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Simple Summary: Neutrophils are the main leukocyte subset present in human blood and play a
fundamental role in the defense against infections. Neutrophils are also an important component
of the tumor stroma because they are recruited by selected chemokines produced by both cancer
cells and other cells of the stroma. Even if their presence has been mostly associated with a bad
prognosis, tumor-associated neutrophils are present in different maturation and activation states and
can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines
not only induce neutrophil directional migration but also have an important role in their activation
and maturation. For these reasons, chemokines and chemokine receptors are now considered targets
to improve the antitumoral function of neutrophils in cancer immunotherapy.

Abstract: Neutrophils are an important component of the tumor microenvironment, and their
infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils
have been shown to be endowed with both protumor and antitumor activities, reflecting their
heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines
and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect
neutrophil maturation and effector functions. Here, we review human and mouse data suggesting
that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve
their antitumor properties and the efficiency of immunotherapy.
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1. Introduction

Neutrophils are the most abundant circulating leukocytes in humans, accounting for
50–70% of all circulating white blood cells, and represent the first line of defense against
bacterial and fungal pathogens. Neutrophils are fundamental for our immune response
not only for their antimicrobial functions but also for the orchestration and regulation of
the innate and adaptive immune responses [1]. In addition, a growing number of studies
have demonstrated the heterogeneity and plasticity of neutrophils in different contexts,
including tissue homeostasis and pathological conditions [2].

In addition to cancer cells, the tumor microenvironment (TME) is composed of ex-
tracellular matrix, stromal cells, and inflammatory cells. Neutrophils are an important
component of the TME, and in the majority of human tumors, their infiltration has been
associated with a poor prognosis [3]. However, the role of neutrophils in cancer must be re-
considered due to their plasticity and heterogeneity [4]. Indeed, neutrophils can have both
protumor and antitumor activities reflecting their different activation and differentiation
states [2,4].

Neutrophil recruitment in the TME is mainly driven by chemokines. Here, we review
the current understanding of the heterogeneity and role played by neutrophils in cancer
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focusing our attention on chemokines and chemokine receptors involved in neutrophil
development, maturation, recruitment, and activation states and their possible targeting
for immunotherapy.

2. Neutrophil Development

Neutrophils are produced in the bone marrow (BM) from hematopoietic stem cells
(HSC) that differentiate successively into lymphoid-primed multipotent progenitors (LMPPs)
or common myeloid progenitors (CMPs), granulocyte monocyte progenitors (GMPs), and
mature neutrophils equipped with granules. This process is mainly regulated by the
expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) [5–7]. Accordingly, severe neutropenia has been
observed in G-CSF−/− and GM-CSF−/− mice [8]. Due to their limited life span, their
presence in the blood requires the production of up to 2 × 1011 neutrophils per day [6].

Using mass cytometry by time of flight (CyTOF) and single-cell RNA sequencing
(scRNA-seq), recent studies have identified different subsets of immature neutrophils
within the BM [9–12]. In particular, committed proliferative neutrophil precursors (re-
ferred to as preNeu), characterized as a proliferative population of Gr1+ CD11b+ CXCR4hi

CD117int CXCR2− cells which differentiate into non-proliferating immature neutrophils
(Gr1+, CD11b+, CD101−, Ly6Gint, CXCR4lo, CXCR2−) and mature neutrophils (Gr1+,
CD11b+, CD101+, Ly6G+, CXCR4−, CXCR2+), have been identified in mouse BM [2,13].
Further studies identified early committed progenitors of preNeu, designated as proNeu1
and proNeu2 [14]. The subset proNeu1, which is characterized in mouse BM as Lin−,
CD115−, Flt3−, Ly6C+, CD117hi, CD34+, CD16/32+, CD106− and CD11blo, possesses self-
renewing properties and differentiates into proNeu2, characterized by the enrichment of
CD106+ and CD11bhi, compared to proNeu1 [14]. Importantly, proNeu1 and proNeu2
subsets have been identified in human cord blood [14]. These progenitors had the capacity
to generate mature neutrophils after 3 days of in vitro culture [14].

The expression of transcription factors is required for the formation of mature neu-
trophils [2,15–18]. For instance, deficiency in specific transcription factors of the CCAAT/
enhancer-binding protein (C/EBP) family leads to a disruption in neutrophil develop-
ment [2,19,20]. C/EBPε is critical for proNeu2 development, while C/EBPα acts at the
GMP stage, and their disruption in mice blocks the formation of neutrophils [14,19]. Other
transcription factors, such as C/EBPβ and growth factor-independent-1 (Gfi-1) have also
been involved in the process of neutrophil development [21,22].

2.1. Roles and Heterogeneity of Neutrophils in Steady State

Neutrophils have long been viewed as fully differentiated effector cells with a primary
role in eliminating invading pathogens and a limited role in steady state. However, a
growing body of evidence has shown that neutrophils are a heterogeneous population of
cells in mouse and human tissues which can play an important role in maintaining tissue
homeostasis [2,23,24]. For instance, infiltration of neutrophils into naïve lungs influences
the transcriptional program of the tissue, which becomes associated with carcinogenesis
and migration of other cell types, such as circulating tumor cells [23].

The release of neutrophils from the BM into the peripheral blood is tightly regulated
by circadian rhythms, and freshly released mature neutrophils present a distinct phenotype
compared to immature neutrophils and aged neutrophils [25–28]. CXCR4 plays a central
role in BM retention of immature cells and BM homing of aged neutrophils. Decreased
expression of CXCR4 associated with increased expression of CXCR2 drives the egress of
neutrophils from the BM into the bloodstream [29]. Fresh mature neutrophils are released
during the night and the early morning [26]. In the circulation, neutrophils undergo diurnal
phenotypic alterations referred to as the aging program, which is linked to circadian
regulation of the neutrophil transcriptional program [30]. In healthy mice, the number of
aged neutrophils peaks at zeitgeber time 5 (ZT5, 5h after lights on), and this phenomenon
is found associated with an increased expression of the transcription factor BMAL1, a
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clock protein involved in the regulation of the circadian rhythm [25]. Mechanistically,
BMAL1 controls the production of CXCL2, which in turn signals through CXCR2 to induce
neutrophil aging [25]. Aged neutrophils are characterized by reduced expression of CD62L,
increased expression of CXCR4, CD11b, and CD49d, and the presence of a hypersegmented
nucleus. Increased expression of CXCR4 facilitates their homing into the BM for their
elimination. In addition, the aging of neutrophils has been associated with the progressive
loss of granule content and the reduction of their capacity to form neutrophil extracellular
traps (NETs) [25,30]. This cell-intrinsic program referred to as neutrophil “disarming”, may
protect tissues from excessive inflammation and vascular damage, as shown in a mouse
model of endotoxin and antibody-induced acute lung inflammation (ALI) [30]. However,
migration of neutrophils to tissues is favored by neutrophil aging, and their presence can
protect from infections [25]. Other neutrophil activities, including the production of reactive
oxygen species and the release of cytokines, were not altered by aging.

A recent study from the Immunological Genome Project (Immgen) consortium applied
scRNA-seq in combination with RNA velocity to identify neutrophil populations in BM,
blood, and spleen of mice [31]. The study revealed that neutrophil heterogeneity states
can be projected onto a single continuum, referred to as “neutrotime”. This spectrum
reflects the chronological development of neutrophils, ranging from immature neutrophils,
mainly in the BM, to mature neutrophils, mainly in the blood and spleen [31]. Interestingly,
scRNA-seq data from human BM neutrophils showed that the neutrotime signature can
be detected in human neutrophils [31]. A restricted set of transcription factors whose
expression varies with neutrotime has been identified. For instance, the expression of Cepbe
was enriched in the early neutrotime, while the expressions of Atf3, Klf2, Junb, Jund, and
Cepbb were enriched in later neutrotime [31].

A population of neutrophils characterized by the expression of a set of interferon-
stimulated genes (ISG) has been observed in mice and humans [31,32]. This subset of
neutrophils could represent a population primed to fight infections and has been observed
in tumors [33]. This observation points to a possible modification of the neutrophil phe-
notype depending on their environment. Indeed, recent studies revealed that neutrophils
have variable lifetimes in different tissues and can acquire tissue-restricted phenotypes
and functional properties [23,34]. For example, splenic neutrophils showed high expres-
sion of CD74 and CR2, while expression of CD14 and IL1β was higher in pulmonary
neutrophils [34]. In silico analyses of the transcriptional signatures of tissue neutrophils
revealed that pathways classically attributed to neutrophils, including cell chemotaxis
and immune response, were enriched in BM and blood neutrophils, while splenic neu-
trophils showed enrichment of a pathways associated with B cell homeostasis, and intestine
and pulmonary neutrophils were associated with angiogenesis and neuronal develop-
ment [34]. Previous reports showed that splenic neutrophils can provide helper signals to
B cells, including through the production of a proliferation-inducing ligand (APRIL), IL-21,
and B-cell activating factor (BAFF) [35]. A pro-angiogenic activity of lung neutrophils
has been confirmed in mouse models that require increased angiogenesis, such as after
radiation-induced genotoxic injury [34]. The presence and retention of neutrophils in the
lungs involve the expression of CXCR4 by neutrophils and CXCL12 by the pulmonary
endothelium [36]. In addition to the pro-angiogenic activity of lung neutrophils, this tissue
can act as a reservoir for neutrophils ready to be released into the circulation [36,37]. Ac-
cordingly, treatment with CXCR4 antagonists induced the release of neutrophils into the
circulation [36].

Neutrophils can be detected in other tissues, including adipose tissue, liver, lymph
nodes, and skeletal muscle [23,38]. Liver-infiltrating neutrophils have been involved in lipid
metabolism, and lymph nodes neutrophils express a high level of major histocompatibility
complex II (MHCII), suggesting a role in CD4+ T cell activation. The role of neutrophils in
other tissues remains largely unknown [23,38].
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2.2. Roles and Heterogeneity of Neutrophils in Cancer

A large number of studies have shown that the expression of inflammatory chemokines
(e.g., CXCL1, CXCL2, CXCL5, CXCL8), cytokines (e.g., IL-1β, IL-17, TNFα), or other
molecules, such as the complement component C5a, G-CSF, GM-CSF, or tumor-derived
oxysterols, which are involved in the formation, mobilization, and recruitment of neu-
trophils, was increased in patients and mice with cancer [39–48]. Accordingly, increased
blood neutrophilia is observed in cancer, and TANs represent an important component of
the TME in the primary tumor, premetastatic niche, and metastasis [4,49].

As mentioned above, neutrophils can play both protumor and antitumor activities in
cancer [2,4]. Protumor activities of neutrophils have been associated with a direct crosstalk
with circulating tumor cells [50] and the production of different factors by neutrophils,
including reactive oxygen species (ROS) and other molecules that support DNA damage
and genomic instability [51–55], cytokines, chemokines, growth factors [3,56,57], NETs
that support the formation of metastasis and protect tumor cells from CD8+ T cells and
NK cells [58–65], proangiogenic factors such as vascular endothelial growth factor (VEGF)
and matrix metalloproteinase-9 (MMP-9) [9,66–69], and immunosuppressive mediators
such as arginase 1 (Arg1), prostaglandins, and ligands of immune checkpoints [9,70–72].
In addition, neutrophil-derived granule proteins can also sustain tumor growth. For
instance, neutrophil elastase (NE), stored into neutrophil azurophil granules, can induce
cancer cells proliferation via the degradation of insulin receptor substrate 1 (IRS-1), an
inhibitor of phosphoinositide 3-kinase (PI3K). As a result, PI3K interacted with the mitogen
platelet-derived growth factor receptor (PDGFR), leading to cell proliferation [73,74].

In contrast, a growing body of evidence showed that neutrophils can also play an-
titumor activities. In particular, neutrophils can eliminate tumor cells through a direct
cytotoxic activity mediated by the production of ROS, TNF-related apoptosis-inducing
ligand (TRAIL), and nitric oxide (NO) [42,75–77], can act as antigen-presenting cells (APC)
associated with the antitumor immune response [78,79], or can sustain type 1 polarization
and antitumor activity of a subset of unconventional T cells [80]. NE has also been associ-
ated with the antitumor activity of neutrophils. Indeed, human, but not murine, neutrophils
secreted catalytically active NE which can kill cancer cells through the liberation of the
CD95 death domain [81].

Cancer has served as a paradigm for myeloid cell heterogeneity and plasticity, first for
macrophages and now for neutrophils [82]. The first level of heterogeneity involved the
maturation status of neutrophils in the circulation and tumor tissues of individuals with
cancer [46,83,84]. The program of maturation of neutrophils was found to be profoundly
altered in tumor-bearing mice [85,86]. In a mouse model of orthotopic pancreatic cancer,
the presence of immature neutrophils defined as Ly6Glow/+CXCR2− CD101− increased
in tumor-bearing mice, and mice with higher tumor burden showed higher infiltration of
immature neutrophils into the pancreas [13]. In patients with melanoma, a heterogeneous
population of early unipotent neutrophil progenitors (defined as NeP), susceptible to rep-
resents a mixture of ProNeu1, ProNeu2, and preNeu (see above), has been observed in
blood and tumor tissue and associated with tumor progression [12]. Mechanistically, the
protumor activity of immature neutrophils has been attributed to their ability to suppress T
cell activation and proliferation [87]. The immunosuppressive population of neutrophils
has been referred to as granulocytic myeloid-derived suppressor cells (G-MDSCs). MD-
SCs represent a heterogeneous population of mostly immature myeloid cells related to
neutrophils (G-MDSC) or monocytes (M-MDSC) and functionally characterized by their
immunosuppressive activity [88]. A population of immature neutrophils characterized by
the expression of the class E scavenger receptor Lectin-type oxidized LDL receptor-1 (LOX-
1), associated with the upregulation of genes related to endoplasmic reticulum (ER) stress,
has been defined as a specific population of human, but not murine, G-MDSCs [89,90].
Human G-MDSCs have also been described as CD15+ CD66b+ CD33dim HLA-DR− cells,
but this phenotype is also observed in other neutrophil subsets [91,92]. Other molecules,
such as CD117 [12,13,93] and PD-L1 [12,71,94–96], have been associated with protumor
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neutrophils. In addition to these molecular markers, neutrophils can be separated by
density gradient centrifugation into low-density neutrophils (LDNs) and normal-density
neutrophils (NDNs) or high-density neutrophils (HDNs) [4,80,97]. LDNs have been mainly
associated with the immunosuppressive activity of neutrophils. However, it is important to
note that mature neutrophils can include LDNs and that all immature neutrophils are not
immunosuppressive for T cells, suggesting that in addition to their maturity status, other
features can drive the immunosuppressive activity of neutrophils [84]. Recently, scRNA-seq
of human and mouse TANs from lung cancer revealed conserved subpopulations of TANs
between species. Indeed, human and mouse tumors contained five and six subsets of
neutrophils, respectively, but three gene expression modules were conserved between
human and murine TANs. These three modules consisted of neutrophils expressing classic
neutrophil markers that progressed to neutrophils expressing inflammatory cytokines and
to a small subset of neutrophils expressing type I interferon response genes [33].

Macrophages have served as a paradigm for the plasticity and heterogeneity of
myeloid cells in cancer, with classically activated M1 macrophages and alternatively acti-
vated M2 macrophages exerting antitumor and protumor activities, respectively [82,98].
Mirroring the M1/M2 paradigm, a polarization of TANs towards antitumor N1 neutrophils
and protumor N2 neutrophils has been proposed [9]. In particular, under the pressure of
TGFβ present in the TME, neutrophils polarized into protumor N2 neutrophils, character-
ized by the production of proangiogenic factors and immunosuppressive activity through
the secretion of Arg1 [9]. In contrast, following TGF-β blockade or administration of IFNβ,
neutrophils polarized into antitumor N1 neutrophils, characterized by cytotoxic activity
towards tumor cells, reduced expression of the proangiogenic factors VEGF and MMP-9,
increased expression of T cell-attracting chemokines (e.g., CCL3, CXCL9, and CXCL10),
and capacity to support CD8+ T cells activation [9,68,99]. The terms N1 and N2 should be
used with caution, as they refer to the different extremities of a continuum of neutrophil
polarization states. This classification probably represents an oversimplification of the
heterogeneity and plasticity of immature and mature neutrophils in cancer.

3. Chemokines and Chemokine Receptors Acting on Neutrophils

The superfamily of chemokines is composed of small chemoattractant peptides (4kDa)
that are classified into four subfamilies (C, CC, CXC, and CX3C) according to the position of
the first two cysteines present in their sequence. Chemokines bind to seven-transmembrane
domain G protein-coupled receptors, known as chemokine receptors [100].

Neutrophils express high levels of CXCR1 and CXCR2, two chemokine receptors that
bind a subclass of CXC chemokines characterized by the presence of a glutamate–leucine–
arginine (ELR) sequence in the N-terminus before the CXC motif. Human CXCR2 binds
the ELR+ chemokines CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 [101],
while human CXCR1 binds only CXCL6 and CXCL8 [102]. There are many differences
between the human and the mouse system in terms of ELR+ chemokines. Indeed, murine
ELR+CXC chemokines are fewer than the human ones, and there is no murine homolog of
human CXCL8, while its analogs are murine CXCL1, CXCL2, and CXCL5. Finally, murine
CXCR1 binds only CXCL5 and CXCL6 [103]. (Table 1)

Despite the high degree of sequence homology and partial ligand overlap, CXCR1 and
CXCR2 have distinct and non-redundant roles. Both receptors activate the NF-κB signaling
pathway that sustains inflammation [104]. CXCR2 activates also the PI3K/Akt and mitogen-
activated protein kinase (MAPK)/p38 signaling pathways that promote cell migration and
survival [105]. In addition, CXCR2 has been reported to induce NET release through
Src, extracellular signal-regulated kinase (ERK), and p38/MAPK signaling pathways [106].
In vivo experiments with CXCR2 knockout mice demonstrated that this receptor is required
for tissue neutrophil infiltration, activation, and NET formation [107,108]. In patients with
chronic obstructive pulmonary disease (COPD), clinical trials are ongoing with CXCR2
inhibitors to reduce NET formation and improve lung function [109]. Regarding CXCR1,
this receptor is selective for the activation of phospholipase D (PLD) that promotes ROS
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production, while it is dispensable for neutrophil extravasation [110]. The role of CXCR1
in bacterial killing was demonstrated by in vivo experiments of Pseudomonas aeruginosa
and Candida albicans infection [111,112]. Furthermore, patients carrying the genetic variant
CXCR1–T276 are more susceptible to bacterial infections because their neutrophils have
decreased degranulation and less ability to kill fungi [113].

Table 1. Human and murine chemokine receptors expressed by neutrophils and their agonists
and functions.

CXCR1 CXCR2 CXCR4 CCR1 CCR2 ACKR2 CCRL2

Human
endogenous

agonists

CXCL6
CXCL8

CXCL1, 2, 3
CXCL5, 6, 7, 8 CXCL12

CCL3, 5
CCL7, 8

CCL13, 14, 15
CCL23

CCL2
CCL7

CCL13
CCL16

CCL2, 3, 4, 5
CCL7,8
CCL11

CCL13, 14
CCL17, 22

Chemerin

Murine
endogenous

agonists

CXCL5
CXCL6

CXCL1, 2, 3
CXCL5, 6 CXCL12

CCL3
CCL5,6,7

CCL9

CCL2
CCL7,
CCL12

CCL2, 3, 4, 5
CCL7, 8
CCL11

CCL17, 22

Chemerin

Expression
Mature

neutrophils
(BM and blood)

Mature
neutrophils

(BM and blood)

Immature
and aged

neutrophils

Mature and
extravasated
neutrophils

Mature and
extravasated
neutrophils

Hematopoietic
progenitors

Mature and
activated

neutrophils

Effector
functions

ROS
production

BM
mobilization
Extravasation

NET production
Aging

BM retention
BM homing

Extravasation
ROS

production

BM
mobilization

ROS
production

Regulation of
CCR1,2, and 5

expression
Checkpoint for

neutrophil
maturation

Regulation of
CXCR2

expression

CXCR2 is expressed at different levels during neutrophil maturation. It is expressed
by mature neutrophils both in BM and in blood and is downregulated in extravasated
neutrophils. CXCL1 produced by mast cells and bound to endothelial cells through the
atypical chemokine receptor 1 (ACKR1) can induce a premature CXCR2 downregulation in
neutrophils that reverse-transmigrate in the vessels. This phenomenon is increased in aged
individuals and is probably relevant for dysregulated systemic inflammation associated
with aging [114]. Finally, CXCR2 activated in an autocrine manner by CXCL2, induces
neutrophil aging [25]. Neutrophils also express the atypical receptor CCRL2, which is very
similar to chemokine receptors but does not bind chemokines. CCRL2 forms dimers with
CXCR2 and regulates CXCR2 membrane expression [115].

CXCR4 expression on neutrophils is complementary to the one of CXCR2. Immature
neutrophils in the BM express high levels of CXCR4, which, by interacting with its ligand
CXCL12, provides a retention signal for immature neutrophils and progenitors [116,117].
Accordingly, genetic deletion of CXCR4 in myeloid cells resulted in a reduction of BM neu-
trophils and an increase in circulating neutrophils [118]. On the other hand, WHIM (warts,
hypogammaglobulinemia, infections, myelokathexis) patients carrying a gain-of-function
mutation in CXCR4, have a strong reduction of circulating neutrophils [119]. In inflam-
matory conditions, CXCR4 is downregulated or cleaved, which favors the mobilization of
BM neutrophils into the blood [120]. The membrane expression of CXCR4 is upregulated
in aged neutrophils, promoting their homing back to the BM and their phagocytosis by
macrophages [116,121,122].

In inflammatory conditions and after extravasation, neutrophils completely change
their chemokine receptor repertoire. They downregulate CXCR2 levels and upregulate
the inflammatory CC receptors CCR1, CCR2, and CCR5. CCR1 is upregulated by IFNγ
and GM-CSF [123] and was found necessary for neutrophil recruitment in murine models
of renal and lung infections [124,125]. CCR2 was previously thought to be relevant only
for monocyte recruitment, but it is also important for neutrophil mobilization [126] and
recruitment to metastatic sites [77,127]. In addition to their role in neutrophil mobilization
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and recruitment, these receptors activate neutrophil phagocytic activity and ROS produc-
tion [128]. A subpopulation of CCR6+ and CCR7+ neutrophils with antigen presenting
capacity has also been described [129,130].

3.1. Role of Chemokines in Neutrophil Activities in Cancer

Neutrophilia is observed in patients with cancer, and TANs represent an important
component of the TME. High levels of circulating neutrophils, neutrophil-to-lymphocyte
ratio, and TANs have been associated with poor prognosis in most solid tumors [3,131].
Neutrophils are recruited to tumors mainly by ELR+-CXC chemokines produced by tumor
cells (e.g., CXCL8, CXCL5, and CXCL6) and by neutrophils themselves (e.g., CXCL2) or by
other cells of the tumor stroma. In addition, CXCL8 and CXCL3 are targets of oncogenic
KRAS signaling and are overexpressed in many tumors such as colon, lung, liver, prostate,
ovarian carcinoma, and melanoma [132–134].

Inhibition of CXCR1 and/or CXCR2 by pharmacological or genetic approaches showed
that limiting neutrophil infiltration resulted in reduced tumor growth in murine models of
pancreatic ductal adenocarcinoma [135], colorectal cancer [133], lung adenocarcinoma [74],
and rhabdomyosarcoma [136]. In these models, reduced tumor growth has been associated
with an inhibition of angiogenesis and a promotion of T cell response against tumors. In
addition, CXCR1 and CXCR2 play an important role in the release of NETs by TANs, which
in turn shield tumor cells from CD8 T cell and NK cell cytotoxicity (Figure 1) [64,137].

Contrasting results were reported regarding the role of CXCR2 in breast cancer. Inhi-
bition of CXCR2 in breast carcinoma models reduced the recruitment of neutrophils into
the tumor mass and increased the efficacy of chemotherapy [138,139]. On the other hand,
genetic deletion of CXCR2 in the PyMT (polyoma middle T oncogene) model of breast
cancer resulted in increased infiltration of TANs and promotion of tumor growth [140].

The role of CXCR2 and its ligands in neutrophil activation and maturation in the
tumor context is still discussed. CXCL1 induced neutrophil transition from NDN to a low-
density state (LD-NDN) with a phenotype similar to that of LDN, which could promote
tumor development [141]. In addition, combined inhibition of CXCR2 and SHP2 in non-
small cell lung cancer (NSCLC) models, selectively targeted a population of TANs with an
immunosuppressive phenotype [142]. In accordance with these results, CXCR2 inhibition
enhanced the therapeutic effect of cisplatin in an in vivo model of lung tumor, and CXCR2
expression in lung tumor patients is correlated with poor prognosis [143]. However, it was
reported that CXCR2−/− TANs have reduced capacity to kill tumor cells and increased
production of angiogenic factors [140]. Accordingly, in patients with triple-negative breast
cancer, a low level of CXCR2 was associated with a poor prognosis [144].

Opposing results were also found for the role of CXCR2 in metastasis. CXCR2 and
its ligands were described as having an antimetastatic role in renal cell carcinoma where
CXCL5 and CXCL8 produced by tumor cells can attract neutrophils with antitumor ac-
tivity [145]. In an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC),
genetic deletion of CXCR2 in the host resulted in enhanced liver metastasis associated with
the expansion of neutrophils and immature myeloid precursor cells [146]. In contrast, in a
genetically engineered mouse model of PDAC, genetic and pharmacological inhibition of
CXCR2 reduced metastasis formation and enhanced chemotherapy efficacy [147]. These
contrasting results could be explained by at least two mechanisms: first, inhibitors target
both CXCR1 and CXCR2, and the differential role of these receptors in tumor biology has
not yet been demonstrated. Second, CXCR2 is not selectively expressed by neutrophils but
is also expressed by cancer cells and by other myeloid cells, such as macrophages. Indeed,
in a prostate cancer model, inhibition of CXCR2 resulted in decreased tumor growth due to
the reeducation of tumor-associated macrophages [148].
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upregulate CXCR1 and CXCR2 that promote neutrophil mobilization to the tumor site where ELR+ 
chemokines are overexpressed. Tumor-associated neutrophils (TAN) are endowed with protumor 
activities (red boxes) and antitumor activities (green boxes) that are induced by chemokine receptor 
signaling. 
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Figure 1. Role of chemokines and chemokine receptors in neutrophil recruitment and in pro- and
antitumor activity of neutrophils. Hematopoietic stem and progenitor cells (HSPCs) and immature
neutrophils are retained in the bone marrow by CXCR4. ACKR2 is expressed by HSPCs and inhibits
neutrophil maturation and inflammatory CC chemokine receptor expression. Mature neutrophils
upregulate CXCR1 and CXCR2 that promote neutrophil mobilization to the tumor site where ELR+
chemokines are overexpressed. Tumor-associated neutrophils (TAN) are endowed with protumor
activities (red boxes) and antitumor activities (green boxes) that are induced by chemokine recep-
tor signaling.

CXCR4 is highly expressed in tumors by many cell types, and several clinical trials
with CXCR4 inhibitors are ongoing in cancer patients. However, the specific role played
by CXCR4 in neutrophil function in cancer has been investigated in a limited number of
studies. In murine models of hepatocellular carcinoma, the CXCR4 antagonist AMD3100
reduced the immunosuppressive activity of myeloid cells and increased the efficacy of the
antitumor immune response [149]. Selective deletion of CXCR4 in myeloid cells reduced
melanoma and breast cancer lung metastasis. Protection was mediated by an increased
release of BM neutrophils producing high levels of IL-18, which enhanced NK cells antitu-
mor activities [150]. In addition, CXCR4 inhibition could impact on the migration to BM of
aged neutrophils, which have been reported to sustain angiogenesis, tumor progression,
and metastasis [151].

Neutrophils can also be mobilized and recruited at the tumor site through the CCL2–
CCR2 axis. In contrast to monocytes, neutrophils recruited through this axis displayed
anti-tumor activity due to their CCR2-dependent ability to produce oxygen radicals that kill
tumor cells [77,127,152]. The expression of CC chemokine receptors in neutrophil progeni-
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tors is regulated by the atypical chemokine receptor ACKR2 expressed by hematopoietic
progenitors [77].

3.2. Targeting Chemokines and Chemokine Receptors Expressed by Neutrophils to
Promote Immunotherapy

Cancer immunotherapy represents an important strategy to treat cancer patients. In
particular, the use of immune checkpoint inhibitors (ICIs) has improved the survival of
cancer patients, including, among others, patients with melanoma, lung cancer, colorectal
cancer (CRC), and urothelial carcinoma [153]. However, only a subset of patients responds
to these therapies, and it is necessary to identify immunosuppressive mechanisms present
in the TME that may contribute to hindering ICI efficacy. Preclinical and clinical data
have suggested a role for neutrophils in these resistance mechanisms [154]. In addition,
it is emerging that interfering with the chemokine system can improve the efficiency of
immunotherapy through the reduction of the immunosuppression and the promotion of
antitumor immune responses (Table 2).

The efficacy of anti-PD-1 treatment was improved by genetic deficiency or inhibition
of CXCR1/2 in murine models of oral and lung carcinomas, rhabdomyosarcomas [136],
pancreatic adenocarcinoma [147], and prostate cancer [155]. In a mouse model of colorectal
cancer, resistance to anti-PD-1 therapy observed in KRASG12D-expressing colon tumors
could be overcome by inhibition of CXCR2 [133]. In a murine model of breast carcinoma,
CXCR1/2 inhibition enhanced the efficacy of a dual blocker of PD-L1 and TGF-β [139]. In
all these models, CXCR2 inhibition resulted in reduced TAN infiltration, accompanied by a
concomitant increase of CD8 T cells. In addition, in a mouse model of oral cancer, blocking
CXCR1 and CXCR2 with a dual inhibitor improved NK cell-based immunotherapy [156].

Prompted by these promising results obtained in preclinical models, phase I and II
clinical trials are evaluating the targeting of CXCR1 and CXCR2 in combination with anti-
PD-1 in patients with metastatic melanoma, pancreatic ductal carcinoma, and Ras-mutated
MSS metastatic colon carcinoma [157]. A phase II clinical trial (NCT04050462) is ongoing
with an anti-CXCL8 antibody (BMS-986253) in combination with nivolumab (anti-PD-1
antibody) in patients with advanced hepatocellular carcinoma (HCC).

Other clinical trials are also ongoing in cancer patients with CXCR4. It appeared that
blocking the CXCL12–CXCR4 axis promoted the release of neutrophils from the BM but
reduced their capability to infiltrate tumors. Indeed, in models of ovarian cancer, blocking
CXCR4 with the antagonist AMD3100 increased the efficacy of anti-PD-1 treatment by
reducing neutrophil infiltration [158]. Accordingly, a phase II trial (NCT02826486) combin-
ing anti-PD-1 (pembrolizumab) with a CXCR4 inhibitor (BL-8040/BKT140) in pancreatic
cancer patients resulted in reduced neutrophil infiltration and increased cytotoxic T cell
activity [159].

Finally, clinical trials are also assessing the role of CC chemokine receptors in immuno-
suppression and cancer growth mediated by TANs [154]. However, CCR5 expression by
TANs has been correlated with a better response to immunotherapy in bladder cancer pa-
tients [160]. In addition, neutrophils expressing CCR5 were reported to be able to stimulate
T cells in early stages of human lung cancer [161].
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Table 2. Preclinical data on immunotherapy of tumors combined with chemokine receptor targeting.

Target Inhibitor Immunotherapy Tumor Model Effect Refs

CXCR1
and CXCR2

CXCR1/2 inhibitor
(SX-682)

Anti PD-1 mAb and
adoptive T cell transfer

Oral and
lung carcinoma

Decreased tumor
growth and reduced
immunosuppression

[162]

Anti-mouse CXCR2
(MAB2164) Anti PD-1 mAb Rhabdomyosarcoma

Decreased tumor
growth and reduced
immunosuppression

[136]

CXCR2 inhibitor
(AZ13381758) Anti PD-1 mAb Pancreatic Ductal

Adenocarcinoma

Decreased
metastatization

and reduced
immunosuppression

[147]

SX-682 Anti-CTLA4 and
anti-PD1 mAbs

Metastatic
castration-
resistant

prostate cancer

Reduced cancer growth
and metastasis and

increased T cell infiltrate
[155]

SX682 Anti-PD1 mAb Colorectal cancer
Reduced cancer growth

and increased
T cell infiltrate

[133]

SX682 Anti-PD-L1 and TGFb Breast cancer Reduced tumor growth [139]

SX682 NK-cell-based
immunotherapy

Head and
neck carcinoma

Reduced tumor growth,
reduced neutrophil

infiltration, and
enhanced KIL

[156]

CXCR4 AMD3100 Anti PD-1 mAb Ovarian cancer
Reduced tumor growth

and reduced
neutrophil infiltration

[158]

4. Concluding Remarks

Neutrophils are an important component of the tumor microenvironment, and despite
being associated in most tumors with a poor prognosis, their role in cancer must be
reconsidered due to their plasticity and heterogeneity. Indeed, in cancer patients, the
maturation program of neutrophils is profoundly altered, and progenitors and immature
neutrophils are released in the circulation and infiltrate the tumor. In addition, depending
on the cytokine milieu, both immature and mature neutrophils can be activated and acquire
protumor or antitumor activities.

The interplay between the chemokine receptors CXCR4 and CXCR2 regulates the
circadian release of neutrophils from the bone marrow and their return when they are aged.
Genetical and pharmacological inhibition of these chemokine receptors results in decreased
tumor growth associated with a decrease in neutrophil infiltration. Inhibition of CXCR2
can block neutrophil recruitment in the TME but also their protumor effector, such as the
release of NETs, while inhibition of CXCR4 unleashes neutrophil IL-18 production, which
stimulates the antitumor activity of NK cells. In addition, both preclinical and clinal trials
indicated that targeting CXCR2 and CXCR4 increased the efficacy of immunotherapy by
reducing tumor neutrophil infiltration and promoting adaptive immune responses. On the
contrary, the role of CXCR2 in neutrophil recruitment and activation at metastatic site is
still debated, and genetic models with specific neutrophil deletion are needed. In addition,
neutrophils can be recruited at the tumor site by CC chemokines acting on CCR1, CCR2,
and CCR5, but their targeting must be carefully considered because these chemokines can
promote neutrophil antitumor activity.

In conclusion, recent findings have highlighted the possibility of targeting chemokine
receptors expressed by neutrophils to improve immunotherapy efficiency. However,
a better understanding of their effects on dynamic changes within multiple matura-
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tion and activation states of neutrophils is required to improve and identify the best
therapeutic strategies.
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