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Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that
undergo sexual reproduction during their life cycle. T. gondii can infect any warm-
blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines.
Eimeria spp. are usually restricted to one host species, and their whole life cycle is
completed within this same host. The literature reviewed in this article comprises the
recent findings regarding the unique biology of the sexual development of T. gondii and
Eimeria spp. The molecular basis of sex in these pathogens has been significantly
unraveled by new findings in parasite differentiation along with transcriptional analysis of
T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic
networks, analysis of these transcriptome datasets shows enrichment for several different
metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in
T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp.
merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-
pathogen interaction and host restriction have significantly expanded the understating of
the unique biology of these pathogens. This review aims to critically explore advances in
the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the
sexual cycle of Eimeria spp. and T. gondii.
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INTRODUCTION

Coccidia is a subclass of the phylum Apicomplexa that includes a wide range of obligatory
intracellular parasites. Coccidia pathogens were first described in 1879 by Leuckart as ovoid cells
found in a patient sample (Dobell, 1922). Many global pathogens, like Toxoplasma gondii and
Eimeria spp., belong to the Coccidia (Robben and Sibley, 2004). All species in the phylum
Apicomplexa, including the subclass Coccidia, reproduce sexually (Smith et al., 2002; Walker
et al., 2013). As obligatory intracellular pathogens, Coccidia must infect and parasitize a host to
complete their life cycle (Entzeroth et al., 1998; Gupta et al., 2012). The host range is determined by
the possible different species that a pathogen can parasitize (Reid et al., 2012), giving species-specific
parasites a limited host range. The host range of most Eimeria spp. is limited to one single species,
whereas only the sexual cycle of Toxoplasma gondii has a narrow host range only including species
of the family Felidae (Kogut, 1990).
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Even though all Coccidia have a sexual cycle, the most
molecular characterization has been performed on T. gondii
and Eimeria spp.; therefore, they are the focus of this review.
Pioneering work has also been done in Hammondia, Besnoitia,
Neospora, and Sarcocystis (Garcıá-Lunar et al., 2014; Blazejewski
et al., 2015; Sokol et al., 2018; Horcajo et al., 2018; Garcıá-
Sánchez et al., 2019; Jiménez-Meléndez et al., 2020) and further
molecular characterization of these parasites will be fundamental
for further understanding of sexual regulation and commitment
in Coccidia. In this review, we highlight the most recent findings
regarding sexual development for T. gondii and Eimeria spp. For
example, the differences in transcript expression between sexual
and asexual stages revealed many stage-specific genes in T. gondii
and E. tenella (Walker et al., 2015; Hehl et al., 2015; Su et al.,
2017). During merogony and sexual differentiation, the
expression of genes responsible for fundamental cellular
processes, such as metabolism and host-pathogen interaction,
changes widely (Behnke et al., 2014; Reid et al., 2014; Walker
et al., 2015; Hehl et al., 2015; Su et al., 2017; Ramakrishnan et al.,
2019). In this review, these differences will be explored and
correlated to additional discoveries in the sexual cycles of
T. gondii and Eimeria spp.
TOXOPLASMA AND EIMERIA LIFE
CYCLES

Both T. gondii and Eimeria spp. undergo sexual reproduction
with a restricted host range during their life cycle (Kogut, 1990;
Reid et al., 2012). Despite the host restriction in the sexual
cycle, Eimeria spp. and T. gondii have fundamental differences
in their life cycles. The genus Eimeria contains around 1,700
described species (Walker et al., 2013; Clark et al., 2017). In
general, Eimeria spp. are monoxenous parasites, as they
complete their life cycles in a single host (Barta, 1989; Walker
et al., 2013; Clark et al., 2017). The genus Toxoplasma only
contains one species, T. gondii, and its sexual cycle is
restricted to felines (Martorelli Di Genova et al., 2019). For
its asexual cycle, T. gondii can infect many warm-blooded
animals, including several species of mammals and birds. In
the intermediate host, T. gondii replicates asexually and
differentiates into persistent tissue cysts, containing the stage
called bradyzoites (Ong et al., 2011).

T. gondii is classified as a cyst forming Coccidia because it
develops into tissue cysts in the intermediate hosts during the
asexual life cycle (Dubey, 2020). This asexual cycle can be
completed successively, as these tissue cysts can be passed
indefinitely within intermediate hosts. After ingestion, T.
gondii bradyzoites can either differentiate into a tachyzoite to
start the asexual cycle or a pre-sexual stage to start the sexual
cycle, depending on whether the host is a non-feline or feline,
respectively (Martorelli Di Genova et al., 2019). However, that is
not the case for Eimeria spp. (Figure 1). Eimeria spp. do not
form tissue cysts and do not have intermediate hosts because
their whole life cycle is complete within the same host (Lal et al.,
2009; Walker et al., 2013). Eimeria spp. sporozoites always
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
differentiate into pre-sexual stages in vivo (Walker et al., 2013;
Walker et al., 2015).

The life cycle of Eimeria spp. starts when a new host ingests
oocysts by fecal-oral contact or through contaminated food or
water (Robben and Sibley, 2004). In the case of T. gondii, the
sexual cycle usually starts upon the ingestion of tissue cysts
containing bradyzoites (Martorelli Di Genova et al., 2019). There
is experimental evidence that T. gondii tachyzoites or oocysts can
start the sexual cycle in cats; however, oocyst shedding is
significantly delayed (Dubey, 2005). The prepatent period is 3–
8 days when cats are fed bradyzoite cysts, but 5–34 days when
cats are fed tachyzoites and 18–41 days when cats are fed oocysts.
This delay likely indicates that additional developmental steps
occur before the tachyzoites or sporozoites can undergo sexual
development, perhaps even becoming transitioning through the
bradyzoite stage. For both T. gondii and Eimeria spp., the oocyst
or cyst wall is digested in the stomach, and the parasites are
liberated to infect the intestine (Russell and Sinden, 1981). While
T. gondii sexual development exclusively occurs in the feline
small intestine (Martorelli Di Genova et al., 2019), different
Eimeria species have distinct host tissue tropism for their
sexual cycles, such as the liver or gallbladder, but most occur
within the intestinal tract (Dubey, 1986; Walker et al., 2013;
Walker et al., 2015; Sivajothi et al., 2016).

In both T. gondii and Eimeria spp., merozoites can either
continue replicating or differentiate into sexual stages (Figure 1)
(Su et al., 2017). For Eimeria spp., the number of rounds of
merozoite replication is genetically determined and differs
between the species and isolates and can respond to artificial
selection (Montes et al., 1998; Pakandl, 2005). There are two
distinct sexual stages: macrogamete and microgamete.
Macrogametes, or female gametes, remain intracellular while
the microgametes, or male gametes, can swim in the extracellular
environment via flagellum until they invade a new cell (Walker
et al., 2015). Upon the invasion, fusion of microgamete with
macrogamete forms a diploid zygote (Figure 1), followed by the
formation of a protective wall, resulting in an unsporulated
oocyst (Walker et al., 2013). The newly formed oocysts are
shed within the host feces (Bussière et al., 2018). Once released
into the environment, oocysts may sporulate depending on the
conditions (Zhou et al., 2016). During oocyst sporulation, the
diploid zygote replicates by meiosis, generating haploid
sporozoites (Figure 1) (Striepen et al., 2007; Dubey, 2019).
HOST SPECIFICITY

The extensive speciation in Eimeria is remarkable, as this genus
contains around 1,700 described species (Clark et al., 2017). Most
described Eimeria spp. are thought to be restricted to a single
host species; however, experimental evidence suggests that some
Eimeria spp. that infect rodents have a broader host range (Clark
et al., 2017; Mácová et al., 2018; Jarquıń-Dıáz et al., 2020). The
biological mechanisms underlying Eimeria speciation and host
restriction are unknown. Two independent studies did not find
evidence of coevolution between Eimeria spp. and their
December 2020 | Volume 10 | Article 604897
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respective host species (Kvičerová and Hypsǎ, 2013; Vrba and
Pakandl, 2015). One of these studies suggests that Eimeria
specification is likely caused by the adaptation of the parasite
to its host, rather than a cophylogenetic process (Kvičerová and
Hypsǎ, 2013).

The sexual cycle, but not the asexual cycle of T. gondii,
presents a host range restricted to felines (Dubey, 2020).
Felines are exclusive carnivores and are auxotrophic for both
taurine and desaturated fatty acids with more than two double
bonds, such as arachidonic acid (Sinclair et al., 1979; Rentschler
et al., 1986). Feline arachidonic acid auxotrophy is due to the lack
of delta-6-desaturase (D6D) activity in their intestines (Sinclair
et al., 1979). The absence of this enzyme activity is not observed
in other mammals. D6D adds additional double bonds to fatty
acids, and it is fundamental for arachidonic acid synthesis
(Obukowicz et al., 1998). This phenotype results in the
systemic accumulation of linoleic acid (LA) in felines (Sinclair
et al., 1979). Our group showed that high levels of LA are
required for T. gondii bradyzoites to differentiate into pre-
sexual stages (Martorelli Di Genova et al., 2019). We showed
that supplementation of mice diet with LA and a D6D inhibitor
is enough to promote the sexual cycle of T. gondii in a rodent,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
breaking the species barrier (Martorelli Di Genova et al., 2019). It
remains unknown the reason why LA is crucial for T. gondii
sexual development. In fungi, LA has been shown to interfere
with Aspergillus and Ophiostoma cellular development (Calvo
et al., 1999; Naruzawa et al., 2015). In these fungal species,
oxylipins derived from LA were characterized as signaling
molecules with important roles in the fungi sexual and
asexual differentiation (Naruzawa et al., 2015; Fischer and
Keller, 2016). These findings suggest the possibility of LA, or
derivatives molecules, having signaling roles during T. gondii
sexual development.

Pre-sexual stages for both Eimeria spp. and T. gondii replicate
in a process known as merogony (Ramakrishnan et al., 2017; Ma
et al., 2019). During merogony, parasite cells replicate their
nuclei at a high rate (Dubey et al., 2017) forming cells with
many nuclei sharing the same cytoplasm (Sheffield, 1970; Dubey,
2017). Merozoites are developed by the end of this process, and
they can differentiate into gametes after replicating asexually
(Ferguson and Dubremetz, 2020). The replication rate by which
the genetic material and the parasites themselves replicate is
presumed to be higher for pre-sexual stages than any other
Coccidia life stage (Hehl et al., 2015).
A

B

FIGURE 1 | The life cycle of T. gondii (A) and Eimeria spp. (B). After host cell invasion, T. gondii bradyzoites may either differentiate into a pre-sexual stage or a
tachyzoite. T. gondii tachyzoites are a fast-replicative stage and disseminate the infection in the host. Eimeria sporozoites replicate asexually and differentiate into pre-
sexual stages. The pre-sexual stages for T. gondii and Eimeria spp. are schizonts and merozoites because they precede the sexual stages and are committed to
sexual development. During merogony (blue M), nuclei replication form multi-nucleated cells, schizonts, that post cytoplasmic division, generates merozoites.
Merozoites can either keep replicating or differentiate into sexual stages. The two gametes, macrogamete, and microgamete fuse and generate oocyst. Sporulation
(pink S) occurs in the early oocyst, generating sporozoites. Lastly, T. gondii sporozoite differentiates into tachyzoites after an oocyst infects the host.
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TRANSCRIPTOMIC ANALYSIS
OF METABOLIC PATHWAYS

Independent transcriptomes of E. tenella and T. gondii have
shown the upregulation of a significant number of metabolic
pathways in the pre-sexual stages compared to other
developmental stages (Behnke et al., 2014; Reid et al., 2014;
Walker et al., 2015; Hehl et al., 2015; Ramakrishnan et al., 2019).
Analysis of the transcriptome datasets for E. tenella and T. gondii
(Gajria et al., 2008) shows enrichment for different metabolic
pathways (Figure 2). The datasets used in this analysis were
obtained from published data (Behnke et al., 2014; Reid et al.,
2014; Walker et al., 2015; Hehl et al., 2015; Ramakrishnan et al.,
2019) and were all previously normalized. We analyzed only the
three datasets available for T. gondii cat infection stages that were
simultaneously compared to tachyzoites, as well as two
independent studies of E. tenella merozoite and gamete stages
compared to sporozoites. Apart from the variability observed
among the datasets, there are important trends shared between
the different experiments.

Many metabolic pathways are enriched across the
independent datasets. Central carbon, especially glycolysis, and
amino acid metabolism pathways are enriched among all
datasets for the pre-sexual stages of both organisms. These
findings are corroborated by a proteomics study of E. tenella
that reported the overexpression of several metabolic enzymes
associated with oxidative phosphorylation in the pre-sexual
stages compared to other life stages (Lal et al., 2009). Amino
acid pathways are also enriched in pre-sexual and sexual stages
(Behnke et al., 2014; Reid et al., 2014; Walker et al., 2015; Hehl
et al., 2015; Ramakrishnan et al., 2019). Apart from E. tenella,
transcriptomics of other poultry infecting species Eimeria
maxima and Eimeria necatrix as well as the mouse infecting
species Eimeria falciformis also suggested higher metabolic needs
in pre-sexual and sexual stages compared to sporozoites (Su
et al., 2017; Ehret et al., 2017; Hu et al., 2018), highlighting an
overall trend of higher metabolic demand in the pre-sexual stages
of Eimeria spp. For Eimeria bovis, pre-sexual stage replication in
vitro is directly impacted by host cellular sterol profile,
demonstrating the intrinsic parasite dependency on the host
metabolism and nutrient availability (Taubert et al., 2018). The
variability between pre-sexual stages datasets might be a
consequence of the multiple differentiation steps that precede
sexual differentiation. Also, it appears that the same pathways
upregulated in the pre-sexual stages are still upregulated in
sexual stages (Figure 2). Because it is not possible yet to purify
T. gondii gametes or merozoites, the data sets from these samples
likely had a combination of both, so it is unclear how similar the
metabolism between pre-sexual and sexual stages is. An overall
similarity was previously observed between T. gondii, E. tenella,
and E. falciformis pre-sexual and sexual stages transcripts
expressions, further supporting our analysis (Ehret et al., 2017).

It is known that T. gondii tachyzoites usurp and modify host
metabolism to fulfill their metabolic needs and replicate
intracellularly (Krishnan et al., 2020; Olson et al., 2020). It has
been hypothesized that the massive replication during merogony
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
has a higher energy demand than tachyzoite replication (Behnke
et al., 2014; Hehl et al., 2015). Additionally, critical metabolites
and metabolic pathways could be required for the sexual cycle of
these parasites. This hypothesis is corroborated by the specific
requirement of LA, but not oleic acid, for sexual differentiation of
T. gondii (Martorelli Di Genova et al., 2019). In higher
eukaryotes, it has been shown that differences in metabolism
are responsible for cellular differentiation (McGraw and Mittal,
2010; Gatie and Kelly, 2018). Therefore, the overall metabolic
upregulation could be intrinsically related to the parasite
differentiation during pre-sexual development and not simply a
consequence of accelerated replication. It is fundamental to
highlight that transcriptomic data is not a measure of
metabolite abundance, and direct analysis of metabolites
is needed to characterize pre-sexual and sexual stage
metabolism fully.
PRE-SEXUAL STAGES

Apart from metabolic pathways, many other cellular functions
are likely altered in the pre-sexual stages. Transcriptional
analysis of T. gondii pre-sexual stages reveals changes in the
expression of transcripts critical for host-pathogen interaction
(Behnke et al., 2014; Hehl et al., 2015; Ramakrishnan et al., 2019).
Independent transcriptomes showed that pre-sexual and sexual
stages downregulate the expression of most rhoptry and granular
protein genes that are upregulated in tachyzoites (Hehl et al.,
2015; Ramakrishnan et al., 2019). Similarly, the expression of
rhoptry kinases is higher in sporozoites than pre-sexual stages for
E. falciformis (Heitlinger et al., 2014). In T. gondii tachyzoites,
rhoptry proteins have important known functions, including the
biogenesis of the moving junction, which is required for invasion
(Dlugonska, 2008; Pernas and Boothroyd, 2010). Some rhoptry
proteins are secreted into the host cell and can associate with host
mitochondria, endoplasmic reticulum, or be translocated to the
host nucleus (Dlugonska, 2008; Pernas and Boothroyd, 2010).
Some rhoptry proteins are also involved in the biogenesis of the
parasitophorous vacuole, while dense granule proteins are
generally responsible for its architecture and function (Pernas
and Boothroyd, 2010; Gold et al., 2015).

For T. gondii, only two pre-sexual stage effector proteins have
been characterized, TgGRA11B and TgBRP1. TgGRA11B is
exclusively expressed in T. gondii pre-sexual stages but changes
its localization from the dense granules to the parasitophorous
vacuole membrane as the pre-sexual stages develop (Hehl et al.,
2015; Ramakrishnan et al., 2017). T. gondii pre-sexual stages also
express TgBRP1, a known bradyzoite rhoptry protein (Schwarz
et al., 2005). The role of TgBRP1 and TgGRA11B is still unclear
during pre-sexual development, but these findings show that the
pre-sexual forms have unique interactions with the host
compared to the asexual stages of infection. A transcriptomic
analysis also showed that T. gondii pre-sexual stages overexpress
different surface antigens linked to GPI, further suggesting
differences in its interaction with the host (Hehl et al., 2015).
E. tenella also expresses pre-sexual stage surface antigens. These
December 2020 | Volume 10 | Article 604897
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FIGURE 2 | Metabolic pathway enrichment from transcriptional analysis of pre-sexual and sexual stages. Pre-sexual stage transcriptomics was compared using
KEGG pathway analysis on ToxoDB (Gajria et al., 2008). The heatmap shows how many times each metabolic pathway is enriched in pre-sexual stages compared
to asexual stages for each dataset. Pathways that were not enriched are marked as white. All pathways presented were enriched in at least two independent
datasets. Figure created using ClustVis (Metsalu and Vilo, 2015). Tg, Toxoplasma gondii; Et, Eimeria tenella. For T. gondii sexual stages, only sample EES5 was used
for the comparison.
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stages overexpress many surface antigens (SAG) linked to
glycosylphosphatidylinositol (GPI) in comparison with
sporozoites (Reid et al., 2014). Another study using these E.
tenella pre-sexual overexpressed SAGs showed that some of
them suppressed expression of interferon-gamma and IL-12 in
macrophages in vitro and induced expression of IL-10 (Chow
et al., 2011). Another subset of these SAGs induced nitric oxide
production in macrophages, potentially being related to the
inflammatory response caused by E. tenella infection (Chow
et al., 2011).

Another important side of host-pathogen interaction during
pre-sexual development is the host immune response to the
infection. Transcriptomic analysis of T. gondii infected cats
showed a high expression of transcripts crucial for the immune
response (Cong et al., 2018). Examples of these transcripts with
high expression in infected cats include interferon-gamma and
different cytokines (Cong et al., 2018). Most reports describe that
toxoplasmosis infection causes mild symptoms in immunocompetent
felines, suggesting that the immune system can clear the infection or
at least cause the parasites to differentiate into the chronic infection
bradyzoite stage (Calero-Bernal and Gennari, 2019). Host features
may vary the T. gondii oocyst shedding rates, including cat breed as a
potential factor (Must et al., 2017).

In contrast to T. gondii infection in cats, the Eimeria spp.
infection often harms the host. The infection by Eimeria spp.
typically results in malabsorption, consequential weight loss, and
mortality in-floor raised chickens (Quiroz-Castañeda and
Dantán-González, 2015). Increased intestinal IL-10 expression
during Eimeria spp. infection in chickens is suggested to be
related to the symptoms (Arendt et al., 2019). On the other hand,
interferon-gamma seems protective against avian coccidiosis, as
shown in many studies (Kim et al., 2019).

Limited tissue culture options are one major roadblock for
studying pre-sexual and sexual stages and their interaction with
the host. Since the 1960s, efforts have been made to maintain
Coccidia in vitro (Strout et al., 1965). A recent finding shows
that chicken epithelial cell line supports E. tenella sexual
development, from sporozoites to gametes (Bussière et al.,
2018). For T. gondii, LA supplemented feline or D6D-
inhibited mouse organoid support pre-sexual and sexual stages
development, but without infectious oocyst production
(Martorelli Di Genova et al., 2019).
SEXUAL COMMITMENT AND
DIFFERENTIATION IN COCCIDIA

Commitment to sexual differentiation is a key process during the
life cycle of Apicomplexa parasites. After commitment, the
parasite developmental program will culminate with its
differentiation into a sexual stage (Bechtsi and Waters, 2017).
For example, sexual commitment in the Apicomplexa parasite
Plasmodium falciparum is a well-described process. The sexual
commitment of P. falciparum parasites relies on the expression
of a specific ApiAP2 factor, named PfApiAP2-g. ApiAP2s are
transcriptional factors found in Apicomplexa that have been
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
shown to regulate virulence and cellular development in these
parasites (Jeninga et al., 2019). The name derives from the
apetala transcription factors 2 (AP2), a family of transcription
factors discovered in plants (Jeninga et al., 2019). Single-cell
transcriptomics of PfApiAP2-G conditional depleted parasites
revealed that this factor upregulates the expression of other
transcription factors and histone modifiers, and defined
PfApiAP2-G as a master regulator of gametogenesis (Poran
et al., 2017). The expression of PfApiAP2-G is regulated by
histone methylation and acetylation, demonstrating a critical
epigenetic regulation of the parasite differentiation (Bechtsi and
Waters, 2017).

Previous studies have described that T. gondii has 67 ApiAP2
factors, and many of them are stage-specific according to
transcriptomic studies (Hehl et al., 2015; Kim et al., 2020).
Seminal work showed that the differentiation of T. gondii
tachyzoites into bradyzoites is tightly regulated by multiple
ApiAp2, demonstrating a central role of these transcription
factors in this parasite’s development (Radke et al., 2013; Hong
et al., 2017). The microrchidia protein (MORC) in a complex
with ApiAP2 factors is responsible for repressing sexual
commitment in tachyzoites (Farhat et al., 2020). The complex
MORC-ApiAP2 is responsible for recruiting a histone
deacetylase, TgHDAC3, that promotes specifically the
deacetylation of bradyzoite and pre-sexual and sexual stage-
specific genes, further disrupting their expression (Farhat et al.,
2020). The addition of a histone deacetylase inhibitor, FR235222,
to tachyzoites induces their differentiation into bradyzoites in
fibroblasts in tissue culture (Bougdour et al., 2009). These
findings suggest that epigenetics might play a critical role in
T. gondii differentiation, as observed in the sexual commitment
of P. falciparum (Bechtsi and Waters, 2017).

The differentiation of T. gondii intro bradyzoites is
orchestrated by a Myb-like transcription factor named BFD1
(Waldman et al., 2020). BFD1 induced bradyzoite differentiation
is independent of a change in the media pH or any other cellular
stress (Mayoral et al., 2020). In the life cycle of T. gondii, when a
feline consumes an intermediate host, the bradyzoite is the
developmental stage that precedes the pre-sexual ones. It
would be relevant to explore if BFD1 and MORC together
regulate bradyzoite development and commitment to the
sexual cycle.

The number of ApiAP2 factors varies from 44 to 54 in
Eimeria spp. infecting chickens (Reid et al., 2014), while the
mouse infecting species E. falciformis contains only 17 genes
containing an AP2 domain (Ehret et al., 2017). As observed in
T. gondii, cellular differentiation is likely regulated by ApiAP2
factors in Eimeria spp. Transcriptional analysis of the pre-sexual
stages of E. tenella revealed that ApiAP2 expression profile
changes during pre-sexual development (Su et al., 2017).
Individual deletion of 10 out of 33 ApiAP2 factors was
successful in a screening performed in sporozoites of E. tenella
(Hu et al., 2020). This finding indicates that these 10 ApiAP2 are
likely dispensable in E. tenella. Lastly, sexual commitment in
Eimeria spp. has been proposed to be genetically programmed
and not reliant on environmental clues, as observed in
December 2020 | Volume 10 | Article 604897
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P. falciparum and likely the case for T. gondii (Smith et al., 2002;
Walker et al., 2013).

Final Steps of the Sexual Cycle:
Gametogenesis and Oocyst Biology
Transcriptomics of E. tenella showed upregulation of over 800
transcripts during gametogenesis compared to sporozoites,
identifying many gamete-specific transcripts (Walker et al.,
2015). Macrogamete specific transcripts are intrinsically related
to oocyst wall biogenesis. According to this study, distinct wall
protein transcripts and transcripts surface antigens are
upregulated in macrogametes. Macrogametes also upregulate
proteases, oxidoreductases, glycosylation, and fatty acid
metabolism transcripts. This finding gives an initial insight
into the mechanisms for the oocyst wall biosynthesis.

The same study shows that microgametes upregulate
axonemes, flagella, DNA condensation, and transcripts likely
related to gamete fusion (Walker et al., 2015). Additionally, a
study using E. falciformis confirmed the trends observed for E.
tenella gametes upregulated transcripts (Ehret et al., 2017). These
putative transcripts might play a significant role in microgamete
locomotion and fusion to the macrogamete. HAPLESS2 (HAP2)
is a known microgamete protein in P. falciparum with a role in
fertilization (Vega-Rodriguez et al., 2015). The E. tenella (Walker
et al., 2015) and T. gondii (Ramakrishnan et al., 2019)
orthologues are highly expressed during the sexual development
of both species. The deletion of TgHAP2 results in non-infectious
oocysts with aberrant morphology and generates a putative anti-
Toxoplasma vaccine strain (Ramakrishnan et al., 2019). Gamete
fusion and meiosis in T. gondii was indirectly demonstrated by
crossing two single drug-resistant strains and obtaining haploid
strains resistant to both drugs (Pfefferkorn and Pfefferkorn, 1980).
Remarkable electron microscopy work showed T. gondii
microgametes attached to a macrogamete or early oocysts,
suggesting the occurrence of fertilization (Ferguson and
Dubremetz, 2020). Fertilization in E. maxima appears to be
affected by heat stress (Schneiders et al., 2020). In this study,
heat-stressed parasites presented different transcriptional profile
compared to the control; EmHAP2 transcript expression, for
example, was significantly decreased (Schneiders et al., 2020).
Another pioneering study showed that cross-fertilization is
common in polyclonal infections of E. tenella, further
demonstrating the occurrence of fertilization in this parasite
(Blake et al., 2015).

After fertilization of gametes, oocysts form within the host
cells and are subsequently shed within the host feces. Coccidia
oocysts are resistant to environmental stress, surviving extreme
conditions, such as UV (Ware et al., 2010), hypochlorite, and
ozone (Wainwright et al., 2007). Oocysts remain viable, and
likely infectious, for many months after shedding (Dubey, 2019).
The structure and chemical composition of the oocyst wall is
responsible for the oocyst resilience (Dumètre et al., 2013).

The oocyst wall is composed of two distinct structures: outer
and inner walls (Ferguson and Dubremetz, 2020). The outer wall
surrounds the oocyst, while the inner wall is physically attached
to the outer wall and in contact with the cellular membrane
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Mai et al., 2009; Bushkin et al., 2013). Despite the interaction
between inner and outer walls, they are independent, as
hypochlorite treatment strips off only the outer wall while the
inner one remains intact. In E. tenella and E. maxima, proteins
correspond to at least 90% of the outer wall composition weight,
and lipids and carbohydrates are responsible for 10% of the
weight, 8%, and 2%, respectively (Mai et al., 2009). Bushkin et al.
showed that lipids present in the oocyst wall of T. gondii and E.
tenella wall were a complex mixture of triglycerides, similar to
Mycobacterium walls, and could be acid-fast stained (Bushkin
et al., 2013).

One interesting transcript upregulated in E. tenella
macrogametes is amiloride-sensitive amine oxidase (EtAO2).
The protein coded by this gene contains an extracellular
adhesive MAM (meprin, A5, m domain) domain that likely
plays a significant role in oocyst wall biogenesis. AO2 activity
catalyzes the cross-linking of tyrosine rich peptides, forming
dityrosine bonds that are involved in the oocyst wall hardening
(Belli et al., 2003; Walker et al., 2015).

The presence of dityrosine bonds in the oocyst wall was first
indicated by a seminal study using E. maxima as a model. This
study identified tyrosine-rich glycoproteins, EmGAM56, and
EmGAM82, and showed that they are proteolytically processed
and incorporated in E. maxima’s oocyst wall (Belli et al., 2003).
Dityrosine bonds are also present in the T. gondii oocyst wall
(Wang Z. T. et al., 2017). T. gondii transcriptomics showed
upregulation of TgAO2 and transcripts from tyrosine-rich
glycoproteins orthologues in the late stages of sexual reproduction
(Ramakrishnan et al., 2019). The expression of TgAO2 in
macrogametes was demonstrated by immunofluorescence,
suggesting a conserved mechanism for Coccidia wall biogenesis
(Walker et al., 2015). The presence of dityrosine bonds in the
oocyst wall of Eimeria and T. gondii confers the oocyst wall
autofluorescent when excited with blue light (Belli et al., 2003;
Ramakrishnan et al., 2019).

A subset of proteins named oocyst wall proteins (OWP) is
transcriptionally expressed in both E. tenella and T. gondii
(Walker et al., 2015; Ramakrishnan et al., 2019). Orthologs of
these cysteine-rich OWPs were first characterized in
Cryptosporidium (Templeton et al., 2004). There are 7
cysteine-rich OWPs in T. gondii (named OWP1-7), and they
localize to the oocyst wall (Possenti et al., 2010). OWPs play a
role in the oocyst wall structure and have a central role in the
oocyst wall of many Apicomplexan (Templeton et al., 2004;
Possenti et al., 2010). While no further characterization of the
OWPs has occurred yet for E. tenella, one study showed that
two OWPs are expressed during sporulation and present
in the sporocyst wall in Eimeria nieschulzi (Jonscher et al.,
2015) further suggesting additional roles for OWPs in
Coccidia parasites.
CONCLUDING REMARKS

Transcriptional studies of Eimeria spp. and T. gondii revealed
many key components that are shared in their sexual cycle. The
December 2020 | Volume 10 | Article 604897
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upregulated metabolism into the pre- and sexual stages may
explain the complexity in reproducing these stages in vitro. A
central hypothesis is that without the fulfilled metabolic needs,
Coccidia differentiation in pre-sexual and sexual stages is
reduced or completely ablated. This hypothesis is further
suggested by the sexual cycle of T. gondii, relying on the LA
concentration (Martorelli Di Genova et al., 2019). Along with
lipid metabolism, other intestinal physiology factors might be
critical to consider. The presence of bile salts, hypoxia, high
osmotic pressure, and the microbiota are all intestinal conditions
that need to be considered (Boyer, 2013; Guinane and Cotter,
2013). Primary cells and organoid models can support partial
sexual development of Coccidia parasites, but infectious oocyst
production has not yet been observed in cell culture (Bussière
et al., 2018; Martorelli Di Genova et al., 2019). However, in vitro
fertilization of Cryptosporidium gametes has occurred in some
cell lines, highlighting that while it is challenging to reproduce
the Apicomplexa life cycle in tissue culture, it is not impossible
(Heo et al., 2018; Wilke et al., 2019). One significant difficulty is
to obtain sporozoites from Coccidia oocysts and culture them.
Recently improved techniques might significantly improve this
procedure and maximize tissue culture yields (Sokol et al., 2020).

Although there are similarities between the sexual cycles
of T. gondii and Eimeria spp., there are also substantial
differences. Likely these life cycle differences result in unique
sexual commitment, regulation, and development between the
two Coccidia genera. Conversely, the T. gondii sexual cycle
appears to be triggered by host factors. This hypothesis is
corroborated by the presence of two distinct masters of T.
gondii differentiation, BFD1 and MORC (Farhat et al., 2020;
Waldman et al., 2020). Furthermore, epigenetics is likely to play a
central role in T. gondii development, as exemplified by a study
using histone deacetylase inhibitors and its effect on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
development (Bougdour et al., 2009). Additional studies are
necessary to define further how T. gondii and Eimeria spp.
parasites commit to the sexual cycle and whether each genus
has a unique sexual regulation mechanism.

While sexual reproduction is a common trait in the phylum
Apicomplexa (Smith et al., 2002), T. gondii and closely related
organisms from the Sarcocystidae family have an independent
asexual cycle. After these pathogens infect an intermediate host,
they develop into tissue cysts. As tissue cysts are infectious for
both intermediate and definitive host, Sarcocystidae parasites can
infect intermediate hosts indefinitely, skipping the definitive
host, and sexual reproduction as a result. It is unclear how
long T. gondii strains replicate asexually in nature and what
the evolutionary consequences are of continually missing
sexual reproduction.

Chronic toxoplasmosis is still a morbidity factor for
immunocompromised individuals (Wang Z.-D. et al., 2017).
Both Coccidia pathogens put at risk the economy, especially
regarding livestock and agriculture. Toxoplasmosis causes
recurrent abortions in sheep (Shahbazi et al., 2019). Avian
coccidiosis from Eimeria spp. is responsible for increases in
weight loss and mortality in chickens resulting in significant
economic losses for the poultry industry yearly (Noack et al.,
2019). Overall, to study these pathogens, it is necessary to
comprehend both basic biology concepts as well to generate
medical and economic relevant knowledge.
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