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Abstract
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Threonine dehydratase converts L-threonine to 2-ketobutyrate. Several threonine dehydratases exist in bacteria, but their
origins and evolutionary pathway are unknown. Here we analyzed all the available threonine dehydratases in bacteria and
proposed an evolutionary pathway leading to the genes encoding three different threonine dehydratases CTD, BTD1 and
BTD2. The ancestral threonine dehydratase might contain only a catalytic domain, but one or two ACT-like subdomains
were fused during the evolution, resulting BTD1 and BTD2, respectively. Horizontal gene transfer, gene fusion, gene
duplication, and gene deletion may occur during the evolution of this enzyme. The results are important for understanding
the functions of various threonine dehydratases found in bacteria.
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Introduction

There are usually two types of threonine dehydratase (ITD) in
bacteria: the biosynthetic threonine dehydratase (BTD) and the
catabolic threonine dehydratase (C'TD). They both could convert
L-threonine to 2-ketobutyrate, BTD functions in the biosynthetic
pathway of L-isoleucine when bacteria grow under the aerobic
condition, while CTD plays a role in the degradation of L-
threonine to propionate when bacteria grow under the anaerobic
condition [1]. BTD wusually contains an N-terminal catalytic
domain and a C-terminal regulatory domain, while C'TD usually
contains only the catalytic domain. Sequence and structure
analyses have revealed that the C-terminal regulatory domain of
BTD is composed of one or two ACT-like subdomains (Fig. 1).
BTD containing two ACT-like subdomains (BTD2) encoded by
the gene A in Escherichia coli is the key enzyme for L-isoleucine
biosynthesis, and its activity is inhibited by the end product L-
isoleucine but could be countered by L-valine, the product of a
competing biosynthetic pathway [2]. BTD containing one ACT-
like subdomain (BTD1) encoded by iv4 in Bacillus subtilis could be
inhibited by L-isoleucine or by high concentrations of L-valine [3].
CTD encoded by the gene tdeB in Salmonella typhimurium is
insensitive to L-isoleucine or L-valine, but its activity could be
activated by AMP and CMP [4]. These examples indicate that the
function of TD is closely related to the number of ACT-like
subdomains it contains.

The sequence and/or structure of several TDs in bacteria have
been characterized [2,5,6], but the differences on the sequence
and structure of C'TD, BTD1 and BTD2 are not fully understood.
In this study, we analyzed the amino acid sequences of all the
available TDs in bacteria, and proposed an evolutionary pathway
leading to the genes encoding CTD, BTD1 and BTD2 in the
present bacteria.
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Materials and Methods

Sequential and structural alignment of CTD and BTD

There are 15120 TD sequences in the protein database of
NCBI. The number of amino acids in these TDs is mainly around
350, 400 or 510. Because C'TD usually contains less amino acids
than BTD, we assume that the TDs containing about 350 amino
acids are C'TD. Thus, all TDs were divided into two groups: BTDs
which contain more than 360 amino acids, and CTDs which
contain less than 360 amino acids. One BTD and/or CTD
sequence was chosen from each genus, and as a result, 546 BTDs
and 328 CTDs were chosen. These TDs were further confirmed
by wusing Conserved Domain Architecture Retrieval Tool
(CDART) in NCBI [7] to check if they contain the ACT-like
subdomain. The sequence alignments of these BTDs and C'TDs
were performed by using ClustalX 2.1 [8], and the logos were
generated by using Weblogo 3 web service [9] (http://weblogo.
threeplusone.com/ create.cgi).

The crystal structure of BTD2 (1TDJ) from E. coli and CTD
(2GN2) from S. typhimurium were obtained from PDB database
[10]. The structure of BID1 coded by gene oA from B. subtilis was
modeled by using SWISS-MODEL Web server [11] with default
parameters. These structures were used to build the comparison
model by PyMol. The crystal structures of E. coli BTD2 and S.
tphimurium C'TD were further pairwise aligned by using FATCAT
web service [12] with flexible model, and the structural alignment
of the PLP binding sites and the substrate binding sites were
performed by using PyMol.

Distribution of species containing TD and construction of
phylogenetic trees

The distribution of species containing TDs in nature were
obtained from the UniProtKB database (http://www.uniprot.org/
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Figure 1. Structure comparison of BTD2 (1TDJ) in E. coli, BTD1 in B. subtilisand CTD (2GN2) in S. typhimurium. Two domains in BTD1 and
BTD2 are separated by a middle linker. The larger domain on the left is the catalytic domain, and the smaller one on the right is the regulatory
domain composed of ACT-like subdomains. CTD (shown in green) contains only the catalytic domain; BTD1 (shown in red) contains the catalytic
domain and one ACT-like subdomain; BTD2 (shown in blue) contains the catalytic domain and two ACT-like subdomains.

doi:10.1371/journal.pone.0080750.g001

browse/uniprot/by/taxonomy/?query = ec%3A4.3.1.19) [13]. In
this database 3607 species were found to contain TDs, they
include 3504 species in Bacteria and 103 species in Archaea and
Eukaryotes. Because the 3504 bacterial species are mainly
distributed in Proteobacteria (1803 species), Firmicutes (1285
species) and Actinobacteria (280 species), representative species
were selected from these three phyla for further study. Sequence
analysis showed that TDs from the stains within the same species
are highly conserved, thus we selected one TD sequence from each
species to construct the phylogeny. 1-5 representative species were
selected in the same order within o-, B-, &-, & and Y-
proteobacteria, and in the same class in Firmicutes and
Actinobacteria. Total 82 species were selected. TDs in these 82
representative species were searched by using BLASTp with
default parameters, and the sequence of E. coli BID2 encoded by
lvA was used as the query. The representative species and the TDs
they contain are listed in Table S1. These TDs were divided into
groups of BTD1, BTD2 and CTD, based on the number of ACT-
like subdomains they contain which were determined by CDART
analysis. 16s TDNA sequences of these 82 strains were collected
from Ribosomal Database Project (RDP) database [14]. The
alignment of multiple sequences was performed by using ClustalX
2.1. Phylogenetic trees of protein sequences and 16s rDNA
sequences were performed by using Mega 5 [15] software and the
neighbor-joining methods.

Results

Catalytic domains of all CTDs and BTDs are conserved
Both BTD and CTD could convert L-threonine to 2-
ketobutyrate. To understand their difference and evolutionary
relationship the sequence and structure of BIDs and CTDs were
analyzed. The sequence logos of CTD (Fig. 2A) and BTD (Fig. 2B)
were generated from 328 bacterial CTDs and 546 bacterial BT Ds.
Because TD belongs to pyridoxal-5'-phosphate (PLP)-dependent
enzyme type II family [16,17], the conserved amino acids for
binding PLP were found in both logos of C'TDs (K134, N183,
G311, G312, G313, G314, L315, $454) and BTDs (K159, N211,
G345, G346, G347, G348, L349, S507). The conserved amino
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acids for substrate binding sites were also found in both logos of
CTDs (H184, P266, F/Y267, V279, Q283) and BTDs (H212,
P285, F/Y286, V299, Q303) [4]. Other highly conserved residues
found in both logos include K122, E124, Q128, R136, G137,
K212, G282, E289, G318, E419, G470, N472 for CTD (Fig. 2 A)
and K147, E149, Q152, R161 G162, K242, G302, E309, G352,
E465, G508, N510 for BTD (Fig. 2B), corresponding to the
residues K47, E49, Q52, R60, G61, K113, G161, E168, G191,
E282, G312, N314 in CTD encoded by tdeB in S. typhamurium. The
correlation between the phylogenetic relationship and conserva-
tion of certain key residues in TDs, and the function of some
highly conserved residues need to be further studied.

Structure of a specific BID (1TDJ) encoded by v4 in E. coli and
a specific CTD (2GN2) encoded by tdeB in S. typhimurium were
aligned; the RMSD (root mean square deviation) was 1.90 A with
321 N-terminal residues aligned. As shown in Fig. 2C and D, the
key amino acids at both the PLP binding sites (K58, N85, G184,
G185, G186, G187, L188, S311) and the substrate binding sites
(H86, P152, F153, V158, Q162) are all superimposed coincident-
ly. The highly conserved structure and sequence of BTD and
CTD suggest that the N-terminal of CTD and BTD should be
evolved from the same ancestor [18].

Phylogenetic analysis suggests that gene fusion,
duplication and deletion events have occurred during TD
evolution

Based on UniProtKB database, TDs are widely distributed in
3,607 species: 97% in Bacteria, 1.6% in Eukaryotes and 1.4% in
Archaea. Bacterial TDs are mainly distributed in Proteobacteria
(51%), Firmicutes (37%), and Actinobacteria (8%). Therefore, 82
strains were selected from these three phyla of bacteria as
representative species for the phylogenetic analysis: 48 strains
from Proteobacteria, 17 strains from Firmicutes, and 17 strains
from Actinobacteria (Table S1).

A phylogenetic tree was constructed using the protein sequences
of TD from the 82 bacterial species (Fig. 3). Overall there were
major four clusters in the tree: one CTD cluster, two BTDI
clusters (BTD1-A and BTD1-B) and one BTD2 cluster (Fig. 3A).
In this study, TD sequences for constructing the phylogenetic tree
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Figure 2. Sequence alignment of CTDs and BTDs and structure alignment of BTD2 (1TDJ) and CTD (2GN2). A. The sequence alignment
of CTDs from 328 species of bacteria. B. The sequence alignment of BTDs from 546 species of bacteria. The PLP binding sites and the substrate
binding sites are labelled by purple and blue dots, respectively. The other highly conserved residues are labelled by black dots. C. The aligned
structure of PLP binding sites of BTD2 and CTD. D. The aligned structure of substrate binding sites of BTD2 and CTD. The amino acid residues directly
involved in PLP binding sites and the substrate binding sites are shown in sticks. Residues from CTD are shown in blue and residues from BTD are
shown in red. The residues are labled accoding to the sequence of CTD coded by tdcB in S. typhimurium [4].
doi:10.1371/journal.pone.0080750.g002
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Figure 3. Phylogenetic tree based on the amino acid sequences
of TDs from 82 representative species. Genes encoding the
enzymes are represented by arrows. The overall structure of the
phylogenetic tree is shown in A. Because it is too big to show in a single
page, the detail structure of the phylogenetic tree is divided into three
panels (B, C and D). The connecting point of the tree segments in the
three panels is marked with a broken line. The strains shown in bold
contain both genes encoding for BTD1-A and BTD1-B. g, B, §, ¢, v, F and
A indicate a-proteobacteria, B-proteobacteria, d-proteobacteria, -
proteobacteria, y-proteobacteria, Firmicutes and Actinobacteria, re-
spectively. The tree was constructed with the MEGA 5 software using
the neighbor-joining method and 1000 bootstrap replicates.
doi:10.1371/journal.pone.0080750.g003

were selected from a wide range of species and the length of BTDs
and CTDs are quite different. Therefore, some bootstrap values
on the tree are lower than 50. BID2 was found mainly in species
of B- and y- Proteobacteria, and a few species of a-Proteobacteria
(Fig. 3B); BTDI1-A was found mainly in species of Firmicutes,
Actinobacteria and a few species of a-Proteobacteria (Fig. 3B);
BTDI1-B and CTD were found in species of all the three phyla:
Proteobacteria, Firmicutes and Actinobacteria (Fig. 3C and D).
The finding of two distinct BID1 clusters, BTD1-A and BTD1-B,
is interesting. There were 8 species of Firmicutes and Actinobac-
teria (shown in bold in Fig. 3) containing both BTDI-A and
BTD1-B, suggesting that gene duplication of BTD1 might occur in
the bacteria. According to the tree, BTD1-A cluster is much closer
to BTD2 cluster than to BTD1-B, while BID1-B cluster is much
closer to CTD cluster. Based on these data, CTD might be the
common ancestor for all the TDs, and BITD1 and BTD2 might be
the gene fusion product of ancestral CTD and ACT-like
subdomains because the combination of different domains is an
important mechanism for the evolution of multidomain proteins
[19]; BTD2 might be derived from ancestral BITDI1-A during
evolution because it is much closer to BTDI-A cluster than to
BTDI-B cluster in the phylogenetic tree. Phylogeny trees were
constructed using sequences of ACT-like subdomain of BTD1 and
each of the two ACT-like subdomains of BTD2, and the results
showed that the first ACT-like subdomain of BTD2 is closer to the
ACT-like subdomain of BTDI1 than the second ACT-like
subdomain of BTD2. This does not mean that the second ACT-
like subdomain of BTD2 was generated from a new ACT
subdomain, because it could also be duplicated from the ACT-like
subdomain of BTDI, considering the duplicated sequences of a
protein are usually highly divergent to avoid the misfolding.
Moreover, though the regulatory domains of TDs have close
structural and functional relationships with ACT family domains
[20-21], they have little sequence similarity with ACT family
domains, and could not be assigned by PSI-BLAST as ACT
family. Thus, the regulatory domains of TDs are named as AC'T-
like subdomains. Therefore, the second ACT-like subdomain of
BTD2 is more likely the result of a duplication of the ACT-like
subdomain of BTDI rather than a fusion of a new ACT
subdomain. Since BTDs also exist in Eukaryotes and Archaeca,
the fusion of CTD and ACT-like domain could be happened
before the divergence of three kingdoms.

Fig. 4 shows the phylogenetic tree constructed from the
sequences of 16s TDNA of the 82 bacterial strains (Table S1).
The arrows next to the species indicate C'TD, BTD1-A, BTD1-B
or BID2. BIDI encoding genes were found in all three phyla
except for y-Proteobacteria. Both BIDI1-A and BTDI1-B were
found in 8 bacterial species (shown in bold), but only one of them
was found in other species, suggesting the deletion event of BTD1-
A or BTD-1B might happen after the duplication event of
BTDI1. BTD2 was found in almost every species of B- and
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Figure 4. Phylogenetic tree based on 16S rDNA sequences
showing the phylogenetic distribution of the TD enzyme. The
phylogenetic tree was constructed with MEGA 5 software using
sequences from RDP database. Because it is too big to show in a
single page, the structure of the phylogenetic tree is divided into two
panels (A and B). The connecting point of the tree segments in the two
panels is marked with a broken line. The scale bar indicates 0.02 change
per nucleotide. The arrows at the right represent the TDs that could
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exist in the bacterium and the numbers next to the arrow show the
number of genes that might encode the TD.
doi:10.1371/journal.pone.0080750.9004

Y-proteobacteria, but only in 3 species of o-proteobacteria. This
suggests that BTD2 might generate within the ancestor of - and
Y-proteobacteria after its divergence from o-proteobacteria, and
BTD2 existing in the 3 species of o-proteobacteria could be
generated by horizontal gene transfer from species of B- or 7y-
proteobacteria (Fig. 4A). Although most of the 82 strains exist
more than two TDs, BTD2 and BTD1-A were never found in the
same strain, suggesting that BTD2 should be derived from the
ancestral BTDI1-A by fusing with another duplicated ACT-like
subdomain. BTD1-B and BTD2 were found in some species of -
proteobacteria, but only BTD2 encoding genes were found in -
proteobacteria, suggesting that BI'D1-B might be deleted in some
species after BTD2 was evolved. CTD, BTD1-B and BTD2 were
all found in 8 bacterial strains of Proteobacteria but only one or
two of them found in other strains, strongly suggesting that the
deletion events might happen for TDs in bacteria during the
evolution.

Discussion

Based on the homology and phylogenetic analysis, an evolu-
tionary model for TDs was proposed (Fig. 5). The ancestor
possessed only a single copy of gene encoding CTD containing
only the catalytic domain. Later the gene was duplicated, and the
redundant copy was fused with a DNA fragment encoding for
ACT-like subdomain, producing the gene encoding for BTDI1-B.
Then this gene was duplicated, generating a copy encoding for
BTDI1-A. With the divergence of new species, one or two of the
genes encoding for CTD, BTDI1-A and BTDI-B were deleted
from the genome. The similar duplication and deletion events
were also found for the {pxH gene in Kdo, lipid A biosynthesis
pathway [22]. The gene /pxH was duplicated within Proteobac-
teria, and one of them was lost along with new species generation.
Within the ancestor of some species of Proteobacteria, the ACT-
like subdomain of BTDI-A might be duplicated, generating
BTD2. With the divergence of new species, the gene encoding for
CTD, or BIDI1-B were deleted from the genome. Two copies of
BTD2 were observed in one species of Proteobacteria, suggesting
that the duplication of BTD2 could also occur.

Our proposed evolutionary model of TD is consistent with the
published theories, which suggest that organisms prefer to generate
new genes encoding multiple domain proteins from the pre-
existing genes [19,23,24], and new enzymes are usually evolved
from enzymes with similar biochemical function rather than in the
same biosynthetic pathway [25-28]. CTD exists not only in
bacteria, but also in plants and yeast [29-33], suggesting that the
pathway of L-threonine degradation may exist in the ancestral cell
before the divergence of the three kingdoms. In the primordial
soup where organic compounds were rich, the ancestral cell might
have more catabolic pathways than biosynthetic pathways,
therefore, it might only need CTD for gaining energy under the
anaerobic condition [23]. With the increase of the number of
primordial cells, the prebiotic supply of amino acids might be
exhausted, and 2-ketobutyrate produced by CTD might also be
used for L-isoleucine biosynthesis. For better adapting the
environment, BTD were created in modern bacterial species by
combining CTD and ACT-like subdomain to satisfy the necessary
regulation of L-isoleucine and/or L-valine [34]. ACT family
domain is wildly conserved in bacteria and evolutionarily mobile.
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It is always combined with other domains to provide easily
regulated enzymes [21,35].

The interaction between different domains may lead the
enzyme easier to fold correctly [36]. Thus BTD1 or BTD2 which
contains both the catalytic domain and the ACT-like subdomain
might be more stable than C'TD which contains only the catalytic
domain. The activity of BTD2 might be regulated more easily
than that of BTD1 because BTD2 contains one more ACT-like
subdomain than BTD1 [3]. Flexibility is one important reason for
protein evolution, and the mechanical flexibility of proteins are
critical for their functions [37]. More flexible the structure of an
enzyme is more easily its activity could be regulated [38,39]. This
suggests that the structure of BTD2 may be more flexible than
BTDI, and BTD2 might be evolved to benefit bacteria to adapt
the more complex environment [38,40]. As the activity of BTD is
inhibited by the end product L-isoleucine, constructing feedback
resistant BTD has been used to increase the L-isoleucine
production in industrial fermentation [41-43]. CTD encoded by
ldeB from E. coli has been overexpressed in . glutamicum to improve
the production of L-isoleucine [44,45]. Our results suggest that
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