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Genome-wide association studies (GWAS) have revealed thousands of genetic loci that
underpin the complex biology of many human traits. However, the strength of GWAS –
the ability to detect genetic association by linkage disequilibrium (LD) – is also its
limitation. Whilst the ever-increasing study size and improved design have augmented
the power of GWAS to detect effects, differentiation of causal variants or genes from
other highly correlated genes associated by LD remains the real challenge. This has
severely hindered the biological insights and clinical translation of GWAS findings.
Although thousands of disease susceptibility loci have been reported, causal genes
at these loci remain elusive. Machine learning (ML) techniques offer an opportunity
to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis
phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from
relatively simple logistic regression approaches to more complex ensemble models such
as random forests and gradient boosting, as well as deep learning models, i.e., neural
networks. Paired with functional validation, these methods show important promise for
clinical translation, providing a strong evidence-based approach to direct post-GWAS
research. However, as ML approaches continue to evolve to meet the challenge of
causal gene identification, a critical assessment of the underlying methodologies and
their applicability to the GWAS prioritization problem is needed. This review investigates
the landscape of ML applications in three parts: selected models, input features,
and output model performance, with a focus on prioritizations of complex disease
associated loci. Overall, we explore the contributions ML has made towards reaching
the GWAS end-game with consequent wide-ranging translational impact.

Keywords: machine learning, artificial intelligence, genome-wide association study, genomics, candidate gene,
clinical translation, deep learning, data science
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INTRODUCTION

A genome-wide association study (GWAS) examines a genome-
wide set of genetic variants in a group of individuals to
identify variants associated with a trait or phenotype. The goal
of GWAS is to identify variants which show a statistically
significant association with a phenotype. This enables guided
functional investigation of the most likely causal variants and
genes driving the genetic association, thus pinpointing genes and
pathways of interest for disease diagnosis, drug discovery, and
precision medicine.

As GWAS studies have scaled up to discover ever more disease
variants (Evangelou et al., 2018; Giri et al., 2019; Nalls et al., 2019)
it has become impractical to perform functional investigation
on all disease relevant loci. This limitation arises in part due to
variability in reporting of GWAS results, some studies report loci
which have been independently replicated in a different cohort
(the gold standard approach), and others do not. This reporting
can question the confidence of some discovered loci, calling
for a balance between stringent p-values to correct for multiple
testing and false discovery, and conservative correction leading
to false negative association. A compounding factor is also the
need to differentiate causal variants or genes from other genes
associated by linkage disequilibrium (LD), thus confounding the
detection of causal genes within a locus – making it unclear
which variants and genes warrant further analysis and potential
functional study. This range of issues undermines the robustness
of GWAS, and challenges the validity of downstream analyses
and biological hypothesis development, critically undermining
some of the major motivators for performing GWAS in the first
place, such as target validation (Hurle et al., 2016). Ultimately this
highlights the need for computational solutions to improve the
signal to noise ratio of GWAS results and to highlight genes and
variants that are most likely to be causal.

Machine learning (ML) has been one emerging branch of
computational applications (alongside network analysis and tools
such as text-mining) built to enhance GWAS performance
and downstream interpretation (Seyyedrazzagi and Navimipour,
2017; Raj and Sreeja, 2018). Machine learning algorithms build
mathematical models that are learnt from training data in order
to make predictions or decisions. Machine learning consists of
supervised, unsupervised, and reinforcement learning methods,
with supervised and unsupervised learning being the most
commonly implemented with GWAS data. Supervised learning
provides ML algorithms with labeled training data and aims
to infer a mapping function from the input variables to the
output variable – or label for classification tasks (Figure 1). This
mapping function may then be used to predict the labels of
new “testing” data. Unsupervised learning, by contrast, has no
response variable. Instead, the algorithm must attempt to find
patterns in the data, such as clusters or outliers. When tailored
for understanding GWAS data, ML predictions can provide
an improved statistical foundation of evidence to support or
improve GWAS results. For instance, ML in GWAS has been
applied to identify loci, increase the statistical power of GWAS
(Mieth et al., 2016), detect epistatic interactions (Leem et al.,
2014), improve polygenic risk scoring produced from GWAS

(Pare et al., 2017), and prioritize genes and variants on post-
GWAS analysis (Vitsios and Petrovski, 2019). Here we will focus
on the ML applications developed for post-GWAS prioritization.

The growth of GWAS over the past decade has identified
thousands of associated loci, in September 2019 the NHGRI-
EBI GWAS catalog contained 161,525 variant-trait associations
from 4,298 publications1. Thousands of variant associations can
now be found within a single complex disease, such is the
case for inflammatory bowel diseases (IBD) with 1,829 variant
associations and schizophrenia with 3,069 variant associations
(see text footnote 1). In the case of blood pressure (BP) with
5,148 associations (see text footnote 1) 2,293 genes are implicated
(Evangelou et al., 2018; Giri et al., 2019), these represent almost
10% of the known gene complement and 5.82% of the genome
by LD alone. These results represent an important insight into
the complex systems regulating BP and offer a basis for a
better understanding of BP biology and the personalization of
hypertension treatment. However, this knowledge still has great
potential to confound understanding. Based on the simplifying
assumption that each locus is driven by only one gene (whereas
gene cluster associations are also possible), if we subtract 901
loci reported by Evangelou et al. (2018) from 2,605 genes
mapping to these loci, 65.4% of “associated” genes can be
expected to be unrelated to BP. This level of signal to noise, still
presents a considerable problem to the formulation of an efficient
follow up strategy.

Individual GWAS loci have already shown the potential
for large scale prioritization by providing novel biological
insights and potential drug targets and drug repositioning
opportunities (Sanseau et al., 2012). For example, a GWAS on
BP found associations in the SLC5A1 gene. The association
of SLC5A1 with BP and its role as a target of a type 2
diabetes drug, canagliflozin, highlights the opportunity to re-
purpose drugs for treating hypertension (Evangelou et al., 2018).
Currently, research has shown only 38% of essential hypertension
patients have effective treatment (Banegas et al., 2011). Similarly,
IBD and schizophrenia both currently have lacking treatment
options alongside their thousands of associations (Danese, 2012;
Leucht et al., 2013) – suggesting that a path to improved
therapeutics for complex diseases may lie within the associated
loci and the biological functions contained within them.

Defining functional impact of associated variants is a unique
challenge in itself, but it is subsumed by a greater problem.
Although it is possible to predict functional impact with some
confidence in coding regions and to a lesser extent in non-
coding regions, differentiating variants and inferring causality
is very challenging without further laboratory investigation. For
example, BP associations found in several SMAD family genes
and the TGFβ gene, which collectively participate in the TGFβ

pathway, led to the suggestion that these may affect sodium
transport in the kidney and ventricular remodeling (Evangelou
et al., 2018). However, multiple genes impacting the same
pathway raise the question of which gene should be functionally
investigated first. Usually the evidence is not strong enough to
warrant laboratory investigation of all the associated genes in a

1https://www.ebi.ac.uk/gwas/
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FIGURE 1 | Supervised Machine Learning Algorithm Training. (A) Data containing labeled genes (e.g., genes labeled as causal or non-causal for blood pressure –
BP) and columns of features describing those genes are input into a machine learning algorithm. Machine learning algorithms firstly initialize themselves by applying
their rules to a subset of the data (deemed training data) and its features at random. E.g., an algorithm’s first practice iteration can involve assigning feature
importance at random (importance denoted by size of feature image). The algorithm uses its feature initialization to classify genes into either affecting BP (red genes)
or not affecting BP (blue genes). Algorithms then use the practice predictions to calculate loss (an error rate) and iterate over the data again with applying the
previous iteration’s loss calculation to adjust feature handling (B). With using the loss calculations the algorithm aims to improve predictive performance with each
training iteration.

particular pathway. The follow-up GWAS laboratory studies to
date have developed without a standardized method for selecting
causal genes and consequently they are likely to be susceptible
to personal or “cherry picking” bias. These issues highlight the
need for a pipeline that methodically triages variants and genes
based on their likelihood of affecting a trait. Only then, will there
be consistency in follow-up of genetic results using functional
analysis with minimized risk of investigating false positives or low
impact genes. The standardized in silico identification of the most
likely causal genes at a genome scale may be an opportunity to
gain higher level systems insights into trait biology. This in turn
may help to fine-tune ML algorithms, as seen with research using
ML variant prioritization as a feature fed into gene prioritization
(Khan et al., 2018).

The development of systematic prioritization post-GWAS
using ML has been researched as early as 2007 (Lewinger
et al., 2007). Since then several computational methods for
prioritizing GWAS associated loci have been developed with
growing attention on ML applications (Fridley et al., 2011;
Gagliano et al., 2015; Raj and Sreeja, 2018; Wu et al., 2018).
ML for prioritizing GWAS results has used common models
(Figure 2) such as logistic regression, decision tree classifiers
such as – e.g., gradient boosting machines (GBM) and random
forests (Wang et al., 2013; Oh et al., 2017), – and support vector
machines (SVM; Vitsios and Petrovski, 2019), with more recent
advances including deep learning models (Khan et al., 2018;
Zhou et al., 2018).

An increasing number of studies are investigating how ML
can be tailored to locus prioritization across diseases, but

the ML pipelines for GWAS prioritization are mainly limited
by the range and quality of training data. In order for ML
models to present reliable guide-posts for post-GWAS research,
a critical assessment of developing methods is needed – as the
most recent systematic and literature reviews of post-GWAS
prioritization cover few ML studies in comparison to other
prioritization methods (Seyyedrazzagi and Navimipour, 2017; Raj
and Sreeja, 2018). Here we will review the current landscape of
ML applications for post-GWAS prioritization, and how ML can
aid reaching the end-game for GWAS, which we define as a state
where all common population variation with impact on a trait
is identified; providing solid biological insights and mechanisms
with reliable translational capability.

MACHINE LEARNING MODELS

GWAS prioritization as a classification problem has been
approached using both simplistic and complex models (Table 1)
depending on the problem requirements and data available.
Primarily five types of models have been implemented: logistic
regression, SVM, random forest, gradient boosting, and deep
neural networks (Figure 2), each with varying advantages and
disadvantages (Table 2). Logistic regression is a commonly
applied statistical method that when used with categorical
variables can be contemplated as a generalized linear model. In
a logistic regression, it is typical to apply a regularization term –
e.g., L1 (the sum of the absolute value of feature weights) and
L2 (the sum of squared feature weights) – that introduce some
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FIGURE 2 | Supervised Machine Learning Models. Diagram detailing three machine learning model bases used in supervised learning, each providing varying
algorithms most commonly used in post-GWAS prioritization.

bias while reducing variance, thereby improving predictive ability
(Demir-Kavuk et al., 2011). Isakov et al. (2017) used elastic net
logistic regression (Zou and Hastie, 2005) which combines L1 and
L2 penalties to prioritize IBD genes. This method performs both
variable selection (L1), and shrinks coefficient sizes to reduce
variance (L2) (Ogutu et al., 2012). Regularized logistic regression
with elastic net aims to minimize the “curse of dimensionality” –
where data has a larger number of features than samples – which
is a particular blight on GWAS. For example, Isakov et al. (2017)
used data consisting of 314 positive genes and 1,736 negative
genes each annotated with 1,027 features. By applying logistic
regression with elastic net they could then select the best data
for their models (309 features selected which are predominantly
from biological ontologies). However, due to the growing size in
genetic data, and the broader range of features becoming available
to describe genes and variants, the increased computational
demand requires more advanced models.

Seven out of 19 ML models for post-GWAS prioritization
curated in this review (Table 1) are ensemble models, namely
random forests and gradient boosting. Ensemble methods
combine multiple models to improve performance and are ideal
for heterogenous GWAS data. Deo et al. (2014) developed a
GBM (OPEN – Objective Prioritization for Enhanced Novelty)
for prioritizing causal genes in multiple diseases. They used
data comprising of more than 40,000 genomic features from
public databases [Gene ontology (GO), Mouse Phenotype
database, Human Phenotype Ontology (HPO), and Online
Mendelian Inheritance in Man (OMIM)] aiming to benefit
from unbiased features. GBM is a tree-based model, with tree
branches performing yes/no decisions leading to a sample’s
classification (Natekin and Knoll, 2013). GBM operates one

tree at a time, attempting to optimize with each tree. Deo
et al. (2014) made accurate predictions with GBM identifying
genes affecting cardiovascular disease (CVD) related traits.
Performance was measured by the area under the receiver
operating characteristic curve (AUROC), with values ranging
between 0.75 and 0.9 across traits (Deo et al., 2014). The
model’s consistently high scores are due to the ensemble methods
providing the opportunity for predictive mistakes to be removed
in aggregate, due to multiple models testing different hypotheses
and taking an average, expanding the representational space of
a classification problem (Dietterich, 2000). This is seen with
gradient boosting across research, with the model known for
reducing bias and variance and offering improved accuracy
(Natekin and Knoll, 2013). However, there is also a need to
benchmark model performance, as whilst ensemble models are
reliable, a singular approach into a novel classification problem
provides a risk of unnoticed overfitting – which is also a
known issue for gradient boosting depending on regularization
techniques used.

Vitsios and Petrovski (2019) built a semi-supervised learning
framework in which they benchmarked seven models (random
forest, extremely randomized trees, GBM, extreme gradient
boosting, SVM, deep neural networks, and a stacking classifier
using all models) to prioritize genes for three diseases –
amyotrophic lateral sclerosis, chronic kidney disease and
epilepsy. In total they used data containing more than 1,200
features describing tens of thousands of genes for each disease.
They found that random forest was the top-performing classifier,
with this ensemble model consisting of multiple decision trees
predicting in parallel (Breiman, 2001). Gradient boosting was
the second most accurate, showing the high performance of
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TABLE 1 | Curation of machine learning studies applied to post-GWAS prioritization of variants and genes.

PMID Models description Methods description Data and assessment
descriptions

30692607* LR; Genes – Crohn’s disease Uses backward stepwise regression to build significant expression
datasets (with emphasis on epigenetic data) to give prediction in
combination with genotype data. Expression data reduces the
uncertainty of smaller effect loci shown in fine-mapping and
prioritization was followed-up with protein network analyses for
validation

10-fold cross validation (2,000
genes per fold)

25935003* LR; Genes – Crohn’s disease Combines GWAS results with gene expression features and
whether genes are associated with other autoimmune diseases to
better identify disease-related genes. More powerful for prioritizing
rare missense variants

Cross-validation performed.
50:50 training:testing ratio.
Training iterated 500 times. 54
Crohn’s disease genes used as
positively labeled training genes

29407288 SVM, LASSO,
classification-regression trees;
Variants – major depressive
disorder and adverse drug
response (duloxetine)

Models used features selected by LASSO regression and classified
variants based on a clinical depression scoring defining drug
response and remission

Dataset size: 186 patients.
Nested 5-fold cross-validation.
80:20 training:testing ratio

21317188* SVM, RF; Variants – arthritis
and T1D

Compares support vector machine and random forest performance
to chi-squared ranking

Dataset size: 452,176 T1D
SNPs 63 arthritis SNPs

31779641 RF; Variants – intronic variants
associated to cellular sensitivity
to clofarabine-induced
cytotoxicity

Focuses on integrating splicing data features with other types.
Validates model prioritization with laboratory follow-up – limited by
technical noise during laboratory work

3-fold cross-validation. Training
data size: 6,676 variants.
Testing data size: 1,222
variants

24564704* Parallel RF Regression;
Variants – brain structure and
function. Alzheimer’s disease
GWAS

Designed to run on large Hadoop clusters, including those available
through cloud computing. Multivariate applications not available on
Hadoop

Each tree bootstraps to form
training data (63.2%) with
out-of-bag samples for test
data. 500 simulated datasets

28592878* RF Hyper-ensemble;
Non-coding variants – curated
mendelian diseases

Addresses class imbalance via resampling using simultaneous
oversampling of minority class and undersampling of majority class.
HyperSMURF can detect disease variants nearby to non-disease
variants

10-fold cross-validation
partitioning variants into
chromosomal bands so no
variants had same location,
gene or disease in training and
testing. GWAS total size
approximately 2,000 variants

25633252* GB; Genes – cardiovascular
diseases and traits

Explored prioritization of 38 phenotypes (predominantly
cardiovascular). Each tree within model updates a log-odds of
disease association per gene. GWA-prediction assigns scores to
genes in loci based on reasonings (transcription sites, experimental
evidence, etc.) to identify likely positives which are used in training
for phenotypes with GWAS training data

Six rounds of 8-fold
cross-validation. Seventy
percent of loci as positive
training examples with
matching numbers of negative
samples

30591030* LR and DL; Genes and
variants – schizophrenia and
autism

Performed variant prioritization which fed into gene prioritization.
Variant prioritization used eQTL and pathogenic scoring data
features. Gene prioritization used the variant rank in combination
with genotypic data. Used to prioritize an individual’s variants and
genes and can be re-applied to GWAS data

10-fold cross-validation on four
training and test sets

28795970 LR with elastic net, RF, SVM
with polynomial kernel, extreme
GB; Genes – inflammatory
bowel diseases

All genes in dataset were annotated with 1,027 features. 16,390
genes scored and classified, with prediction as a score between 0
and 1. Models evaluated separately and together in combined
performance score

5-fold cross-validation repeated
10 times. Training data: 314
positive genes and 1,736
negative genes

30013180* DL – ExPecto; Variants –
publicly available GWAS for four
immune diseases

Data profiling >140 million promoter-proximal mutations allowed
for deep learning to predict variant effect, with effect feeding into
the prioritization of SNPs

Dataset size: 390,085 variants.
Whole-chromosome holdout of
chromosome 8 with 990
genes – using these genes for
testing

30859622 LR with stochastic gradient
descent, SVM, RF, K-Nearest
Neighbors; Genes – colorectal
cancer

Used a network approach – collecting both global and local data to
create an epistasis network. Topology of the network was then
used as features in machine learning, with different types of feature
selection compared, to prioritize genes biologically relevant to
colorectal cancer

Dataset size: 185,180 SNPs.
Training on 90% of the dataset
with 10-fold cross validation

(Continued)
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TABLE 1 | Continued

PMID Models description Methods description Data and assessment
descriptions

doi: 10.1101/655449* SVM, RF, extra trees, GB,
extreme GB, DNN and a
stacking classifier with four
base classifiers (RF, extra trees,
GB and SVM) followed by a
DNN in the second layer.
Genes – chronic kidney
disease, amyotrophic lateral
sclerosis, epilepsy

Models applied with positive-unlabeled learning – stochastic
semi-supervised learning. Explored combinational impact of all
models, and chose best performing model for each disease. There
was a dependency on existing patterns – beneficial for finding new
causal associated genes which may impact known mechanisms

10-fold cross validation. Gene
samples: 25,000 for chronic
kidney disease, 17,000 for
epilepsy and 79,500 for
amyotrophic lateral sclerosis

21687685 Bayesian latent variable model;
Variants – ovarian GWAS

Used features about a SNP to estimate a latent quality score, with
SNPs prioritized based on the posterior probability distribution of
the rankings of latent quality scores. Incorporated the uncertainty of
the ranking into the prioritization via probability calculation

NA

23369106* Genetic algorithm; Variants –
select OMIM diseases

Algorithm estimates feature weights to characterize SNPs related to
an input dataset of genes, biological processes or GWAS results.
Users can select features and assign a custom relevance and
model relies on data mining of public data

Leave one out cross validation –
single disease in the set used to
validate (repeats for each disease)

29874547* Network representation learning
(random walk); Genes –
Parkinson’s, RA, Crohn’s,
Ulcerative Colitis, CAD, T2D

Unsupervised model learns embeddings of genes from multiple
gene networks and develops hierarchical statistical model to
integrate the learned embeddings of genes with GWAS summary
data. Gene-level p-values infer each gene’s posterior probability of
association, which is in turn used for gene prioritization. Lack of
direct biological interpretations available for the learned
embeddings of genes

NA

21977986* Multi-task learning ProDiGe;
Genes – 265 diseases and 936
associations

Model learns from positive and unlabeled examples. The model
shared information across diseases to improve the predictive
performance for diseases with minimal positive labeled genes. The
information shared is weighed depending on similarity of one
disease to another

Training set: at least one known
disease gene in training data.
Training data per disease >11
genes. Leave one out validation
on select diseases

26504140* Unsupervised model – bayes
classifier – GenoWAP;
Variants – schizophrenia and
Crohn’s disease

Unsupervised learning – integrates GenoCanyon (their previous
model) functional prediction and GWAS p-values. Reduce noises
caused by linkage disequilibrium and rescues marginal signals in
GWASs with insufficient sample sizes

NA

27058395* Unsupervised model – bayes
classifier – Genoskyline;
Variants – schizophrenia and
coronary artery disease

Successor of GenoWAP model, building from it by using
annotations integrating tissue-specificity. Customizable with
researchers able to input many feature annotations. Whilst
tissue-specific it also lacked data from all tissue types

NA

*Software/code available; LR, logistic regression; RF, random forest; GBM, gradient boosting machine; SVM, support vector machine; DL, deep learning; DNN, deep
neural networks; ET, extra trees; GWAS; genome wide association study; SNP; single nucleotide polymorphism; CAD, coronary artery disease; T1D, type 1 diabetes;
T2D, type 2 diabetes.

tree-based ensemble classification. However, the AUCs between
all algorithms were deemed too similar to conclude one model
out-performed all others across datasets. These results were also
supported by comparison with a combined framework using
all models in prioritization, the stacking classifier, ensuring
the highest reliability in the chosen classifier for each disease
(Vitsios and Petrovski, 2019). Kafaie et al. (2019) aimed to
prioritize genes associated with colorectal cancer comparing
various models (SVM, random forest, logistic regression with
stochastic gradient descent, and K−nearest neighbors). They
found that logistic regression was the highest performing ML
model – emphasizing that a classification problem may require
simpler solutions.

Besides ensemble learning and logistic regression, SVM is also
consistently used within studies performing benchmark
comparisons (Roshan et al., 2011; Isakov et al., 2017;
Maciukiewicz et al., 2018; Vitsios and Petrovski, 2019). SVM

aims to plot a decision boundary between groups by measuring
hyperplanes – based on the distances between the most extreme
samples of each classification group (Smola and Scholkopf, 2004;
Figure 2). However, within benchmarking studies, SVM has not
shown itself to be a top-performing model. For example, Vitsios
and Petrovski (2019) found it had the lowest AUC (0.83, only
slightly lower than the top-performing random forest at 0.85)
of their seven models, while Kafaie et al. (2019) found SVM
performed better than random forest yet worse than logistic
regression. The varying performance of SVM also highlights the
importance of input data, as Kafaie et al. (2019) were one of the
only studies to focus on comparing feature selection methods as
well as models. Kafaie et al. (2019) found SVM performed well
given certain features, whilst in comparison logistic regression
had a more stable high performance regardless of external
selection, emphasizing the value of logistic regression’s internal
feature selection via regularization.
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TABLE 2 | Comparison of machine learning model performance. Comparison of the most common models used in post-GWAS prioritization including performance
metrics, comparing metrics of each model’s highest performance score per study.

Models PMID Best performance Model advantages and disadvantages

Logistic regression 25935003 0.94 (AUC) – Crohn’s disease Advantages:
- Easy to implement
- Efficient to train
- High interpretability
- Can act as a benchmark for exploring more complex

algorithms

Disadvantages:
- Difficulty recognizing complicated data patterns
- Difficulty handling large datasets

28795970 0.775 (ROC) – inflammatory bowel diseases

Random forest 28592878 0.635 (AUCROC) – curated Mendelian diseases Advantages:
- It can handle large data with higher dimensions
- Ensemble method reduces overfitting by several

models testing multiple hypotheses

Disadvantages:
- Many parameters to tune, affecting computational

efficiency
- Ensemble method lows interpretability

31779641 0.96 (AUCROC) – cellular sensitivity to
clofarabine-induced cytotoxicity

21317188 0.81 (AUC) – T1D

28795970 0.80 (ROC) – inflammatory bowel diseases

doi: 10.1101/655449 0.85 (AUC) – average between all diseases

Gradient boosting 28795970 0.783 (ROC) – inflammatory bowel diseases Advantages:
- High power performance
- Flexible with several parameter tuning options
- Ensemble method reduces overfitting by several

models testing multiple hypotheses

Disadvantages:
- Reliance on high quality training data
- Many parameters to tune, affecting computational

efficiency

doi: 10.1101/655449 0.848 (AUC) – average between all diseases

25633252 0.959 (ROC) – HCM

Support vector machine 28795970 0.786 (ROC) – inflammatory bowel diseases Advantages:
- Computationally efficient
- It handle can handle large data and high dimensions

Disadvantages:
- Does not provide class probabilities
- Difficulty to interpret

29407288 0.66 (Accuracy) – major depressive disorder
and adverse drug response (duloxetine)

doi: 10.1101/655449 0.832 (AUC) – average between all diseases

Deep neural network 30013180 0.815 (AUCROC) – lymphoblastoid expression Advantages:
- Recognizes patterns in large complex data
- High power performance
- Able to handle noisy data

Disadvantages:
- Difficulty to interpret
- Computationally expensive requiring GPUs for high

power performance

AUC, area under curve; GPU, graphics processing unit; ROC, receiver operating characteristic; T1D, type 1 diabetes; HCM, hypertrophic cardiomyopathy.

Deep learning has also been explored for prioritization, this
method can increase sensitivity in larger datasets due to the
methods ability to incrementally capture abstract representations
of high-level information. In general, this is beneficial for GWAS
prioritization where the data is growing dramatically in size and
heterogeneity with increasing annotations post-GWAS, and also
has few labeled samples (known disease causing variants/genes)
for supervised learning. Deep learning becomes advantageous
in this scenario as it identifies complex patterns via supervised
and unsupervised learning from large datasets (Najafabadi et al.,
2015) and can be applied for further insights into GWAS
data. However, whilst deep learning enables the consideration
of millions of parameters, its application to date has mostly
flourished in image classification and natural language processing
(Zeng et al., 2018; Aung et al., 2019; Hampe et al., 2019),

requiring an investment in its development and benchmarking
with traditional models for developing GWAS application.
A deep neural network (ExPecto) applied by Zhou et al.
(2018) prioritized causal variants for immune-related diseases
using sequence-based features. This dataset contained more
than 140 million promoter-proximal mutations, and allowed for
the unidirectional flow of information from base-sequence to
functional predictions which enabled variant prioritization. To
approach this large dataset ExPecto applies spatial transformation
to the data, weighting transformations based on transcription
start site distances. This was performed on a tissue-specific basis
of over 200 tissues (Zhou et al., 2018), providing hundreds of
features for the model to process. ExPecto is also able to perform
pattern recognition and prioritization of rare and unobserved
variants. However, whilst models are selected based on their
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suitability to the data, performance can also be dependent on class
balance and data quality available.

Predominantly, ML studies use cross-validation to ensure a
reliable estimate of model performance. However, with GWAS
data commonly lacking functionally validated disease causing
variants and genes, there are minimal learning opportunities for
supervised models. Oversampling or undersampling techniques
can be used to address class imbalance. Schubach et al. (2017)
developed a hyper-ensemble model (hyperSMURF) using
random forests with imbalance-awareness by using both under-
and oversampling. By balancing the training data classes, and
exposing the base learners in the hyper-ensemble to different
training datasets, the random forests are able to diversify their
understanding of the data, improving accuracy regardless of
data size. Using hyperSMURF they prioritized thousands of
GWAS variants annotated with 1,842 features. Their sampling
techniques created balanced training data, where the original
GWAS data had a 1:700 label imbalance. However, oversampling
techniques develop synthetic samples based on example data
points to increase the minority class size, which can create
overfitting. Schubach et al. (2017) addressed this by preventing
example variants of the same location/gene to occur in the
training and test sets, minimizing the oversampling bias.

Whilst only one post-GWAS prioritization study has focused
on class imbalance (Schubach et al., 2017), several have targeted
data quality with a focus on data labeling. For example, positive
unlabeled learning is semi-supervised learning with only positive
labeled examples, a common occurrence for GWAS data where
only a few causal genes have been functionally validated.
For positive unlabeled learning overfitting is avoided using
approaches such as classing unlabeled samples as negative and
bootstrapping random samples. Vitsios and Petrovski (2019)
applied positive labels to disease genes from the HPO with further
validating clinician confirmation, and treated any unlabeled
genes as negative samples. They then conducted random
sampling of positive and unlabeled samples, aiming to equalize
the ratios of the positive and negative genes to expose their
models to a balanced dataset. Mordelet and Vert (2011) also
applied their model (ProDiGie) using positive unlabeled learning.
Whilst they only had minimal positive samples per disease, the
model shared information across diseases – enabling it to use
information from causal genes for closely related diseases in
prioritization. Despite these benefits, positive unlabeled learning
is limited by prior knowledge of known causal genes, leading to
potential false negatives, and unlikely scenarios for a model to
prioritize genes in novel mechanisms.

Overall, there is a need for benchmarking in order to select the
model best suited to the data, and for post-GWAS prioritization
the optimal model currently varies across diseases without a one-
size-fits-all winner. An optimal model also hinges on data size
and quality for reliability and performance, with studies varying
in data size and choice of features – from using hundreds of
selected features (Isakov et al., 2017) to others exploring tens of
thousands (Deo et al., 2014). Further in silico methods need to
address these aspects of ML, the lack of functionally validated
associated genes at the disposal of ML, and how features are used
in order to build a model tailored to post-GWAS prioritization.

FEATURE CURATION

To fine-tune a model, researchers must perform data curation
and feature quality control to achieve the best possible
performance. GWAS associations are typically annotated to a
wide range of biological annotations. Biological features range
from eQTL (expression quantitative trait loci), RNA, epigenetic,
and protein data to describe a variant or gene’s functionality.
For example, several studies use eQTL data, providing tissue-
specific and population-specific insight, with researchers noting
the use of eQTLs can improve the ability for models to
distinguish single causal genes within a locus (Deo et al., 2014).
For example, Ning et al. (2015) built a logistic regression
for prioritizing Crohn’s disease associated genes. They found
that integration of eQTL data with GWAS data provided an
overlap of information between the two that strengthened model
performance. Furthermore, the cataloging of eQTLs mapped to
non-coding RNA provides a better insight into how non-coding
RNA affects gene expression (Branco et al., 2018), increasing the
strength of regulatory information at the disposal of ML models.
The growing integration of related biological features suggest this
will provide clearer insight for models to be able to pinpoint the
most likely disease causing genes in a locus (Branco et al., 2018;
Dai et al., 2019).

Other features used by studies are those provided by GO and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database. Merelli et al. (2013) built SNPranker using terms from
GO and KEGG to prioritize variants across diseases via a genetic
algorithm. This model focuses on user-guided optimization,
which is beneficial as SNPranker also takes features from data
mining, allowing the researcher to adjust feature weights to
minimize bias. Merelli et al. (2013) also focus on sharing
information across ontologies, illuminating similar genes to those
with known functional causality, indicating that this can grow
the causal gene list (Merelli et al., 2013). Despite this possibility
of increasing the model’s training data, expanding a list of causal
genes based on known biological processes alone is likely to create
susceptibility to bias and weaker model performance – as the
model is then less able to prioritize loci within novel systems
which may be affecting a phenotype.

The use of other biological features, e.g., RNA and epigenomic
features, has also grown in recent years. These features may
provide further insights into associated loci located in non-
coding regions. For example, researchers developed and
combined models GenoWAP and GenoSkyline (Lu et al., 2016a;
Casas et al., 2005). Both methods use unsupervised learning –
GenoWAP performs GWAS prioritization and GenoSkyline
integrates tissue-specific and epigenomic annotations for
predicting tissue-specific functional regions. They found
these annotations showed both functional and non-functional
tissue-specific variants were enriched, suggesting LD between
variants in both regions (Lu et al., 2016b). For example, one
schizophrenia associated locus within an intergenic region,
upstream of MMP16, had high prioritization by GenoWAP in
brain tissue (Lu et al., 2016b). This result is then augmented
as GenoSkyline predicted that this locus plays a role in the
functional regions downstream, offering new targets for further
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research. However, they concluded that their results can be
improved with cell-specific data. Since GenoWAP, the ExPecto
tool was built to make cell-type-specific predictions with high
accuracy which it uses for variant prioritization, providing a
novel method for generating cell-specific data in silico (Zhou
et al., 2018). Whilst this method of predicting cell-specific data is
disadvantageous to manual curation, the systematic collection of
cell-specific data is in development and standardized resources
have not been widely applied to post-GWAS analysis. Methods
such as ExPecto provide a starting point for cell-specific
curation and also a potential benchmark for the manual
curation as it develops.

Alongside general biological characterization, disease-
specific data is gradually increasing, further enabling accurate
prioritization of GWAS associated loci. Vitsios and Petrovski
(2019) for example prioritized chronic kidney disease genes,
using annotations from the Chronic Kidney Disease database
among their features to improve stratification. Algorithmic
scorings are also used for prioritization (e.g., Eigen, CADD,
DANN, GWAVA, DeepSea). These scorings predict pathogenicity
of variants based on their expected functional consequences,
and have been used to aid variant prioritization, however, to the
best of our knowledge this is only been demonstrated by Khan
et al. (2018), requiring further exploration into their benefits as
features in ML prioritization.

Beyond data collection, studies also need to consider feature
importance and feature selection to gain an understanding of
models “under-the-hood” This is often a part of why researchers
choose L1 regularized logistic regression, which automatically
performs feature selection. Several studies have used logistic
regression, such as Isakov et al. (2017) with using the elastic
net, who found positive feature coefficients (predicting causal
genes) were highest for immune and inflammatory response
features from GO. Recently Gettler et al. (2019) also used logistic
regression – as part of their gene prioritization regression model
(GPRM) – to prioritize genes for Crohn’s disease. While Gettler
et al. (2019) do not discuss the impact of feature importance,
they note that GO enrichment analysis showed immune and
inflammatory genes were significantly enriched. This enrichment
is to be expected from an autoimmune disease, however, it
also suggests validation for the feature importance found by
Isakov et al. (2017). Maciukiewicz et al. (2018) applied L1
logistic regression to identify significant features, and followed-
up with SVM for predicting causal variants for duloxetine
response in major depressive disorder. They found a non-coding
RNA annotation had the largest positive coefficient. However,
unlike the study of IBDs, Maciukiewicz et al. (2018) is the first
prioritization study to focus on their drug response phenotype,
requiring further work to validate feature importance and begin
to suggest how that may fit into biological understanding
of GWAS results. There is also work focused primarily on
improving feature selection for GWAS data (Szymczak et al.,
2016; Nembrini et al., 2018). For example, random forests provide
feature importance measures and have been investigated by
Szymczak et al. (2016). They developed a recurrent relative
variable importance measure from random forest to rank
important variants in GWAS. This focus on feature importance

developed a useful tool for highlighting loci deserving of
functional-follow up and could be used to reduce false positive
GWAS results (Szymczak et al., 2016). The only other study
investigating feature importance in prioritization has been
SNPranker, with Merelli et al. (2013) finding epigenetic features
(namely enhancer, CpG islands, and DNase cluster data) had
the highest importance for default prioritization. Additionally
to a model’s internal feature weightings, permutation is also
able to provide feature importance, doing so for any model by
shuffling feature values and viewing model error rate. Vitsios and
Petrovski (2019) use permutation via the boruta algorithm, which
creates synthetic features from random permutation to weigh
the importance of original features and remove any unimportant
annotations. For all studies incorporating feature selection or
importance they note an improvement in model performance or
understanding of their predictive reasoning.

PRIORITIZATION OF VARIANTS AND
CANDIDATE GENES

Prioritization methods post-GWAS have had development for
several models that aim to be applicable for multiple diseases –
e.g., ExPecto (Zhou et al., 2018), GenoWAP (Lu et al.,
2016b), HyperSMURF (Schubach et al., 2017), and SNPRanker
(Merelli et al., 2013). For example, ExPecto used all publicly
available GWAS data for prioritizing variants for Crohn’s disease,
ulcerative colitis, Behçet’s disease, and hepatitis B virus (Zhou
et al., 2018). On prioritization they found highly ranked variants
were also most likely to be replicated across GWAS. For Crohn’s
disease the top prioritized variant by ExPecto was rs1174815
(Zhou et al., 2018), yet neither the variant or gene (IRGM) has
been highly prioritized by any other study focusing on Crohn’s
disease. In comparison with other model rankings for Crohn’s
disease loci, there are only a handful of genes that have been
highly prioritized in more than one study. An example of this is
GSDMB, a gasdermin gene known to affect apoptosis in epithelial
cells. GPRM prioritized this gene, alongside ExPecto prioritizing
a variant in GSDMB (rs58989791) (Zhou et al., 2018; Gettler et al.,
2019). This prioritization has aligned with experimental work
recently focusing on GSDMB in IBDs, finding an increase in the
gene’s expression may have a developmental role for IBDs (Rana
and Pizarro, 2019). Another disease that has been prioritized
by multiple studies is Alzheimer’s disease, for which models
consistently prioritize APOE (Mordelet and Vert, 2011; Wang
et al., 2013; Deo et al., 2014). However, this questions model
training in these studies, as APOE has been reported as affecting
Alzheimer’s disease as early as 1993 (Schmechel et al., 1993).

An issue with prioritizing variants and genes is the
ability to ascertain if the model predictions are accurate.
Schubach et al. (2017) address this by prioritizing regulatory
variants for both mendelian diseases and complex diseases,
for which the mendelian disease variants had been validated
with a biomedical literature review. They found hyperSMURF
consistently out-performed other methods (Eigen, GWAVA,
CADD, and DeepSea) on both mendelian and GWAS data,
suggesting minimized risk of overfitting and the potential for
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ML to be able to generalize across datasets. In terms of
performance metrics, Schubach et al. (2017) also explore multiple
measurements – F1 score, AUROC, precision, recall, and the
area under the precision-recall curve (AUPRC) – however, other
studies primarily use AUROC. Whilst AUROC is an excellent
metric in many cases, it can be highly misleading for imbalanced
datasets like those commonly found in GWAS prioritization (Jeni
et al., 2013; Saito and Rehmsmeier, 2015). Precision-recall curves
are a popular alternative in cases of extreme class imbalance, with
Schubach et al. (2017) applying these in combination with other
metrics in a particularly rigorous approach. Studies focused on
addressing imbalanced data are important for developing reliable
GWAS applications, and continuing to focus on imbalance-aware
approaches will reinforce the reliability of model predictions as
much as possible in silico.

In order to establish model capability past performance
metrics, a prioritized variant or gene’s causality can be
evidenced with functional follow-up. For example, Lin et al.
(2019) developed RegSNPs-Intron which was a random forest
prioritizing intronic variants associated to cellular sensitivity
to clofarabine-induced cytotoxicity – with the model primarily
relying on splicing data. After prioritization they performed
ASSET-seq (ASsay for Splicing using ExonTrap and sequencing),
which measures the impact of splicing on an intronic variant.
They found 63 out of 82 experimentally tested variants had
a significant splicing impact in multiple cell lines (Lin et al.,
2019), suggesting further directions for functional study and
validating the RegSNPs-Intron’s prioritization. Zhou et al. (2018)
also performed experimental follow-up, looking at their top
prioritized variants with a luciferase assay. This confirmed
prioritized variants affect regulatory activity – e.g., variant
rs381218 prioritized to affect chronic hepatitis B virus had a
significant change in reporter activity, predicted also by ExPecto
to impact HLA-DOA (Zhou et al., 2018). These functional
results improve the interpretation of potential regulatory
roles for prioritized loci by validating prioritizations in vitro,
enabling hypotheses produced by ML to be confirmed and
further expanded upon.

PAST AND PRESENT CARDIOVASCULAR
MACHINE LEARNING PRIORITIZATION

ML approaches for post-GWAS prioritization have been applied
over the last decade, with applications providing the projected
outputs expected from GWAS with biological insights and
translational results. In 2014, Deo et al. (2014) applied OPEN
to prioritize 38 phenotypes, many of which were CVD traits.
CVD is a particularly appropriate example to investigate, due
to its high powered GWAS with thousands of associated loci,
presenting a large benefit to gain from ML prioritization. To the
best of our knowledge, this is the only ML study that includes
CVD traits. OPEN was applied to prioritize BP associated loci,
for which several of its highly ranked genes have since been
studied in laboratory experiments and leading to insights on
biological mechanisms with possible translational impacts. NPR3
was the second prioritized gene to affect BP by Deo et al. (2014).

At the time of prioritization GWAS was one line of evidence
showing a relationship between NPR3 and BP, however, Ren
et al. (2018) focused on this gene’s functional roles in vascular
smooth muscle. They found variants at this locus were associated
with reduced NPR3 mRNA and changes to chromatin structure,
supporting a regulatory role leading to increases in vascular
smooth muscle proliferation and suggesting a mechanism which
can be a therapeutic target for BP. Overall with examining the top
ten prioritized BP genes by Deo et al. (2014) (ANTXR2, NPR3,
MECOM, PLCE1, ENPEP, PDGFRA, CACNB2, ARID5B, MRVI1,
and GUCY1B3) eight of the associations have been validated
by GWAS and mechanisms characterized by experimental work
and indicate effects on BP (Rippe et al., 2017; Takeuchi et al.,
2018; Giri et al., 2019; Kichaev et al., 2019) – only ANTXR22

and PDGFRA3 have not been validated in recent BP GWAS. The
gene GUCY1B3, ranked tenth by Deo et al. (2014), and JAG1
(ranked 11th) have consistently been studied in relation to BP
and nitric oxide regulation (Rippe et al., 2019). Rippe et al. (2017)
identified both genes as affecting Notch pathway signaling in the
aorta of mice, rats and humans – this study provided further
insight into each gene’s activity across species. Interestingly,
variants at MRVI1 (ranked eighth) have been found to be
genome-wide significant in an arterial stiffness GWAS (Fung
et al., 2019), implying a possible relation to BP and opportunity
for follow-up investigation such as with colocalization analyses
(Kanduri et al., 2019).

OPEN also ranked genes without high prioritization but have
since been demonstrated to be important to BP regulation and
have clinical significance (Deo et al., 2014). An example of this
is uromodulin (UMOD), which Deo et al. (2014) prioritized
approximately in the middle of their rankings of hundreds of
associated genes affecting BP. UMOD has been replicated in
GWAS (Evangelou et al., 2018) and is a target currently being
tested in a clinical trial for its interaction with NKCC2 in
hypertension – as UMOD genotypes of increased or decreased
expression affect salt sensitivity in the kidney and a person’s
propensity for hypertension.

Aside from BP, Deo et al. (2014) also report success for other
cardiac conditions that have additional evidence and support
today. FLNC was prioritized as affecting left ventricular diameter.
Deo et al. (2014) investigated FLNC further in a zebrafish model,
finding knocked down FLNC showed cardiac abnormalities and
hypertrophy, and also found one dilated cardiomyopathy patient
(who had no known dilated cardiomyopathy gene mutations)
with a splice-site mutation in FLNC. This work aligned with
FLNC gaining functional cardiovascular research attention, with
its role in cardiomyopathies also being first discovered in 2014
(Valdes-Mas et al., 2014). This result validates OPEN’s high
performance for cardiomyopathies (AUCROCs of 0.88 and 0.96),
with its performance ranging from 0.75 to 0.9 for all other cardiac
traits. Notably, Deo et al. (2014) used known causal genes as
their training examples for cardiomyopathies, unlike the use of
GWAS associated genes in the training data for other phenotypes,
implying the benefit of using well-curated input data.

2https://www.ebi.ac.uk/gwas/genes/ANTXR2
3https://www.ebi.ac.uk/gwas/genes/PDGFRA
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The insights into the functions of prioritized genes since 2014
indicate the potential of ML for guiding hypothesis generation,
but also outline examples of the experimental work ahead for
validating the biological mechanisms of such ranked genes in
order to confidently identify drug targets post-GWAS. With 451
BP associated genes gathered by Deo et al. (2014) in comparison
to 2,993 validated associated genes in 2019 (Evangelou et al.,
2018; Giri et al., 2019), this suggests that re-running OPEN now
with updated data would provide interesting results detailing
which genes have withstood the test of time in terms of
maintaining their ranking.

DISCUSSION

Machine learning is advancing rapidly but its applications
in GWAS are still in their infancy with respect to becoming
gold standard methods producing consistently validated
biological insights. This review has focused on post-GWAS
ML prioritization methodologies ranging from model selection
and input features, to performance assessment and output
prioritization results. For model selection several studies
explore only one algorithm without comparison. Studies
using benchmarking comparisons with several models offer
a form of standardization for selection, contributing to
research transparency which is crucial for work justifying
investment in functional study. Recent studies are more
frequently incorporating benchmarking comparison showing the
development of robust methodology in this field (Isakov et al.,
2017; Kafaie et al., 2019; Vitsios and Petrovski, 2019).

The feature curation also needs improved interpretation
of selected features and their importance, as current work
highlights the need to account for bias within biological
features, and the requirement for continued upkeep of biological
data. This interlinks with a broader demand for standardized
use of recently discovered datatypes, as prioritization studies
differ in their resources, hindering the interpretation of model
performance. For example with growing epigenomics resources,
Cazaly et al. (2019) note this is leading to research using varying
standardization methods. How that data is collected and recorded
then also affects the reliability of ML methods and comparison
of model performances. This point can also be made for models
such as ExPecto or iMEGES firstly applying variant prediction
which feeds into gene prioritization as a feature (Khan et al.,
2018; Zhou et al., 2018), as there is a risk of the predicted features
overfitting, and those features then not being reproducible.

There are also datatypes, such as clinical datasets and
wider ranges of omics data which are underrepresented in
ML prioritization studies. Studies focus on genomic features,
however, the contributions of transcriptomic, epigenomic and
proteomic data are less frequently investigated. This lack is
contrasted by studies solely integrating wide-ranging omics data
to calculate GWAS prioritization scores (Ayalew et al., 2012;
Ciesielski et al., 2014) – and identifies potential for collaboration
with ML to improve data integration methods. To date ML
studies highlight the benefits of multi-omic integration, but few
directly investigate that need (Merelli et al., 2013; Dai et al., 2019).

Building this multi-omic range of data could improve accuracy
and provide information specifying not only the most likely
causal genes, but the biological functions contributing to
their causality. With current data and research there is a
disconnect between prioritization of genes and identification of
the mechanism that links a feature to gene/variant causality,
which could benefit hypothesis specification in functional work.

As high quality disease-specific data becomes increasingly
available to fine-tune model training, ML models may become
more efficient in the prioritization of heterogenous data to
identify the most likely causal disease genes. However, reliance
on specific annotations presents a challenge for the prioritization
of novel genes and hence novel mechanisms without prior
knowledge. More generally, models including data mining
features are also susceptible to this issue, as they contribute
to a bias for prioritizing already characterized genes in known
disease pathways. These already researched genes may be highly
ranked not due to impactful biological knowledge but simply
due to having a wealth of study. Overall how feature curation
is implemented is a key factor to the developing success of ML
applications for GWAS, especially when considering imbalanced
data where positively labeled disease genes and variants are
limited. This highlights the need for high quality gene annotation
and disease resources – if features are not accurately researched
and curated, the potential for models to accurately prioritize
GWAS results will be diminished, ultimately ML methods are
limited by the quality and quantity of input training data.

When comparing output prioritizations there is a need
to appraise the quality of the training data, understanding
which genes/variants are included and how they might impact
prediction. For example with the prioritization of APOE by
models for Alzheimer’s disease (Mordelet and Vert, 2011; Wang
et al., 2013; Deo et al., 2014), it could also be argued that this
validates the model performance, as this gene is expected to be
prioritized. However, the studies prioritizing Alzheimer’s disease
genes do not provide their training and testing data to explore
this further (Mordelet and Vert, 2011; Wang et al., 2013; Deo
et al., 2014), showing the need to improve reproducibility. More
recent studies prioritizing different phenotypes are beginning to
provide both their data and source code, such as Khan et al.
(2018), enabling the development of more accessible and reliable
tools. This development is essential for applications to be used
and interpreted by non-computer scientists and for the output
biological findings to have a traceable reasoning as to why they
were prioritized.

On investigating OPEN’s prioritizations and comparing them
with more recent research, it emphasizes the potential for post-
GWAS ML to give GWAS results a wider-impact contribution
to complex diseases. The accuracy of the model across multiple
diseases identifies the possibility that one model can be applied to
several diseases successfully. Furthermore, the early prioritization
of diagnostic genes such as FLNC shows the power of ML which,
when combined with functional follow-up building biological
insights, can lead into translational impacts. However, OPEN also
showed genes which upon recent review were mis-prioritized
(UMOD and ANTXR2). This ranking may be due to Deo et al.
(2014) using GWAS results as part of their training data with
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them also noting that their features may be too weak to prioritize
genes a part of novel mechanisms for a pathology (Deo et al.,
2014). These misjudged genes highlight flaws applicable for all
ML models, with reliance on current biological data, requiring
that data to be high quality for reliable loci prioritization.

For future applications ML can learn from work such as
Deo et al. (2014) in combination with more recent work on
larger datasets, e.g., Zhou et al. (2018). Research can develop
models aiming to be applied across diseases, and re-used by
other researchers, with consideration for the size of present
GWAS data, varying datatypes, and feature importance. Doing
so could then lead to more accessible, reusable models – for
example with source code or web-interfaces that are useable by
a wider range of GWAS researchers – and create more globally
implemented ML applications for GWAS prioritization, thus
accelerating researchers towards the post-GWAS endgame of
understanding disease.

With the creation of accessible models, a role for ML
prioritization in personalizing medicine can develop. For
example, ML could potentially be used to augment genetic risk
scores, identifying which genes contribute to a person’s high
risk score, and offering more information at the disposal of
clinicians. To build ML tools to a clinically acceptable standard,
however, requires comparison with other prioritization methods
and ensuring model interpretability. One of the most common
other methods used in post-GWAS prioritization is network
analysis. This method builds networks ranging from the gene
to protein level, enabling a flow of information from GWAS
to protein and metabolic pathways (Leal et al., 2019). However,
studies note that gene networks can contain noise, and the
analysis is confounded by its aggregation of GWAS data to the
gene level, causing a loss of variant information (Wu et al., 2018;
Leal et al., 2019). Machine learning offers an improvement for
this with data integration, that can preserve variant information,
and with the ability to handle noisy data. Another method
identifying causality is Mendelian randomization, although in
some cases this can provide a clear illustration of risk, such as the
link between homocysteine concentration and stroke risk (Casas
et al., 2005), it is limited to high risk variants and independent
variables (Haycock et al., 2016). In comparison, unlike other
computational methods, the choices ML models make for
prioritization are not always clearly available to be understood by
the user. However, ML has also been applied in combinational
approaches with network modeling (Kafaie et al., 2019) and
Mendelian randomization for causal inference (Hemani et al.,
2017) to overcome the disadvantages of a singular method.
Hybrid approaches such as these highlight the many avenues
of ML research to be explored for developing optimal GWAS
prioritization. Aside from method comparison, improving data
curation, and model benchmarking, the interpretability of models
is a critical challenge for future research, and one of the largest
obstacles for GWAS prioritization by ML to gain widespread
reliable use. Developing model interpretability will involve a
strong understanding of not only a model’s mechanics but of
feature importance and known disease causing genes given in
model training – requiring an interdisciplinary effort to explore
the potential of ML post-GWAS prioritization in full.

KEY CONCEPTS

Supervised learning: Models learn from labeled training data.
Labeled positive and negative examples in training allow a
model to practice decision-making before being assessed on new
“testing” data.
Unsupervised learning: Models learn from unlabeled data. The
models recognize patterns between samples that can identify
clusters or outliers.
Semi-supervised learning: Models use both labeled and
unlabeled data during training to perform pattern recognition.
This is usually with a larger amount of unlabeled data than labeled
data and enables techniques such as positive unlabeled learning.
Overfitting: When a model performs well on training data but
poorly on test data. Some amount of overfitting is inevitable, but
extreme cases can render a model useless.
Cross-validation: A procedure for assessing generalization error.
Data are split into k subsets (or folds) of roughly equal size.
Train k separate models with each fold held out once for testing.
Average error across the k trials is reported.
Class imbalance: When the ratio of positive to negative labels
is far from one, creating less opportunity for a model to learn
from the minority class. Imbalance-aware methods perform
undersampling or oversampling of majority and minority classes,
respectively, to balance the dataset.
Sensitivity: The number of true positive samples correctly
classified by a model. Also known as the true positive rate
or recall.
Specificity: The number of true negative samples correctly
classified by a model. Also known as the true negative rate
or selectivity.
Precision: The ratio of true positives to declared positives.
Also known as the positive predictive value, and equal to the
complement of the false discovery rate.
AUROC: Area under the receiver operating characteristic curve,
which illustrates the tradeoff between sensitivity and specificity.
Can be interpreted as the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative one.
AUPRC: Area under the precision-recall curve, which
illustrates the tradeoff between precision and recall; useful
when classes are imbalanced.

CONCLUSION

Machine Learning is gradually proving itself to be a
valuable tool for post-GWAS analysis, as methodology
and high quality training data iterates, ML is showing
increasingly optimized performance for prioritizing loci.
It has begun to output results which have been validated
by showing clinical impact. For complex diseases such as
CVD, its ability to generate hypotheses has streamlined
functional work that has led to biological insights –
enabling the unraveling of how the predominantly non-
coding associated loci may affect cardiovascular health.
However, before ML models can consolidate their role in the
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post-GWAS analyses, research needs to address several
aspects ranging from performance (including model
benchmarking and fine-tuning), reproducibility, and
accessibility. There also needs to be greater comparison
between ML and other prioritization methods in order
to understand ML’s place in the post-GWAS pipeline
and enable GWAS to truly provide the projected
biological insights and translational capability that it has
so long promised.
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