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Abstract

Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular
tyrosinase (a polyphenol oxidase) and melC1 encodes a helper protein. On the other hand, a melC-homologous operon
(melD) is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested.
Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike
tyrosinase (MelC2), is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity
to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing
spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC+

strains were more sensitive rather than less sensitive to phenolics than melC2 strains. This appeared to be due to conversion
of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD
operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably
plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant
competing microbes (lacking melD) in the phenolic-rich rhizosphere.
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Introduction

The ability to produce melanin from tyrosine is found in diverse

species of Streptomyces [1,2,3], and the production of the pigment has

been used in taxonomy of the genus. The chain of reactions leading

to melanin is initiated by a secreted copper-containing polyphenol

oxidase (PPO), ‘tyrosinase’. A typical tyrosinase catalyzes the first

two steps of oxidation: insertion of oxygen in a position ortho to an

existing hydroxyl group of the phenolic substrate (monophenol

oxidase activity) followed by oxidation of the diphenol to the

corresponding o-benzoquinone (diphenol oxidase activity).

The Streptomyces tyrosinase is encoded by a bicistronic operon,

melC. The downstream gene, melC2, encodes an apotyrosinase that

lacks a signal peptide sequence and remains inactive in the cytosol

until it is activated and secreted with the help of the product of the

upstream gene, melC1. MelC1 is required for copper incorporation,

activation, and secretion of the tyrosinase [4,5,6]. The melC operon

has been mapped to the linear chromosomes of many Streptomyces

species. It is highly unstable, being prone to spontaneous deletion

along with neighboring sequences [7,8,9,10]. This reflects a

terminal location of this operon on the linear chromosomes [10].

Although melanogenesis was discovered in Streptomyces very early and

studied extensively, the biological role of tyrosinase in Streptomyces

remains obscure. The enzyme produces melanin readily in the

presence of tyrosine and copper, but tyrosine is neither the best

substrate nor the inducer [11]. Production of melanin does not offer

protection against UV irradiation on solid medium (our observation),

raising doubt that the natural role of Streptomyces tyrosinase is melanin

production. There are hypotheses that Streptomyces tyrosinase may be

involved in degradation of lignin [12] and defense against toxic

phenolics produced by plants [13]. The melC operon of Streptomyces

griseus, which was shown to cause precocious formation of aerial

mycelium on a high-copy-number plasmid in a previous report [14],

turned out to be a melC1-melC2 homologous pair (griEF) involved in

grixazone biosynthesis [15; see later]. However, this phenomenon is

not generally observed, and is complicated by the likely involvement of

copper, which can stimulate sporulation [16,17,18].

Recently, as the complete genomic sequences for various

Streptomyces species became available, a bicistronic operon (here

designated melD) homologous to melC has been found in all these

sequenced chromosomes. The melD operons share the same helper

protein (‘melD1’)-PPO (‘melD2’) organization. Three of these

species, S. avermitilis, S. scabies, and S. griseus, which are melanogenic

(Mel+), also contain a melC operon. The fourth species, S. coelicolor,

does not have a melC operon (Mel2).

S. griseus is unique in possessing, in addition to melC and melD,

another pair of melC1 and melC2 homologs (griE and griF,

respectively) embedded in the grixazone biosynthetic gene cluster,

which participate in the biosynthesis of this secondary metabolite

[15]. Involvement of PPO in the biosynthesis of secondary
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metabolites is well known in eukaryotes. The griE-griF gene pair

does not participate in melanogenesis [14,15].

In this study we found melD in all Streptomyces species

investigated, suggesting that melD is more widespread than melC

in Streptomyces, and thus may play a more important biological role.

We therefore investigated the function of melD in protection

against phenolics. MelD2, unlike MelC2, is located intracellularly,

and has a narrower substrate specificity. A DmelD mutant

exhibited an increased sensitivity to a group of phenolics, which

were also substrates for MelD2. This supported the protective role

of MelD2 against the toxicity of these phenolics. In contrast, the

presence of melC increased the sensitivity of Streptomyces to the

phenolics. Isotope studies indicated that the presence of melC

caused increased uptake of catechol. Presumably the extracellular

MelC2 oxidizes phenolics to more hydrophobic quinones, which

enter the mycelium more efficiently. From these results we propose

that, in the phenolic-rich rhizosphere, such a detrimental effect of

secreted MelC2 is directed toward other competing microbes that

lack an intracellular defense system such as melD.

Results

Occurrence of melC and melD operons in Streptomyces
species

melD is found on the linear chromosomes of four Streptomyces

species that have been sequenced and annotated so far. Of these,

melC is found in the three species that are known to produce

melanin, S. avermitilis, S. griseus, and S. scabies. In S. avermitilis and S.

scabies, melC is in the terminal regions of the chromosomes, which

are known to be unstable, undergoing frequent deletions [19,20],

while melD lies in the ‘core region’. In S. griseus, melC is more

centrally located than melD (Fig. 1A). In S. coelicolor, which lacks

melC, melD is also in the ‘core region’.

The instability of the melC operon in S. avermitilis was

demonstrated by the isolation of 18 melanin-negative (Mel2)

colonies among 1,700 colonies grown from individual spores.

Eleven of the Mel2 mutants had lost the melC sequence (Southern

hybridization data not shown). Such instability of melC in S.

avermitilis is at about the same level as in several other species

studied [e.g., 7,8,9,10]. The seven Mel2 derivatives still possessing

melC are presumably defective in other genetic elements required

for expression of tyrosinase, as previously described in other

species [21,22,23]. All 18 Mel2 mutants still contained the melD

sequence (Southern hybridization data not shown), indicating that

melD is not involved in the production of melanin.

The finding of melD on all the sequenced Streptomyces

chromosomes suggested that it might be widespread. To test this,

a pair of primers based on conserved sequences in melD1 and

melD2 was used to attempt isolation of partial melD sequences from

six Streptomyces species, S. antibioticus, S. lividans, S. lipmanii, S.

maritimus, S. rochei, and S. tanashiensis, by PCR. All six yielded the

expected sequence spanning the C-terminus (40 aa) of MelD1 and

Figure 1. Occurrence of the melC and melD operons. A. Chromosomal locations. The approximate locations of melC and melD on the four
sequenced Streptomyces chromosomes are marked. Filled circles, terminal proteins; gray area, approximate ‘core region’ of the chromosomes. B.
Overlapping region of melD1 and melD2. The stop codon of melD1 and the initiation codon of melD2 are in bold face. C. Phylogenetic trees of MelC2
(top) and MelC1 (bottom) homologs. The sequences were aligned using ClustalX version 1.8 with the following parameters: method: accurate; matrix:
Gonnet; gap open penalty: 10; gap extension penalty: 0.1. The phylogenetic trees were generated using the Neighbor-Joining method. The bootstrap
values (in percentages) from 500 reiterations are shown. The capacity to produce melanin is indicated by filled circles, and the inability to produce
melanin by open circles.
doi:10.1371/journal.pone.0007462.g001
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the N-terminus (136–141 aa) of MelD2. All these melD sequences,

and those from the four sequenced chromosomes, showed highly

conserved 17-bp overlaps (spanning five amino acids) between

melD1 and melD2 (Fig. 1B), except for that in S. griseus, in which

melD1 and melD2 are separated by 19 bp. In contrast, melC1 and

melC2 do not overlap in the known melC operons, except that of S.

lavendulae, in which the stop codon of melC1 overlaps the initiation

codon of melC2 [24].

Phylogenetic analysis separated the MelC2 and MelD2

sequences into two distinct branches with similar topologies

(Fig. 1C top), and the MelC1 and MelD1 sequences into two

others (Fig. 1C bottom). There is a clear correspondence between

melanin production (filled circles) and the presence of melC. On the

other hand, melD is present in all species examined regardless of

their ability to produce melanin. The topologies of the MelC1/

MelD1 and the MelC2/MelD2 phylogenetic trees showed a high

degree of congruence (Fig. 1C), indicating that melC and melD have

diversified after duplication of an ancestral bicistronic operon, and

that in each operon the helper protein (melC1/melD1) and the

polyphenol oxidase (melC2/melD2) genes have co-evolved. It is

noteworthy that, in the MelC2/MelD2 phylogenetic tree, the

evolutionary distances of the MelD2s are significantly longer than

those of the MelC2s, indicating divergent evolution of the former

away from the latter (see also below). Phylogenetic analysis of the

six partial MelD1 (C-terminal 40 aas) and MelD2 sequences (N-

terminal 136 aas) also separated them from the MelC1 and MelC2

sequences, respectively (Supporting Information Fig. S1). A tblastn

search in the NCBI microbial database revealed 13 more melD and

five melC operons in 12 unannotated Streptomyces chromosome

sequences. Interestingly, one of these 12 chromosomes (Streptomyces

sp. C) contains two melC and two melD operons. The MelC2 and

MelD2 sequences encoded by these operons were also distinctly

separated in phylogenetic analysis (Supporting Information, Fig.

S2).

The S. griseus genome is unique in containing a third melC-

homologous operon, the griE-griF pair, in the grixazone biosyn-

thetic gene cluster. In the phylogenetic trees, both GriF (MelC2

homolog) and GriE (MelC1 homolog) lie outside the MelC2 and

MelD2 and the MelC1 and MelD1 branches, respectively

(Fig. 1C). Interestingly, MelC1, MelC2, MelD1, and MelD2 of

S. griseus also occupy a boundary position within the respective

clusters separated by a long evolutionary distance. This hints at a

rapid evolution of these homologs in this S. griseus strain (IFO

13350, a Waksman and Henrici 1948 strain).

MelD2 of S. coelicolor is located intracellularly and lacks
typical tyrosinase activity

MelC1 of S. antibioticus contains a Tat signal peptide at the N-

terminus [25], and is secreted by the twin-arginine translocation

(Tat) pathway [25], a major secretion system in Streptomyces [26].

MelC2 is secreted by hitchhiking on MelC1 as a complex [6].

MelD1 of S. coelicolor does not possess a Tat signal peptide. To

determine the cellular location of MelD2, a His6 tag was added to

the C-terminus of melD2 on the S. coelicolor M145 chromosome.

HY2, which contained such His-tagged MelD2, was cultured in

TSB liquid medium, harvested, and sonicated. The culture was

separated into cytosolic, membrane, and extracellular fractions by

centrifugation. Immunoblot using anti-polyhistidine antiserum

showed that the His-tagged MelD2 was present mainly in the

membrane fraction and nominally in the cytosol, but undetectable

extracellularly (Fig. 2A). In comparison, MelC2 was detected by

anti-MelC2 antiserum in all three fractions of S. avermitilis, S.

antibioticus, and M145 harbouring pIJ702-117, containing the melC

operon from S. antibioticus [27] (Fig. 2B). The extracellular

presence of MelC2 in these cultures was confirmed by enzymatic

assay using DOPA as substrate (data not shown). In contrast, none

of the cellular fractions of M145 and HY69 exhibited DOPA

oxidization activity, suggesting that DOPA was not a substrate for

MelD2.

DmelD mutants are supersensitive to catechol
To investigate the biological role of melD, a deletion mutation

(DmelD) was created in S. coelicolor M145 by replacing the melD

operon by the apramycin resistance gene aac(3)IV through

homologous recombination (Fig. 3A). A mutant, designated

HY69, was isolated, in which replacement of melD was confirmed

by restriction and hybridization analysis (Fig. 3B). HY69 was

tested for increased sensitivity to nine phenolic compounds by

counting survivors on R5 medium containing the phenolics

(Fig. 4A). Compared to M145, HY69 exhibited an increased

sensitivity to catechol, 4-methylcatechol, phenol, gallic acid, and

ferulic acid, but not to caffeic acid, 3,4-dihydroxybenzoic acid, o-

aminophenol, and salicylic acid. These results suggested that melD

Figure 2. Cellular locations of MelD2 and MelC2. Samples of
10 ml of Streptomyces cultures grown to late log phase in TSB were
harvested. Cytosolic (C), membrane (M), and extracellular (E) fractions of
the cultures were fractionated and the proteins separated by SDS gel
electrophoresis. MelD2-His and MelC2 proteins were detected by
immunoblotting using anti-polyhistidine (A) and anti-MelC2 (B)
antibodies, respectively. B19 is a DmelC mutant of S. avermitilis isolated
in this study. YU5 is a DmelC mutant of S. antibioticus isolated previously
[10]. M145/pIJ702-117 is M145 harbouring pIJ702-117, a high-copy-
number plasmid containing the melC operon from S. antibioticus under
a strong promoter [27].
doi:10.1371/journal.pone.0007462.g002
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was involved in protection against a specific group of phenolic

compounds.

To complement the melD defect in HY69, plasmid pLUS702-

medD was constructed by substituting the melC operon on pIJ702-

117 (see below) with the melD operon of M145 containing a His6-

tagged melD2 and inserting the apramycin resistance gene (Fig. 5A).

pLUS702medD was introduced into HY69 by transformation,

and the expression of His6-tagged MelD2 was confirmed by

immunoblot using the anti-polyhistidine antibody (Fig. 5B). On R5

medium, HY69/pLUS702melD exhibited the same level of

resistance to catechol as M145 (Fig. 5C, open squares). The

results indicated that His6-tagged MelD2 was functional and

complemented the melD defect in HY69. Complementation with a

single copy of melD (without the His6 tag) inserted into the

chromosome of HY69 also restored its catechol resistance to the

wild-type level (data not shown).

melC+ strains are supersensitive to phenolic compounds
To test whether melC was also involved in resistance to phenolic

compounds, M145/pIJ702-117 was compared to M145 for

sensitivity to them on R5 medium. Surprisingly, M145/pIJ702-

117 was more sensitive to all nine phenolic compounds tested

(Fig. 4A, filled triangles). The test was extended to S. avermitilis and

S. antibioticus by comparing catechol sensitivity of the wild types

and the spontaneous DmelC mutants, S. avermitilis B19 and S.

antibioticus YU5. The result (Fig. 4B) showed that the DmelC

mutants were more resistant to catechol. However, in both B19

and YU5, DmelC was part of a large unmapped deletion. To

confirm the effect of the DmelC mutation, a complementation test

was performed by inserting the melC operon into the chromosome

of YU5. The melC+ derivative, YU5-117, exhibited similar

sensitivity to catechol as the wild type (Fig. 4B, filled triangles).

These results confirmed that, in contrast to the protective role of

melD, melC increased the sensitivity of Streptomyces to catechol.

Induction of the expression of melC requires different amino

acids depending on the source of the operon and the hosts

[28,29,30]. The above tests were performed on R5 medium,

which gave strong expression of MelC2 as judged by a high level of

melanin production. On minimal medium supplemented with

casamino acids and trace elements (MMT), M145/pIJ702-117

produced relatively little melanin, and the culture was only slightly

more sensitive to catechol than M145 (Fig. 4C, right panel). On

minimal medium without amino acid supplementation (MM), the

melC operon was not expressed (no melanin production), and there

was no difference in catechol sensitivity between M145/pIJ702-

117 and M145 (Fig. 4C, left panel). These results supported the

role of melC in increasing sensitivity to catechol.

The deleterious effects of the deletion of melD and the presence

of melC on the level of phenolic resistance are additive.

Introduction of pIJ702-117 into HY69 further increased the

sensitivity to catechol (Fig. 5C, open triangles).

A model is proposed for the opposite effects of melC and
melD

To account for the opposite effects of melC and melD on

sensitivity to phenolics, we proposed a working model. The

toxicity of the phenolics to Streptomyces is at least partly due to their

participation in the spontaneous quinone-hydroquinone redox

cycle (Fig. 6). In this cycle, copper-catalyzed oxidization of

hydroquinones to quinones produces H2O2 and reactive oxygen

species (ROS), which damage DNA [31,32,33] in the forms of

strand breakage and base modifications [33]. The quinones in turn

are reconverted also non-enzymatically by NADH2 to hydroqui-

nones. Of the nine phenolics tested here, five were diphenols and

triphenols, and presumably may enter the redox cycle readily. The

other four (phenol, o-aminophenol, ferulic acid, and salicylic acid),

being monophenols, presumably were oxidized spontaneously or

enzymatically (by MelC2) to diphenols and/or quinones before

entering the redox cycle.

We propose that intracellular MelD2 converts hydroquinones to

quinones, and, in doing so, reduces or bypasses the spontaneous

ROS-generating oxidation catalyzed by Cu2+. This would explain

the higher phenolic resistance of the melD+ strains compared to the

melD2 strains. The opposite effect by melC may be attributed to

conversion of the extracellular phenolics (by secreted MelC2) to

more hydrophobic quinones, which are taken up by the mycelium

more efficiently, and enter the deleterious redox cycle. Although

MelC2 is also present intracellularly, it is in an inactive form [5],

and presumably has no effect on phenolic toxicity.

Testing the model (1): The substrate specificity of MelC2
and MelD2 correspond to their selective effects on
phenolic sensitivity

The model predicts that MelD2 would oxidize only the

phenolics to which the DmelD strain HY69 was supersensitive,

Figure 3. melD deletion (DmelD) mutant of S. coelicolor. A. Maps
of the melD operon and the DmelD::aac(3)IV mutation. The melD operon
on the M145 chromosome and the surrounding genes are shown as
open arrows. In the DmelD::aac(3)IV mutation, the melD operon is
replaced by the apramycin resistance cassette (filled box) containing
aac(3)IV (white arrow). The extent of the hybridization probes, A and B,
is indicated by the filled boxes. The restriction sites for NcoI (Nc) and the
sizes of the expected hybridizing fragments are indicated. B. Southern
hybridization analysis of the DmelD mutant. Genomic DNA from M145
and HY69 was digested with NcoI, separated by electrophoresis, and
hybridized with probes A (left panel) and B (right panel).
doi:10.1371/journal.pone.0007462.g003
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and MelC2 would also oxidize the phenolics to which the melC+

strains were sensitive. The cytosolic fraction of M145, which did

not possess a melC operon, was used to test the enzyme activity of

MelD2 with the cytosolic fraction of HY69 used as a negative

control. For MelC2 enzyme activity, the extracellular fractions of

M145/pIJ702-117 and wild-type S. antibioticus were tested with

those of M145 and YU5 used as the respective negative controls.

Six phenolics were tested spectrophotometrically for oxidization

by MelD2 and MelC2. The results (Table 1) showed that MelD2

in M145 cytosol possessed catechol-oxidizing activity (2.6 unit/mg

protein). In contrast, the HY69 cytosol contained essentially no

activity (,0.04 units/mg protein). Significant oxidation activities

by MelD2 were also detected toward the other three compounds,

to which HY69 was supersensitive (phenol, 4-methylcatechol, and

gallic acid), but not toward caffeic acid and o-aminophenol, to

which HY69 was not supersensitive. Thus, consistent with our

model, all the phenolics that are known to be substrates of MelD2

exerted increased toxicity to the DmelD mutant (Table 2).

The same six phenolics were also tested for substrates for MelC2

in the extracellular fractions of M145/pIJ702-117 and S. antibioticus,

and the results (Table 1) showed that MelC2 could oxidize all of

them, in agreement with previous published results [34,35,36,37].

Another phenolic, 3,4-dihydroxybenzoic acid, which was not tested

here, was also reported to be the substrate for MelC2 [34]. All these

phenolics showed increased toxicity toward melC+ strains (Table 2).

These results also supported our model.

Testing the model (2): Catechol uptake is facilitated by
expression of melC

Our model also predicts that the presence of functional melC

facilitates the uptake of catechol into the mycelium. To test this,

[14C]-labeled catechol was added to M145 and M145/pIJ702-

117 growing in R5 liquid medium at late log phase. The M145/

pIJ702-117 culture produced melanin in this medium, indicating

secretion of active MelC2. After 15 minutes of incubation with

catechol, the mycelium was collected by filtration, and the uptake

of 14C radioactivity was measured by scintillation counting. The

results showed that 14C radioactivity uptake by M145/pIJ702-

117 was about three-fold higher than that by M145 (Fig. 7A,

filled bars). Presumably much of the transported 14C radioactivity

was in the form of 1,2-benzoquinone, which was not available for

testing due to its high instability in aqueous solution [38].

When M145 and M145/pIJ702-117 were grown in liquid MM,

melC was not expressed and there was no significant difference in

Figure 4. Sensitivity of Streptomyces to phenolic compounds. Diluted spore suspensions were plated on medium containing various
concentrations of the phenolic compounds and incubated at 30u. After 4 days, the surviving colonies were counted. Survival levels below the lowest
scales in the graph are indicated by the arrows. The horizontal bars represent standard deviations. A. Effect of melC and melD in S. coelicolor. Medium:
R5. Filled circles, M145; open circles, HY69; filled triangles, M145/pIJ702-117. B. Effect of melC in S. avermitilis and S. antibioticus. Medium: R5. Left
panel, S. avermitilis (filled circles, wild type; open circles, DmelC mutant B19). Right panel, S. antibioticus (filled circles, wild type; open circles, DmelC
mutant YU5; filled triangles, YU5-117, a YU5 derivative containing an insert of melC from pIJ702-117). C. Effect of media. Left, MM; Right, MMT. The
symbols are as in A.
doi:10.1371/journal.pone.0007462.g004
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catechol uptake by the two cultures (open bars). In MMT, melC

was weakly expressed and catechol uptake by M145/pIJ702-117

was twice that by M145 (hatched bars). These results supported

the notion that melC expression was essential for increased catechol

uptake. HY69 exhibited the same level of catechol uptake in all

three media, similar to those exhibited by M145. This indicated

that melD plays no significant role in catechol uptake.

As on solid R5 medium, growth (measured in dry weight to

circumvent the interference of optical density measurement by

melanin) of M145/pIJ702-117 and HY69 in liquid R5 medium

also showed higher sensitivity to catechol than M145 (Fig. 7B).

These results supported the notion that MelC2 increased catechol

uptake, resulting in elevated sensitivity.

Discussion

The PPOs encoded by the melC-homologous operons in

Streptomyces spp. may be classified into three general types

(Table 3), each with different cellular locations, enzymatic

functions, biological roles, and occurrences. Type I is represented

by MelD2, which is mainly membrane bound, and is shown to

play a role in protecting Streptomyces from damages by a group of

phenolics. The melD operon is probably universal in Streptomyces.

Besides our identification of this operon in the ten species, Kirby

(2006), using microarray analysis, also identified sequences

homologous to melC1 and melC2 in three actinomycetes, Streptomyces

cattleya, Streptomyces rimosus, and Streptosporangium roseum. Because

these species do not produce melanin, these homologs are likely to

be melD1 and melD2. Moreover, Kawamoto et al. [24] discovered

another melC-hybridizing sequence in melC deletion (Mel2)

mutants of S. lavendulae. This melC homolog is also likely to be a

melD operon.

Type-II PPOs of Streptomyces, represented by MelC2, are found

in a proportion of Streptomyces species. Unlike the other two types,

MelC2 is secreted. Type III has only one example, GriF in S.

griseus IFO 13550, which is intracellular, and, unlike the other two

types, is involved in biosynthesis of a secondary metabolite

(grixazone).

In all three types, the gene encoding the PPO is preceded by a

gene encoding a helper protein. In melC, this helper protein

(MelC1) is required for activation (insertion of copper) and

secretion of the PPO. It is very likely that the helper protein is also

required for activation of the other two types. Interestingly, such

action of the helper proteins does not result in secretion of the

Type-I and Type-III enzymes. In this study, MelD2 was found to

be mostly associated with the membrane. The biochemical and

mechanistic significance of this association is not clear.

The three types of PPOs exhibit slightly different substrate

specificities (Tables 3, 4). Firstly, while MelC2 and MelD2 possess

both monophenol and diphenol oxidase activities that are typical

Figure 5. Complementation and additivity studies. A. Complementation vector pLUS702melD. This plasmid is derived from pIJ702-117, the
melC operon of which was replaced by the melD operon of S. coelicolor with a C-terminal his6-tagged melD2 (as in HY2), and the apramycin resistance
gene inserted. B. Expression of melD on pLUS702melD. An overnight culture of S. lividans/pLUS702melD in TSB was collected and sonicated, and the
proteins separated by SDS-PAGE. The presence of His6-tagged MelD2 was detected by immunoblot using anti-polyhistidine antiserum. ‘-’ S. lividans
1326; ‘+’, S. lividans 1326 harbouring pLUS702melD. C. Effect of genetic complementation and additivity. The sensitivity test was performed as in
Fig. 4. Filled circles, M145; open circles, HY69; filled triangles, M145/pIJ702-117; open triangles, HY69/pIJ702-117; filled squares, M145/pLUS702melD;
open squares, HY69/pLUS702melD. The horizontal bars represent standard deviations.
doi:10.1371/journal.pone.0007462.g005

Figure 6. Model for the effect of melC and melD on sensitivity to
phenolic compounds. The intracellular spontaneous quinone-hydro-
quinone redox cycle is depicted on the left. The proposed oxidation of
hydroquinones to quinones by MelD2 is indicated by the vertical thick
arrow. Extracellularly, the relative permeability of the hydroquinones/
phenolics and the quinones is represented by the thin and thick
horizontal arrows, respectively. Conversion of the phenolics/hydroqui-
nones to quinones by MelC2 is indicated by the vertical thick arrow. See
text for further details.
doi:10.1371/journal.pone.0007462.g006
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for tyrosinases, GriF lacks the monophenol oxidase activity [15].

Secondly, while GriF [15] and MelC2 [37] oxidize o-aminophe-

nols, MelD2 does not oxidize o-aminophenol (this study). Thirdly,

among these homologs, MelC2 is unique in being able to convert

tyrosine to melanin. This may be not surprising, because

intracellular oxidization of tyrosine by MelD2 or GriF would

probably be detrimental to the cells.

S. griseus is unusual in containing all three types of melC-

homologous operons, melC, melD, and griEF. Interestingly, the

proteins encoded by all these operons in S. griseus exhibit the

longest evolutionary distances, and greatest diversification away

from the other homologs (Fig. 1C). Moreover, unlike that in the

other three sequenced species, melD is more distally located than

melC on the S. griseus chromosome, possibly suggesting a relatively

recent rearrangement or translocation. The reason for such

diverse and rapid evolution of the melC-homologous operons in

this classical strain [39], which has been studied extensively in

laboratories worldwide for more than six decades, is not clear.

Phylogenetic analysis has shown that MelD2s have evolved

faster than MelC2s. This is supported by analysis of rates of

synonymous and non-synonymous substitution [Ka/Ks analysis;

40]. The average Ka/Ks ratios among the MelC1, MelC2,

MelD1, and MelD2 sequences are 0.2860.09, 0.3760.02,

0.2560.03, and 0.2460.06, respectively. In contrast, the average

Ka/Ks ratios between MelC1s and MelD1s and between MelC2s

and MelD2s are significantly larger (0.8560.19 and 0.6860.09,

respectively). Reducing the window size to 50 sites, two segments

(aa 30–60 and 130–150) of S. coelicolor MelD2 exhibit Ka/Ks ratios

reaching 1.4. Superimposing on the tyrosinase structure of

Streptomyces [41], the first segment contains two of the six histidine

residues involved in the two dinuclear copper centers of tyrosinase.

The structure of this substrate-binding pocket presumably

determines the substrate specificity [41]. Therefore, it is likely

that the positive selection exerted here during evolution resulted in

alteration of substrate specificity of MelD2.

The opposite effects of MelC2 and MelD2 on the sensitivities of

Streptomyces to phenolic compounds were initially surprising. In

particular, the effect of MelC2 on phenolic sensitivity is opposite to

the proposed defense role of this enzyme against plant phenolics

[13]. The distinct cellular locations of these two PPOs lead to a

biochemical model that account for their opposite effects. This

model, that intracellular MelD2 protects the cells by interfering

with the spontaneous ROS-generating quinone-hydroquinone

redox cycle, and extracellular MelC2 facilitates the uptake of the

phenolics by converting them to more hydrophobic quinones, is

supported by experimental results reported here.

Table 1. Substrate specificity of MelC2 and MelD2.

Enzyme activity (units/mg protein)

Strains Catechol 4-Methylcatechol Gallic acid Caffeic acid o-Aminophenol Phenol

Intracellular (MelD2)1

M145 2.660.1 1.260.2 1.760.3 0.260.0 5.960.1 0.960.1

HY69 0.060.0 0.160.0 0.460.1 0.160.0 6.460.1 0.460.0

Extracellular (MelC2)2

M145 0.660.1 0.760.1 0.860.2 0.960.1 2.760.6 0.560.1

M145/pIJ702-117 24.462.3 13.463.3 54.765.7 11.161.7 60.064.5 6.260.8

S. antibioticus WT 14.061.4 11.062.6 48.966.4 9.360.5 64.865.4 7.160.8

S. antibioticus YU5 1.460.4 0.760.2 1.160.2 0.460.1 2.360.6 1.260.2

1The intracellular proteins in these strains, which did not contain MelC2, were assayed for MelD2 activities.
2The extracellular proteins in these strains, which did not contain MelD2, were assayed for MelC2 activities.
doi:10.1371/journal.pone.0007462.t001

Table 2. Phenolic substrates of MelC2 and MelD2 and effect on toxicity.

MelC2 MelD2

Compound Substrate Increased toxicity Substrate Decreased toxicity

Catechol + 1, 2, 4 + + +

Phenol + 2, 4 + + +

4-Methylcatechol + 2, 3 + + +

Gallic acid + + + +

Caffeic acid + 1 + 2 2

o-aminophenol + 4 + 2 2

Ferulic acid N.D. + N.D. 6

3,4-Dihydroxybenzoic acid + 1 + N.D. 2

Salicylic acid N.D. + N.D. 2

All enzyme activities were determined in this study except for those marked ‘N. D.’ (not determined) and the MelC2 activity on 3,4-dihydroxybenzoic acid, which was
based on the reference. References: 1. [34]; 2. [35]; 3. [36]; 4. [37]. ‘6’, slight effect.
doi:10.1371/journal.pone.0007462.t002
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Why is MelC2 secreted and MelD2 is not? All MelC2 sequences

lack a signal peptide. MelC2 of S. antibioticus was shown to be

secreted via the Tat pathway by complexing with MelC1 [6],

which contained a signal peptide and a Tat motif [25]. Proteins

secreted by the Tat pathway possess a signal peptide and a

consensus Tat motif within the signal peptide. Analysis using the

Tat signal peptide sequence prediction program TatP [42]

revealed a signal peptide and a Tat motif in the MelC1 sequences

of eight other species except S. griseus, which possess a Tat motif

but no signal peptide (Supporting Information, Table S1). This

supports the extracellular locations of MelC2 in these species

except for S. griseus. Of the three melC homologous operons in S.

griseus, griEF is not melanogenic. It is not clear whether the melC or

the melD operon is responsible for melanogenesis in S. griseus.

MelC1 possesses a Tat motif without a signal peptide sequence,

and MelD1 possesses a signal peptide sequence without a Tat

motif.

Analysis using TatP [42] shows that MelD1 of S. coelicolor

contained a predicted signal peptide but no Tat motif. This is

consistent with the intracellular location of MelD2. The S. griseus

MelD1 also contains a predicted signal peptide but no Tat motif,

and the S. avermitilis MelD1 contains neither a signal peptide nor a

Tat motif. Thus, these two MelD2 proteins are probably also not

secreted. On the other hand, the S. scabies MelD1 contains both a

predicted signal peptide and a Tat motif. It is possible that this

represents an exception for this pathogenic Streptomyces or a false-

positive prediction by the program. The unavoidable false

positives and false negatives in TatP and other related programs

[42] demands experimental confirmation for any prediction.

The N-terminal sequences of the MelC1 proteins spanning the

signal peptide sequences are relatively conserved, whereas there

are wide divergencies among the MelD1 sequences as well as

between the MelC1 and MelD1 families. This agrees with the

phylogenetic analysis (Fig. 1C), which shows that MelD1 proteins

have evolved faster away from MelC1 proteins. The wide

divergence of the signal sequences in MelD1 proteins probably

reflect evolutionary changes to keep MelD2 intracellular.

Of the five phenolics (catechol, phenol, gallic acid, ferulic acid,

and 4-methylcatechol), against which melD provides protection,

catechol, gallic acid, and ferulic acid are universally present in

plants, and Streptomyces is expected to be exposed to them

frequently in nature. The universal presence of melD in Streptomyces

and its location in the conserved ‘core region’ on most Streptomyces

chromosomes speak for its biological importance. Against the

other four phenolics tested, caffeic acid, 3,4-dihydroxybenzoic

acid, o-aminophenol, and salicylic acid, melD offers no protection.

Two other plant phenolics, 3,5-dimethoxy-4-hydroxyacetophe-

none and catechin dihydrate, did not inhibit the growth of

Streptomyces strains studied here (disc assay results not shown).

Protective PPO systems are also found in some other bacteria.

In Rhizobium spp., a ‘tyrosinase’ gene, melA, is plasmid-borne. In R.

leguminosarum, it exists on a ‘symbiotic’ (sym) plasmid together with

genes involved in nodulation (nod) and nitrogen fixation (nif) in the

root nodules. In R. meliloti GR4, it exists on a non-symbiotic

plasmid [43]. These Rhizobium tyrosinases, however, are only

remotely similar to Streptomyces MelC2 in amino acid sequence

(about 30% identity) and are considerably larger (609 aas). Unlike

the Streptomyces melC2/melD2 genes, Rhizobium melA is not associated

with a gene (melC1/melD1) encoding a helper protein.

The Rhizobium tyrosinase is intracellular in young cells and

produces melanin pigment extracellularly when it is released from

the cells (by detergent treatment or autolysis in old colonies). The

intracellular location of Rhizobium tyrosinase suggests that it plays

the same role as Streptomyces MelD2 in protecting the cells from

damage by phenolics. Consistent with this view, melA mutants of R.

etli are more sensitive to H2O2, and less efficient in forming

nodules [44]. Furthermore, E. coli expressing the R. etli melA gene

exhibits increased resistance to p-hydroxybenzoic acid, vanillinic

Figure 7. Effect of melC and melD on catechol uptake by
Streptomyces. A. Catechol uptake. [14C]-catechol was added to a final
concentration of 62.5 mM (1.786106 dpm/mmole) to cultures growing in
different liquid media at OD600 of 0.4. After 15 min, 20 ml of the
cultures was removed and harvested on a filter and radioactivity
determined. Media: solid bars, R5; open bars, MM; hatched bars, MMT.
The horizontal bars represent the standard deviations. B. Sensitivity of
liquid cultures. Catechol was added to a final concentration of 1 mg/ml
to the cultures growing in R5 at the time indicated (arrow). At various
later times, 3 ml of each culture was removed, and the dry weight was
determined by filtration and drying at 60u for 1.5 h. Filled symbols,
catechol added; open symbols, no catechol added. Circles, M145;
triangles, M145/pIJ702-117; squares, HY69.
doi:10.1371/journal.pone.0007462.g007
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acid, and syringic acids, which are phenolics often present in the

soil [44].

The biological function of melC in Streptomyces is unclear. The

substrate for melanin production, tyrosine, is neither the best

substrate among the phenolics nor the inducer for melC [11]. More

likely, melC is directed toward toxic phenolics produced by plants

rather than tyrosine. In the presence of the toxic phenolics, the

detrimental effect it exerts on the hosts can hardly offer a selective

advantage. We speculate that the conversion of the phenolics to

more permeable quinones by MelC2 is used to fend off other

competing soil microbes lacking a protective system like melD. This

would provide a competitive advantage for melC+ Streptomyces in the

rhizosphere, where phenolics are abundant.

Both phenolics and PPOs are produced by plants and are

important defenses against pathogens and pests. Production of

PPOs in plants is induced by abiotic and biotic stresses, such as

wounds, pathogen infection, and pest invasion [45,46]. That

oxidation of these phenolics by PPO is involved in plant defense

was reported recently [47,48]. Over-expression of PPO in

transgenic tomato plants increased resistance to infection by

Pseudomonas syringae and suppressed growth of the bacterium [48],

whereas down regulation of PPO expression by antisense RNA

resulted in increased susceptibility to bacterial infection [47].

Several models have been proposed for the changes in

susceptibility of infection, and it is possible that a MelC2 scenario

is at play here: i.e., the relatively more hydrophobic quinones

produced by PPO from the phenolics enter the infecting bacteria

more efficiently.

Materials and Methods

Bacterial strains and culture conditions
Bacterial cultures and plasmids used in this study are listed in

Table 4. DNA restriction, electrophoresis, hybridization, cloning,

transformation, and other general biological and molecular

procedures were according to Sambrook et al. [49] for E. coli

and Kieser et al. [50] for Streptomyces. Liquid media MM, MMT,

R5 and TSB for Streptomyces cultures were described in Kieser et al.

Table 3. Three types of Streptomyces PPOs and tentative distinctions.

Type Enzyme Location
Monophenol oxidase
activity

Diphenol oxidase
activity

o-aminophenol oxidase
activity Function Occurrence

I MelD2 Intracellular + + 2 Detoxification Universal

II MelC2 Extracellular + + + Competition? Sporadic

III GriF Intracellular 2 + + Biosynthesis Rare

doi:10.1371/journal.pone.0007462.t003

Table 4. Bacterial strains and plasmids used in this study.

Designation Characteristics/genotype Source/Reference

A. Bacterial strains

E. coli ET12567/pUZ8002 Non-methylating plasmid donor for intergeneric conjugation with Streptomyces [60]

S. antibioticus IMRU 3720 Wild type [57]

YU5 DmelC mutant [10]

YU5-117 YU5 containing pSET152-117 inserted at the WC31 attB site This study

S. avermitilis Wild type Haruo Ikeda

B19 DmelC mutant This study

S. coelicolor A3 (2)

M145 Prototrophic, SCP12 SCP22 [59]

HY2 M145 with a his6-tagged melD2 This study

HY69 DmelD mutant of M145 This study

S. lipmanii ATCC 27357 Wild type CCRC*

S. lividans 1326 Wild type, SLP2+, SLP3+ [58]

S. maritimus Wild type [55]

S. tanashiensis ATCC 23967 Wild type [55]

S. rochei 7434-AN4 Wild type [56]

B. Plasmids

pIJ702-117 Derivative of pIJ702 containing melC of S. antibioticus under a strong promoter [27]

pSET152-117 Derivative of pSET152 containing melC of pIJ702-117 This study

pLUS702melD pIJ702-117 with melC substituted by melD and an inserted aac 3(IV) This study

pCR2.1TOPO E. coli cloning vectors, kanamycin and ampicillin resistance, lacZa Invitrogen

*Culture Collection and Research Center (CCRC), Food Industry Research and Development Institute, Hsinchu, Taiwan.
doi:10.1371/journal.pone.0007462.t004
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[50]. MM is minimal medium. MMT is MM supplemented with

casamino acids, tyrosine, and ‘Tiger Milk’ (an amino acid

cocktail). For dry weight determination, mycelium from 3-ml

aliquots was collected on 3MM filter paper, washed with ice-cold

water, dried at 60u for 1.5 h, and the dry weights determined.

Isolation of melD operon sequences
Partial melD operon sequences were isolated from genomic

DNA by PCR using a pair of degenerate primers based on the

conserved consensus sequences in the corresponding regions in

melD of S. coelicolor, S. avermitilis, S. scabies, and S. griseus (Forward

primer: GACCACTACCGGTCGTACCC[G/C]A; reverse

primer: CCAGAACAC[C/G]GGGTCGTTGACG). The PCR

products were sequenced.

Phylogenetic analysis
Amino acid sequences of MelC1/MelD1 and MelC2/MelD2

were aligned using ClustalX version 1.8 [51]. The phylogenetic

trees were constructed using the Neighbor-Joining method.

Creation of melD knock-out mutants of Streptomyces
DmelD deletion mutant of S. coelicolor M145, in which the melD

operon was replaced by the apramycin resistance gene, aac 3(IV),

was created by homologous recombination. E. coli plasmid

pCR2.1TOPO (Invitrogen) was used to construct a suicide vector

that contained a 4.0-kb sequence from S. coelicolor spanning the

melD operon, in which the melD operon was replaced by the aac

3(IV)-oriT cassette [52] (Fig. 3A). This plasmid was transferred into

S. coelicolor via conjugation with E. coli ET12567/pUZ8002

harboring this plasmid. Apramycin resistant and kanamycin

sensitive colonies were selected and confirmed by southern

hybridization as DmelD::aac 3(IV).

Assay for catechol uptake by Streptomyces cultures
Spores were cultured in R5, MM, and MMT at 30u until the

OD600 reached 0.4. A 20-ml sample of culture was mixed with

20 ml Cu2+ and 1.25 mmole [14C]-labeled catechol (80 mCi/nmole)

and incubated for 10 min at 30u, and the mycelium was collected

on glassfiber filters (Whatman, GF/C), washed with ice-cold water

and dried. Radioactivity was measured in a scintillation counter.

Immunoblot detection of MelC2 and MelD2
MelD2-His6 fusion proteins were detected by immunoblot using

monoclonal anti-polyhistidine antibody (Sigma) as the primary

antibody and anti-mouse antibody as the secondary antibody.

MelC2 proteins were detected by immunoblot using anti-MelC2

antibody as the primary antibody and anti-rabbit antibody as the

secondary antibody as described previously [6].

Determination of sensitivity to phenolic compounds
Dilutions of Streptomyces spores were spread on R5 medium

containing various concentrations of phenolic compounds. After

incubation at 30u for 4 days, the surviving colonies were counted.

Determination of polyphenol oxidase activity
The PPO activities against phenolics were assayed spectropho-

tometrically under the following conditions. DOPA: 0.1 M sodium

phosphate buffer (pH 7.0), 5 mM CuCl2 and 15 mM DOPA at

475 nm. Catechol: 0.1 M sodium phosphate buffer (pH 7.0),

5 mM CuCl2 and 4.5 mM catechol at 410 nm. Phenol: 0.1 M

sodium phosphate buffer (pH 7.0), 5 mM CuCl2 and 2.6 mM

phenol at 410 nm [34]. o-aminophenol: 50 mM sodium phosphate

buffer (pH 7.0), 5 mM CuCl2, and 5 mM o-aminophenol at

433 nm [15]. 4-methylcatechol: 50 mM sodium phosphate buffer

(pH 7.0), 5 mM CuCl2, and 4.0 mM 4-methylcatechol at 400 nm

[36]. Gallic acid:50 mM sodium phosphate buffer (pH 7.0), 5 mM

CuCl2, and 7.35 mM gallic acid at 385 nm [modified from 53].

One unit of activity is defined as the amount causing an increase of

0.01 in absorbance per minute.

Bioinformatic analyses
The presence of Tat signal peptides was predicted using TatP

(http://www.cbs.dtu.dk/services/TatP/) [42]. Ka/Ks analysis [40]

was performed using DnaSP version 4.0 [54] on a PC running

Windows XP.

Supporting Information

Figure S1 Phylogenetic tree of MelC2 and MelD2 proteins

based on the first 310 aas. Filled circles indicate melanin

production catalyzed by the enzyme, and open circles indicate

lack of melanin production phenotype by the enzyme.

Found at: doi:10.1371/journal.pone.0007462.s001 (0.08 MB

PDF)

Figure S2 Phylogenetic tree of MelC2 homologs. The following

protein sequences are from NCBI annotated databases with accession

mumbers. MelC2 from Streptomyces: S. clavuligerus ATCC 27064,

ABJH01000362; Streptomyces sp. C (1), ACEW01000543; Strepto-

myces sp. C (2), ACEW01000650; S. viridochromogenes DSM 40736,

ACEZ01000111; S. sviceus ATCC 29083, ABJJ01000408. MelD2

from Streptomyces: S. lividans TK24, ACEY01000212; S. sviceus

ATCC 29083, ABJJ01000469; S. viridochromogenes DSM 40736,

ACEZ01000014; S. ghanaensis ATCC 14672, ABYA01000366; S.

griseoflavus Tu4000, ACFA01000589; Streptomyces sp. SPB78,

ACEU01000672; Streptomyces sp. SPB74, ABJG01000510; Strepto-

myces sp. C (1), ACEW01000540; Streptomyces sp. C (2),

ACEW01000097; S. clavuligerus ATCC 27064, ABJH01000487; S.

pristinaespiralis ATCC 25486, ABJI01000520; S. rishiriensis MJ773-

88K4, ABX71084; S. roseosporus NRRL 11379, ABYX01000271; S.

roseosporus NRRL 15998, ABYB01000364; S. tenjimariensis ATCC

31603, CAI59989. Homologs from other bacteria: Rubrobacter

xylanophilus DSM 9941, NC_008148; Frankia sp. EAN1pec,

NC_009921; Frankia alni ACN14a, NC_008278; Frankia sp. CcI3,

NC_007777. The remaining (indicated by an asterisk) are unannotated

sequences identified in tblastn search of microbial genomes. The

construction of the tree was as described in Fig. 1

Found at: doi:10.1371/journal.pone.0007462.s002 (0.14 MB

PDF)

Table S1 Predicted Tat signal peptide and motifs in MelC1 and

MelD1 proteins based on TatP (version 1.0). * No Tat motif

pattern (-RR-X-[FGAVML][LITMVF]) was found, but this

similar sequence is present.

Found at: doi:10.1371/journal.pone.0007462.s003 (0.07 MB

PDF)
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