V1V2-specific IgG3 response. Levels of V1V2-specific IgG3 (both vaccine

matched and a clade C antigen) were previously shown to be lower among HIV-1 infected par-

ticipants in a follow-up case-control study of RV144 [17]. Though the IgG3 responses reported

here do not include HIV-1 infected cases from RV144 by design, we hypothesize that the vac-

cine recipients with very low V1V2-specific IgG3 were at higher risk of infection and that the

comparatively low frequency of these participants in HVTN 097 and HVTN 100 may indicate

comparatively lower risk of infection. We also found with the vaccine-matched analysis that a

much lower proportion of RV144 and HVTN 097 participants lacked a CD4+ T cell response

than was apparent in the analysis of all the antigen-specific responses. Though it remained

apparent that clusters of HVTN 100 recipients had a greater CD4+ T-cell response compared

to RV144 and HVTN 097 participants, the cluster of RV144 and HVTN 097 recipients with no

CD4+ T cell response was limited and mostly among RV144 participants. These findings

showed that after controlling for antigenic-mismatch, differences between the responses

induced in each trial could be identified more precisely and that the differences could be more

confidently attributed to differences between the trial populations and vaccine regimens, as

opposed to the antigen variants used in the immune assays.

Though a vaccine-matched response is highly relevant for understanding vaccine immuno-

genicity in different populations or with different adjuvants, it may be equally, if not more,

important to understand vaccine-elicited responses to circulating viruses, to which partici-

pants in efficacy trials may be exposed. Standardized reagent panels of practical numbers of

antigens (9 to 12) have been selected to optimally represent antigenic variability of potential

globally circulating viruses [31, 32]; the methods studied here would apply well to data sets

emanating from these breadth panels. As multivalent vaccine regimens are developed with the

specific goal of eliciting responses to a more diverse breadth of HIV-1 viruses, it will become

increasingly important to consider how responses are evaluated and compared.
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We also identified clusters of highly correlated (and, therefore, redundant) immune

response readouts by studying adjusted correlations of pairs of immune response variables

within clusters identified by the landscape. For example, 38% of the pairwise correlation coeffi-

cients within the CD4+ T-cell response clusters exceeded 0.75 and thus were highly correlated,

and 27% of responses within the V1V2-specific IgG and IgG3 response clusters were highly

correlated. These results suggest that many immune response clusters are homogeneous

enough that they could be assessed as single variables in immune correlates of risk analyses;

this could be an effective way to reduce dimensionality of high-dimensional data and thus

minimize a multiplicity testing correction penalty. Further, the correlation pattern may pro-

vide a rational way to design future immune response assays.

A limitation of our analysis is that only variables from the BAMA and ICS assays were used.

Our analysis was restricted to these assays since both have been standardized and validated

and are conducted at centralized labs, giving us high confidence that it is appropriate to

directly compare a measurement made on a sample from a participant in one study to the

same measurement made on a sample from a different participant in a different study. Also, a

large number of individual immune response variables were measured with these assays across

RV144, HVTN 097, and HVTN 100. The immune response landscape framework is antici-

pated to provide more insights as increasing numbers of functional assays are standardized,

validated and applied. For example, in the HVTN 505 trial of a DNA recombinant adenovirus

5 HIV vaccine regimen, multiple functional assays have been conducted on vaccine recipient

samples including an antibody neutralization assay, a cellular viral inhibition assay, antibody

dependent cellular cytotoxicity assays, an antibody dependent cellular phagocytosis assay, an

assay determining the breadth of the T-cell response, an antibody avidity assay, and an IgG

subclass assay.

While understanding the association of immune response clusters with vaccine protection

is the ultimate goal, in this study only RV144 had a sufficiently large sample size and a suffi-

ciently long follow-up duration to be able to assess the vaccine effect on incident HIV-1 infec-

tion. Numerous studies (see the Introduction) have reported on the immune responses of

RV144 vaccine recipients that were correlates of risk, which included analyses of the data that

we analyzed in this study. As we believe that additional post-hoc, re-analysis of these immune

measures with respect to HIV-1 infection is unlikely to provide further interpretable benefit to

the field, we decided to focus on identifying understanding response heterogeneity, identifying

novel biomarker clusters and evaluating their potential in the anticipated correlates of risk

analyses of ongoing efficacy studies.

In general, a main application of the framework is the comparison of immune response

landscapes among vaccine regimens, with one contemporary future application of interest

being the comparison of the two regimens currently in efficacy testing (PC/MF59 in HVTN

702 vs. Ad26 Mosaic/gp140/Alum clade C in HVTN 705/VAC89220HPX2008), which would

help prepare for the interpretation of the trial results and for the immune correlates of risk/

protection analyses. Comparing PC/MF59 and Ad26/gp140 vs. DNA/protein vaccine regimens

is another contemporary application of interest. In addition, the framework would apply for

comparing vaccine regimens/populations by immune response landscapes measured at other

time points besides approximate peak after last vaccination, including “durability time points”

6 months or more post last vaccination and “innate time points” with a typically intense phle-

botomy scheduling after vaccination. Moreover, the framework would apply for deeper multi-

variate comparisons that add immune response data from additional compartments beyond

blood such as mucosal tissues.

Immune response landscapes in HIV vaccine trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0226803 January 30, 2020 19 / 28

https://doi.org/10.1371/journal.pone.0226803


Methods

Study populations

We assessed the immune response profiles of HIV vaccine regimens studied in the RV144,

HVTN 097, and HVTN 100 trials. Participants who deviated from the protocol, i.e. who did

not receive all of the first four scheduled vaccinations or did not have immune response mea-

surements, were excluded.

The RV144 trial was a phase 3 efficacy trial conducted in Thailand that randomized 16,402

participants (1:1 ratio) to ALVAC-HIV prime plus AIDSVAX gp120B/E boost or placebo. Par-

ticipants in the vaccine arm received ALVAC-HIV at Month 0 and Month 1, followed by

ALVAC-HIV+AIDSVAX gp120B/E at Month 3 and Month 6. From this cohort, 212 vaccine

recipients and 24 placebo recipients were randomly selected from respective vaccine and pla-

cebo arms, and their immune responses were measured at Month 6.5 (2 weeks post last vacci-

nation). Eleven vaccine recipients did not receive all 4 vaccinations and their immune

response measurements were excluded from analysis; thus immune responses from 201 vac-

cine recipients were analyzed here. All placebo recipients received four placebo treatments.

HVTN 097 was a randomized, double-blind, placebo-controlled phase 1b trial of the PAE/B/

alum vaccine regimen and was conducted in South Africa [25]. A total of 100 participants

were randomized (3:1:1 ratio) to receive tetanus+hepatitis B vaccines plus ALVAC-HIV and

AIDSVAX gp120B/E prime/boost (T1, n = 60), ALVAC-HIV and AIDSVAX gp120B/E prime/

boost (T2, n = 20), or tetanus+hepatitis B vaccines plus placebo (T3, n = 20). Participants in T1

and T2 received ALVAC-HIV at Month 0 and Month 1, followed by ALVAC-HIV+AIDSVAX

gp120B/E at Month 3 and Month 6. Participants in T1 and T3 received a tetanus vaccination at

Month -1, followed by the hepatitis B series at Months 6.5, 7.5, and 12. Serum samples and

PBMCs were collected at Month 6.5 (2 weeks post last HIV-vaccination) for immunogenicity

measurements. There were no meaningful differences in any HIV immune responses between

participants in T1 vs T2 [33]. For a small number of participants (n = 6), immune responses

could not be measured due to missed visits or their immune response measurements did not

pass pre-specified quality control criteria applied by the laboratory prior to unblinding, yield-

ing analyzable immune responses from 94 participants. One participant in the placebo arm

and two participants in the vaccine arm deviated from the protocol and were excluded, yield-

ing 18 placebo recipients and 73 vaccine recipients in the current analysis.

HVTN 100 was a phase 1/2 trial testing the safety and immunogenicity of the PC/MF59 vac-

cine regimen [26]. The trial recruited 252 participants who were randomly assigned to PC/

MF59 (n = 210) or placebo (n = 42). Serum samples and PBMCs were collected two weeks

after the fourth vaccination (Month 6.5) and used for immunogenicity measurements. For

n = 21 participants, immune responses could not be measured due to missed visits or their

immune response measurements did not pass pre-specified quality control criteria applied by

the laboratory prior to unblinding, yielding analyzable immune responses from 231 partici-

pants. After excluding nine participants for protocol deviations, data from 185 vaccine recipi-

ents and 37 placebo recipients remained for this analysis.

Ethics statement

For the RV144 trial, written informed consent was obtained from all volunteers, who were

required to pass a written test of understanding. The study protocol was reviewed by the ethics

committees of the Ministry of Public Health, the Royal Thai Army, Mahidol University, and

the Human Subjects Research Review Board of the U.S. Army Medical Research and Materiel

Command. The World Health Organization and the Joint United Nations Program on HIV/
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AIDS and the AIDS Vaccine Research Working Group of the National Institute of Allergy and

Infectious Diseases at the National Institutes of Health also independently reviewed and

endorsed the study protocol. For the HVTN 097 trial, all participants gave written informed

consent. The HVTN 097 study protocol was approved by the University of the Witwatersrand

Human Research Ethics Committee for Klerksdorp and Soweto sites and by the University of

Cape Town Ethics Committee for the Cape Town site. For the HVTN 100 trial, all participants

gave written informed consent in English or their local language (Setswana, Sotho, Xhosa, or

Zulu). The HVTN 100 study protocol was approved by the research ethics committees of the

University of the Witwatersrand, the University of Cape Town, the University of KwaZulu-

Natal, and the Medical Research Council.

Laboratory methods

ICS and BAMA assays were performed blinded to treatment group with validated methods.

ICS measurements included CD4+ and CD8+ T-cell responses to vaccine-matched antigens,

while BAMA measurements assessed isotype and antigen-specific antibodies to gp140, gp120,

vaccine-matched V1V2 antigens and non-matched V1V2 antigens (representing other circu-

lating viruses) [13, 14, 17, 32, 34].

HIV-1 specific CD4+ and CD8+ T-cell responses

HIV-1-specific CD4+ and CD8+ T-cell responses were assessed by ICS of cryopreserved

PBMCs as previously described [13, 16, 26, 35]. No replicates were performed with participant

samples due to limited PBMC availability. Responses were evaluated to vaccine-matched anti-

gens (peptides representing gp120 ZM96, 1086.C and TV.1) at the putative peak time point (2

weeks post fourth vaccination). Antigen-specific T-cell subsets were analyzed by COMPASS

[16].

HIV-1 binding antibody responses measured by BAMA

HIV-1 specific IgG (1/50 dilution) and IgG3 (1/40 dilution) for specific vaccine-matched and

vaccine-mismatched antigens were measured with serum (HVTN 097) and plasma (RV144,

HVTN 100) samples collected at baseline and at the putative peak time point, as previously

described [13, 14, 17, 36]. Each sample was tested in duplicate and met preset acceptance crite-

ria before reporting.

Vaccine-matched responses

Composite variables were created to represent the responses of participants in each study to

the vaccine-matched antigen. For example, the composite vaccine-matched gp120-specific

CD4+ T-cell polyfunctionality score variable included ALVAC insert-matched responses of

RV144 and HVTN 097 participants to the 92TH023 peptides and responses of HVTN 100 par-

ticipants to the ZM96 peptides. When multiple vaccine-matched responses were measured the

maximum magnitude response was used in the composite variable (e.g. gp120 IgG using A244

and MN antigens were both matched to the PC/alum regimen). In total, there were 16 vaccine-

matched immune responses: 1) Env CD4+ CD154+, 2) Env CD4+ Functionality Score, 3) Env

CD4+ IFN-γ\IL-2\CD154+, 4) Env CD4+ IFN-γ+, 5) Env CD4+ IL-2/IFN-γ, 6) Env CD4+ IL-

2+, 7) Env CD4+ Polyfunctionality Score, 8) Env CD8+ CD154+, 9) Env CD8+ IFN-γ\IL-2

\CD154+, 10) Env CD8+ IFN-γ+, 11) Env CD8+ IL-2/IFN-γ, 12) Env CD8+ IL-2+, 13) IgG

gp120 50 Serum, 14) IgG V1V2 50 Serum, 15) IgG3 gp120 40 Serum, and 16) IgG3 V1V2 40

Serum. Seven CD4+ and five CD8+ T cell response variables were highly correlated, therefore
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Env CD4+ IFN-γ\IL-2\CD154+ and Env CD8+ IFN-γ\IL-2\CD154+ were chosen to represent

their respective groups of responses.

Statistical methods

Integration. Validated ICS and BAMA assays were used to assess cellular and humoral

responses across all three trials. However, the specific immune responses assessed differed

somewhat across the trials, resulting in a total of 64 shared responses out of the 307 immune

responses assessed in at least one trial. For the unsupervised clustering analysis, all three data

sets were integrated before normalization and transformation (see below), leaving unmeasured

responses as missing values. We made the assumption that immune measurements were miss-

ing completely at random (MCAR). This is justified since the “missingness” of responses was

the result of missed visits and assay quality issues, which are presumably not related to the

missing values themselves, nor their missingness. Therefore, the BDPT transformation, under

the complete case analysis, would yield appropriate transformed values without biases.

Normalization. ICS measurements correspond to percentages of T cells producing spe-

cific cytokines upon antigen stimulation. ICS readouts are typically expressed in values ranging

from 0 to 100. When internal control readouts are subtracted from experimental readouts,

negative percentages are occasionally recorded when the experimental readouts are relatively

small. In contrast, BAMA detects the amount of antibody bound to an immobilized antigen.

Readout values for this assay range, on a logarithmic scale, from 0 to a positive value. To

express ICS and BAMA readout values on a comparable scale, we normalized all measure-

ments on the integrated data set by setting the 95th percentile of each assay readout to one, i.e.,

all observed values of each immune response assay were divided by its respective 95th percen-

tile value.

Bimodal distribution. Immune responses generally have a bimodal distribution wherein

the first peak corresponds to non-responders and the second peak corresponds to responders.

To examine the distribution of responses across participants for each immune response mea-

surement, we used nonparametric kernel-based density estimation to determine the distribu-

tion density for each immune response [37]. In the context of a vaccine trial, the first peak

typically includes observed immune response values from placebo recipients and non-

responding vaccine recipients (or vaccine recipients with protocol deviation). The second

peak, if present, corresponds to immune response values from responder vaccine recipients.

Bi-directional power transformation. In addition to their bimodality nature, immune

responses among responders tend to have a wide spread, often resulting in a highly right-tail

skewed distribution from zero to a large positive value. This wide spread hinders clear identifi-

cation of the two peaks corresponding to non-responders and responders. To overcome this

interpretation hurdle, we used a bi-directional power transformation (BDPT) to transform

individual immune responses so that the mixed distributions are converted into clearly

bimodal distributions, improving analysis and visualization of non-responders and

responders.

As an extension to the power transformation and the Box-Cox transformation [38], BDPT

applies power transformations on observed values below a threshold value and on observed

values above the same threshold value via

Z ¼
� o½ðy � YÞ=mnegative�

r Y < y

$½ðY � yÞ=mpositive�
d Y � y

;

8
<

:

where (ω,ρ) and (ϖ,δ), respectively, are a pair of scale and power parameters for those values
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below and above the threshold value, and (mnegative,mpositive) are targeted median values for the

two separate peaks. Both the scale parameters (ω,ϖ) and power parameters (ρ,δ) are treated as

tuning parameters. The scale parameters dictate centralities of transformed values for non-

responders and responders, while the power parameters influence symmetricities of trans-

formed values for non-responders and responders. The choice of these parameters influences

the transformed immune response values and hence their associated interpretations. The two

scale parameters (ω,ϖ) are chosen so that the transformed immune response values have inter-

pretable intervals, e.g., -2 to 0 for non-responders’ values and 0 to a number around 10 for

responders’ immune response values. Note some transformed positive values can be greater

than 10, but are truncated in the heatmaps, to enable visual interpretation of the heatmaps.

Given the relatively small sample sizes in three vaccine trials considered here, the power

parameters (ρ,δ) were set to (0.25, 0.25) and the scale parameters (ω,ϖ) were set to (1, 5), so

that their empirical distributions for “non-responders” and “responders” appeared to be sym-

metric, and median values for respective groups equal approximately 1 and 5. Note that trans-

formed values were used for all analyses, unless noted otherwise.

To provide an intuitive motivation for BDPT, we show how mixing responders’ and non-

responders’ measurements induced a skewed bimodal distribution (Panels A, B and C in S1

Fig), and how BDPT can be used to transform the measurements so that the mixture right-tail

skewed distribution is turned into a “more interpretable” bimodal distribution, potentially

improving visual display and result interpretation (Panel D in S1 Fig).

Hierarchical clustering and visualization. We compute, separately, the Euclidean dis-

tance of immune response values between participants and between immune responses, and

then apply the hierarchically clustering methods, separately clustering subjects and clustering

immune responses. The basic idea of the hierarchical clustering is to place columns (or rows)

closer if their distances are relatively small. We used the Ward method [39], i.e. the sum of the

squared distances is used as an objective function and thus a pair of columns (rows) with the

smallest objective function value would be organized closer together. Participants with similar

patterns of immune responses are clustered more closely to one another, while participants

with more divergent patterns of immune responses are placed into different row clusters. Like-

wise, immune responses similar across participants are clustered more closely to one another,

whereas immune responses with more divergent patterns across participants are placed into

different column clusters. This analytic and visualization strategy gains substantial tractions

for unsupervised learning in high dimensional data analyses [29].

The hierarchical clustering algorithm is applicable to BDPT transformed immune response

values, as well as to other transformed values. As sensitivity analysis, we clustered “dichoto-

mized immune responses” and “log-transformed immune response” by the same algorithm

and obtained comparable cluster patterns (not shown) to those presented here, although their

numerical properties and interpretabilities are different.

Dynamic ranges of immune responses. One important factor determining the statistical

power of assessing association of vaccine-induced immune response with risk of HIV infection

(or protection against HIV infection) is the biologically relevant dynamic range of the variable

[e.g., see power calculations in [40]]. We calculate two measures of dynamic range for all 64

immune response variables: 1) the interquartile range, i.e., the range between the 25th and 75th

percentiles; and 2) the range between the 10th and 90th percentiles. Dynamic ranges may be

validly compared among immune response variables measured by the same assay (i.e., within

BAMA or within ICS), but not between assays. For dynamic range calculations, BDPT-trans-

formed scales were used.

Adjusted Spearman’s correlation. When many immune responses are measured, it is of

interest to identify highly correlated (i.e. redundant) responses to improve cost-effectiveness.
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To this end, we compute pairwise correlation coefficients between all immune responses

within each Fig 1 immune response cluster, excluding the CD8+ T-cell response cluster, which

lacked sufficient variability. To adjust covariate-induced heterogeneity in the evaluation of

nonparametric correlations between immune response measurements, rank-based Spearman

correlation coefficients are computed, after adjusting pertinent covariates, using the methods

developed by Shepherd and colleagues [41–43].

Statistical software tools. All analyses were performed in R (https://www.r-project.org/).

For hierarchical clustering, the function hclust was used with customized distance function

and related options. Clustered results were displayed the heatmap.3 package, the radarchart

function was used to display immune response patterns among participant clusters, and the

mosaic function was used to visually display the contingency table. Chi-square test statistics

for assessing associations between two categorical variables were calculated using the chisq.test

function. In this function, the asymptotic chi-square distribution is used to compute p-values

or the bootstrap method is used to compute p-values when some frequencies are too small for

accurate asymptotic approximation calculation. All computations were implemented in the R

language.

MetaVis. Row metadata (subject covariates) and column metadata (immune response

annotations) can be explored using the interactive tool MetaVis (http://sieve.fhcrc.org/

metavis_RV144_097_100).

Supporting information

S1 Fig. Illustration of bidirectional power transformation (BDPT). A) Distribution of

immune response levels among non-responders, B) Distribution of immune response levels

among responders, C) Mixture distribution of immune response levels among both respond-

ers and non-responders, and D) Distribution of BDPT-transformed response levels, showing a

mixture of responders and non-responders.

(PDF)

S2 Fig. Heatmap representations of immune responses observed in the three trials. A)

Heatmap of the 307 immune responses observed in 538 participants, in which white spaces

indicate uncollected values; B) Heatmap of 153 immune responses in 225 participants in

RV144; C) Heatmap of 164 immune responses in 91 participants in HVTN 097; and D) Heat-

map of 198 immune responses in 222 participants in HVTN 100.

(PDF)

S1 Table. List of the 64 immune responses shared by the RV144, HVTN 097, and HVTN

100 studies.

(XLSX)

S2 Table. Distributional statistics of the 12 immune responses for which vaccine recipients

consistently showed limited or no response. Left panel, original values; right panel, normal-

ized and transformed values.

(XLSX)
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