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Abstract: Metabolic syndrome is characterized by a combination of obesity, hypertension, 

insulin resistance, dyslipidemia, and impaired glucose tolerance. This multifaceted syndrome 

is often accompanied by a hyperdynamic circulatory state characterized by increased blood 

pressure, total blood volume, cardiac output, and metabolic tissue demand. Experimental, epide-

miological, and clinical studies have demonstrated that patients with metabolic syndrome have 

significantly elevated cardiovascular morbidity and mortality rates. One of the main and 

frequent complications seen in metabolic syndrome is cardiovascular disease. The primary 

endpoints of cardiometabolic risk are coronary and peripheral arterial disease, myocardial 

infarction, congestive heart failure, arrhythmia, and stroke. Alterations in expression and/or 

functioning of several key proteins involved in regulating and maintaining ionic homeostasis 

can cause cardiac disturbances. One such group of proteins is known as ryanodine receptors 

(intracellular calcium release channels), which are the major channels through which Ca2+ 

ions leave the sarcoplasmic reticulum, leading to cardiac muscle contraction. The economic 

cost of metabolic syndrome and its associated complications has a significant effect on health 

care budgets. Improvements in body weight, blood lipid profile, and hyperglycemia can reduce 

cardiometabolic risk. However, constant hyperadrenergic stimulation still contributes to the 

burden of disease. Normalization of the hyperdynamic circulatory state with conventional 

therapies is the most reasonable therapeutic strategy to date. JTV519 (K201) is a newly devel-

oped 1,4-benzothiazepine drug with antiarrhythmic and cardioprotective properties. It appears 

to be very effective in not only preventing but also in reversing the characteristic myocardial 

changes and preventing lethal arrhythmias. It is also a unique candidate to improve diastolic 

heart failure in metabolic syndrome.
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Metabolic syndrome
Metabolic syndrome is characterized by a combination of obesity, hypertension, 

insulin resistance, dyslipidemia, and impaired glucose tolerance.1 The mechanisms 

responsible appear to be multifactorial, and include family history, physical inactivity, 

and a sedentary lifestyle. Key market players spend millions of dollars developing 

new therapeutic strategies against components of metabolic syndrome and its related 

complications. The challenge in this area is that the emerging therapeutic agents 

seem not to be very effective in treating obesity and insulin resistance or reducing 

further cardiometabolic risk.2 This multifaceted syndrome is often accompanied by a 

hyperdynamic circulatory state characterized by increased blood pressure, total blood 

volume, cardiac output, and metabolic tissue demand.3–10 Hypertension generally 
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amplifies the high cardiovascular risk if the disease remains 

uncontrolled for a long time.11–15

Experimental, epidemiological, and clinical studies have 

demonstrated that patients with metabolic syndrome have sig-

nificantly elevated cardiovascular morbidity and mortality.10–17 

Hypertension and changes in heart rate generally appear 

early on, with the risk of developing coronary artery dis-

ease, arteriosclerosis, and heart failure increasing at a later 

stage.3–10,16 In the end, making a decision regarding “which 

aggravates which first” is complicated. All these assessments 

aim to generate the best treatment modalities which provide 

a better health care strategy in a cost-effective manner. The 

basic therapeutic approach still focuses on decreasing body 

weight (adipose tissue mass) and hepatic fat deposition. Diet, 

exercise, and lifestyle modification are out of professional 

control in most cases, because they depend on the patient’s 

intellectual capacity and their economic situation. Coping 

with all these strategies requires good patient monitoring with 

conventional and/or new therapeutic agents.

Newly identified compounds should aid in the manage-

ment of body weight with improvement in blood glucose in 

patients with diabetes.18 Randomized controlled clinical trials 

have shown that exenatide, a glucagon-like peptide analog, 

is effective in reducing glycemic events and assisting with 

beneficial weight loss.2,19 Nausea is a known side effect of 

this drug, along with rare cases of pancreatitis, but its side 

effect profile still lies within the acceptable range.19 The other 

newer agents, ie, the dipeptidyl peptidase-4 (DPP-4) inhibi-

tors (sitagliptin and vildagliptin) combined with metformin, 

glitazone, and sulfonylurea in clinical trials have been shown 

to be very effective for blood glucose control.2,18,20 The trials 

indicate that these agents are associated with fewer hypo-

glycemia episodes and less weight gain, and that they are 

also an effective intervention to decrease obesity. On the 

other hand, less information is available about whether they 

have any beneficial effects on cardiovascular complications. 

However, some knowledge already exists showing that they 

reduce glycosylated hemoglobin (HbA
1c

) levels by a couple of 

percentage points and decrease hyperglycemic/hypoglycemic 

episodes, especially nocturnal ones.18,20 However, further data 

are required to assess their long-term efficacy and tolerabil-

ity in clinical trials to determine their exact cardiovascular 

benefits in metabolic syndrome.

Cardiovascular dysfunction  
in metabolic syndrome
Obesity and metabolic syndrome can cause cardiovascular 

complications.1,3–10,13,16,21–24 The underlying molecular 

mechanisms responsible could be related to the development 

of a hyperdynamic circulatory state, which may trigger a 

variety of cardiac and hemodynamic changes. To date, from 

metabolic syndrome through diabetes, a new treatment 

paradigm is emerging. To cope with the complications 

associated with metabolic syndrome, early diagnosis of the 

disease is essential. Despite an increase in the diagnosed/

undiagnosed ratio in recent years, they have to treat with 

new updated therapeutic guidelines to protect against 

complications.21,23–25 Under these circumstances, a poor 

diet secondary to a sedentary lifestyle without appropriate 

treatment increases cardiometabolic risk. The basic treat-

ment strategies still appear as simple as ever, and include 

control of body weight, blood pressure management, and 

normalization of blood lipids, with maintenance of nor-

moglycemia. The link between metabolic syndrome and 

cardiovascular risk is clear, but the underlying molecular 

mechanisms need to be investigated to assist our treatment 

decisions.

The main consequences of the cardiometabolic risk pro-

file are coronary and peripheral arterial disease, myocardial 

infarction, congestive heart failure, arrhythmia, and stroke.10 

However, because overweight and obesity are independent 

risk factors, insulin resistance and lipid disturbances appear to 

be integral components of the disease.10,14,18 Reduced HbA
1c

, 

low-density lipoprotein cholesterol and triglycerides and 

increased high-density lipoproteins are already well known 

to lower cardiometabolic risk.

Cardiac ryanodine receptors
Alterations in the expression and/or function of several 

key proteins involved in regulating and maintaining ionic 

homeostasis can cause cardiac disturbances. One such group 

of proteins is called the ryanodine receptors (RyRs), which 

are a component of the intracellular Ca2+ release channels 

located in the membrane of the sarcoplasmic reticulum.4,26,27 

Three isoforms have been identified in the human heart, and 

are referred to as type 1, 2, and 3 (RyR
1
, RyR

2
, and RyR

3
, 

respectively).27,28 Type 2 ryanodine receptors are the major 

release channels through which Ca2+ leaves the sarcoplasmic 

reticulum and leads to cardiac muscle contraction.28 Rapid 

depolarization of the sarcoplasmic reticulum membrane in 

the heart by Ca2+ via the RyR
2
 receptor is an important step 

in cardiac contractility. However, the physiological role of 

the RyR
1
 and RyR

3
 isoforms also expressed in the human 

heart remains unclear.27

RyR
2
 is a homotetramer comprising four 565 kDa mono-

mers, each containing a transmembrane segment.28 The RyR
2
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receptor normally closes at low cytosolic Ca2+ levels during 

diastole. However, submicromolar cytosolic Ca2+ levels 

increase the probability of the channel being open with 

high-affinity binding sites available.4,28–32 A plant alkaloid 

ryanodine isolate, Ryania speciosa, found in central and 

South America, locks the RyR
2
channel in a subconductance 

state and induces paralysis, and was previously tested as an 

insecticide.28 Subsequently, ryanodine was used to purify 

RyR
2
 from the sarcoplasmic reticulum as a high-affinity 

ligand.28,33 Beyond that, no therapeutic indication has been 

identified as yet which would warrant its development as a 

pharmaceutical product.

The calcium channel binding protein, FKBP12.6 (12.6 kDa 

FK506-binding protein) binds to RyR
2
 and stabilizes the 

closed state of the channel, and has recently been renamed 

as calstabin 2.34–36 Dissociation of FKBP12.6 from RyR
2
 

increases the open probability of the channel.28 Furthermore, 

genetic deletion of calstabin 2 enhances Ca2+ release from 

the sarcoplasmic reticulum and causes leaky RyR
2
.28 Protein 

kinase A and calcium/calmodulin dependent kinase A 

(CaMKII) phosphorylate serine 2809 (Ser2809) and Ser2814, 

respectively, on RyR
2
.37–39 However, many different phospho-

rylation sites (Ser2808, Ser2809, Ser2814, Ser2815, and Ser2030) have 

now been reported for both these enzymes across different 

species.37–39 Phosphorylation of RyR
2
 by protein kinase A 

causes increased sensitivity of RyR
2
 to intracellular Ca2+, dis-

sociation of calstabin 2 from the channel, and enhanced RyR
2
 

activity,40 leading to an increase in the open probability of the 

channel. Recent evidence has demonstrated that nitrosylation 

and/or oxidation of RyR
2
 also alters the binding affinity of 

calstabin 2, which affects channel activity.41,42 CaMKII is also 

a holoenzyme which sensitizes the channel to cytosolic Ca2+ 

and increases the open probability of the channel, but does 

not dissociate calstabin 2 from the channel.39

Other modulatory proteins, ie, phosphodiesterase 4D3 

(PDE4D3), calmodulin, protein phosphatase 1 and 2a, and 

sorcin, modulate the N terminal cytoplasmic domain of RyR
2
, 

which includes calstabin 2, protein kinase A, and CaMKII.28 

PDE4D3 binds to kinase-anchoring protein, which is part 

of the RyR
2
 macromolecular complex and degrades cyclic 

adenosine monophosphate (cAMP). Protein kinase A also 

binds kinase-anchoring protein to regulate local cAMP levels 

near the channel, as does PDE4D3. Protein phosphatase 1 and 

2a dephosphorylate phosphorylated channels via spinophilin 

and PR130, respectively, and indirectly regulate channel 

activity. Protein phosphatase 1 predominantly dephospho-

rylates Ser2808 and Ser2809, while protein phosphatase 2a 

dephosphorylates Ser2814. Many of these modulatory proteins 

can prevent or ameliorate the probability of the channel being 

open, thereby contributing directly to cardiac contraction.28

Nevertheless, calmodulin, a 17 kDa protein, assists in the 

closing state of RyR
2
, binding 3583–3603 amino acids after 

Ca2+ release from the sarcoplasmic reticulum during excita-

tion-contraction coupling, which basically inhibits RyR
2
.43–45 

Sorcin, a 22 kDa Ca+ binding protein, also reduces the open 

probability of RyR
2
, which decreases the amplitude of Ca2+ 

release from the sarcoplasmic reticulum without affecting 

L-type Ca2+ current when Ca2+ levels are elevated.46,47 

Calsequestrin, junctin, and triadin are modulatory proteins 

related to the C terminus which form a complex with RyR
2
 

in the lumen of the sarcoplasmic reticulum.28,48 Calsequestrin 

sequesters Ca2+ in the sarcoplasmic reticulum, causing an 

increase in the open probability of RyR
2
.28 Triadin and junctin 

link calsequestrin to the channel and normalize the Ca2+ load 

in the sarcoplasmic reticulum.28 Current strategies for the 

management of cardiac disturbances do not focus directly 

on RyR
2
 and no relevant molecule has been approved as yet 

anywhere in the world. Several attempts at developing RyR
2
 

as a therapeutic molecule have been made in the past, but 

were unable to demonstrate efficacy and safety.

Ryanodine receptor dysfunction  
in metabolic syndrome
Obesity and its associated comorbidities affect almost 

one third of the population of the western world, and their 

prevalence tends to increase each year. The economic cost of 

metabolic syndrome and its complications have a significant 

impact on health care budgets worldwide. The most com-

mon complications seen in metabolic syndrome are cardio-

vascular in nature, and include arrhythmias, hypertension, 

and coronary artery disease. While improvements in body 

weight, blood lipid profile, and hyperglycemia can reduce the 

cardiometabolic risk, constant hyperadrenergic stimulation 

still contributes to the burden of the disease.

One of the mechanisms underpinning the increased 

cardiometabolic risk in metabolic syndrome is impaired 

Ca2+ storage in the sarcoplasmic reticulum and diastolic 

Ca2+ leak during hypersympathetic stimulation.4,16 It is 

assumed that treatment should aim to restore the normal 

hyperphosphorylation state involving excitation-contraction 

coupling proteins, such as RyR
2
.3,4,9,16 Many laboratories 

have found basal catecholamine levels to be elevated in 

metabolic syndrome.3,4,9,10,12,16,25,49 We have also previously 

demonstrated that induction of metabolic syndrome by 

chronic high-fat feeding increases circulating plasma epi-

nephrine levels by 55% and norepinephrine levels by 31%.3 
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Chronic activation of the sympathetic nervous system, 

as occurs in metabolic syndrome, leads to increased protein 

kinase A-mediated phosphorylation of RyR
2
 at Ser2809 and 

Ser2808 (see Figure 1).3–5,16 Recent experimental evidence sug-

gests that chronic hyperphosphorylation of RyR
2
 contributes 

to impaired contraction, generation of lethal ventricular 

arrhythmias, and development of heart failure via leaky 

RyR
2
 channels.50

We have recently demonstrated that the functional 

integrity of RyR
2
 is compromised by metabolic syndrome, 

as evidenced by augmented RyR
2
 phosphorylation together 

with diminished RyR
2
 binding affinity.4 RyR

2
 Ser2809 and 

RyR
2
 Ser2808 phosphorylation sites have been used widely 

as an index of RyR
2
 phosphorylation by protein kinase 

A. Other studies have demonstrated that CaMKII also 

phosphorylates the RyR
2
 (Ser2814 or Ser2815) molecule, and 

that CaMKII can activate RyR
2
 gating but not at protein 

kinase A (Ser2808 or Ser2809) sites, preventing dissociation 

of FKBP12.6 from RyR
2
 (see Figure 1). Protein kinases C 

and G can also phosphorylate the RyR
2
 molecule.28,39,40,51–53 

Protein kinase C-mediated and protein kinase G-mediated 

pathways are mainly responsible for phosphorylation of the 

Ser2030 RyR
2
 molecule, which can also be phosphorylated 

by protein kinase A but is certainly a poor substrate for 

CaMKII.28,35,51,54 Increased sympathetic nervous system 

activity could be a mechanism by which metabolic syn-

drome leads to impaired RyR
2
 function. The possibility 

of phosphorylation of RyR
2
 sites by different pathways in 
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Figure 1 Schematic diagram of RyR2 dysfunction in metabolic syndrome. Cardiac RyR2 dysfunction seen in metabolic syndrome (MetS) could be related to the cAMP/PKA-
dependent pathway under constant hyper adrenergic stimulation. Increased Ser2809 phosphorylation of cardiac RyR2 in MetS is possibly mediated by PKA activation. Increase 
in circulating catecholamine stimulates G-protein-coupled b-ARs thereby activating intracellular cyclic adenosine monophosphate (cAMP) and PKA. JTV-519 (K201) increases 
binding affinity of FKBP12.6 to RyR2, which stabilizes the closes state of RyR2 channels and prevents Ca++ leak which protects from ventricular arrhythmias, contractile 
dysfunction and reduce Ca++ overload. 
Abbreviations: SR, sarcoplasmic reticulum; b1–AR, adrenoreceptor; b2–AR, adrenoreceptor; Gsa, stimulatory protein G alpha; Gia , Inhibitory protein alpha; AC, adenyle 
cyclase; PDE4, phosphodiesterase 4; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; mKAP, a kinase anchoring protein; CaMKII, calcium/calmodulin 
dependent kinase II; Ser 2808, Serin2808; Ser 2814, Serine2814.
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different species has not been clearly defined as yet, and 

needs to be investigated.

The cardiac RyR
2
 dysfunction seen in metabolic syndrome 

could be related to a cAMP/protein kinase A-dependent 

pathway under constant hyperadrenergic stimulation (see 

Figure 1).2–5,16 Increased Ser2809 phosphorylation of cardiac 

RyR
2
 in metabolic syndrome is possibly mediated by acti-

vation of protein kinase A, whereby there is an increase in 

circulating catecholamines which stimulate G protein-coupled 

β-adrenoceptors, thereby activating intracellular cAMP and 

protein kinase A (see Figure 1). This hypothesis is supported 

by earlier studies in which chronic sympathetic activation 

resulted in protein kinase A-mediated hyperphosphorylation of 

RyR
2
.28,54,55 Earlier studies indicate that constant sympathetic 

nervous system activity can switch the predominant cardiac 

signaling pathway from protein kinase A to CaMKII.28,37,51,56 

Whether metabolic syndrome alters signaling pathway 

through the protein kinase A or CaMKII is presently unknown; 

however, Xiao et  al recently demonstrated that constant 

β-adrenoreceptor stimulation switches the signaling pathway 

from being predominantly protein kinase A-driven to being 

mainly CaMKII-driven.50,53

We have also demonstrated that metabolic syndrome 

compromises only the functional integrity of the cardiac 

RyR
2
 receptor without downregulation, as evidenced by 

diminished binding affinity and no change in mRNA or 

protein expression.4 Changes in modulatory proteins that 

could also contribute to impaired functional integrity of 

RyR
2
 include altered dissociation of FKBP12.6 and/or 

PDE4D3 deficiency. However, whether these modulatory 

proteins contribute to impaired functional integrity of RyR
2
 

in metabolic syndrome is unknown.

The majority of patients with metabolic syndrome have 

absolute or relative insulin deficiency (diabetes), including 

hyperinsulinemia, dyslipidemia, and dysregulation of the 

renin-angiotensin system. These parameters compromise 

the molecular levels of myocytes, including RyR
2
 and 

sarco(endo)plasmic reticulum Ca2+-ATPase. Direct and indi-

rect effects of glucotoxicity trigger overproduction of reactive 

oxygen species, poly(ADP-ribose) polymerase, and advanced 

glycation end-products, and induce apoptosis.57 They cause 

altered expression and function of RyR
2
 via post-translational 

modifications of extracellular matrix components, which 

contribute to systolic and diastolic dysfunction.57,58 Hyper-

glycemia causes two types of post-translation modifications 

on RyR
2
 and sarco(endo)plasmic reticulum Ca2+-ATPase; 

first, it increases production of reactive oxygen species 

(superoxide anions, hydroxyl radicals, lipid peroxides, 

hydrogen peroxide) and, second, it increases reactive nitrogen 

species (nitrosonium cation, nitroxyl anion, peroxynitrite).32,59 

These free radical and nonradical species alter the tertiary 

structure of RyR
2
, causing RyR

2
 to become sensitive to 

endogenous ligands, such as Ca2+ and adenosine triphosphate 

(ATP).32,59 We have previously demonstrated that advanced 

glycation end-products are formed on intracellular RyR
2
 

during diabetes; however, treatment with insulin minimizes 

these nonenzymatic products, which attenuate protein activi-

ty.32 RyR
2
 is a large transmembrane and long-lived protein 

(approximately eight days). It localizes in the sarcoplasmic 

reticulum and plays a critical role in cardiac excitation-

contraction coupling. When advanced glycation end-product 

complexes attenuate the RyR
2
 protein, the changes are 

permanent.31,32,59 For that reason, an oral hypoglycemic or 

insulin treatment-focused therapeutic strategy is not able to 

restore cardiac contraction.

Dyslipidemia is the other major component of metabolic 

syndrome and characterized by increased circulating fatty 

acids and triglycerides,57 causing cardiac lipotoxicity and 

accumulation of fatty acids in cardiomyocytes which, in 

turn, leads to increased shortening of the action potential 

in the K-ATP channel and dysregulation of the open 

probability in the RyR
2
 channel. It also causes diminished 

cycling of the L-type Ca2+ channel and reduction of Ca2+ 

stores in the sarcoplasmic reticulum.57 Chronic lipid accu-

mulation in cardiomyocytes also contributes to apoptosis 

via inhibition of the mitochondrial respiratory chain if 

fatty acids are not completely metabolized.57,60 However, 

intracardiac fatty acid accumulation enhances oxygen 

demand and generation of reactive oxygen species, and 

diminishes ATP synthesis because of mitochondrial 

dysfunction.60 In the normal subject, the heart obtains energy 

for cardiac contractility from fatty acid oxidation, but in 

a hyperinsulinemic state, the need for myocardial glucose 

decreases significantly and shifts fatty acid synthesis to the 

β-oxidation pathway, causing secondary dysregulation of 

open probability of the RyR
2
 channel.61

The chronic hyperinsulinemia seen in metabolic syn-

drome also activates the sympathetic nervous system and the 

renin angiotensin system indirectly through crosstalk between 

insulin-dependent signaling and cardiac progrowth pathways, 

via similar common elements in their molecules.57 Insulin 

activates a signaling cascade with neurohormonal growth 

agonists, eg, insulin like growth factor 1 and angiotensin 

II, which coordinate cell growth and protein synthesis 
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activated by extracellular signal-regulated kinase, and the 

phosphoinositol-3 kinase/protein-kinase B cascade associ-

ated with physiological cardiac hypertrophy.62 Both these 

pathways also activate the sympathetic nervous system and 

the renin-angiotensin system via trigger adrenergic and AT
1
 

receptors, as well as the angiotensin II pathway in the hyper-

insulinemic state.57 Constant hyperadrenergic stimulation 

further activates intracellular cAMP and protein kinase A, 

thereby causing hyperphosphorylation of RyR
2
 and mild to 

moderate leaky channels (see Figure 1).28,35,54,55 Decreasing 

the binding affinity of FKBP12.6 to RyR
2
 increases the 

probability of open RyR
2
 channels, and Ca2+ leak is seen 

during diastole. Ventricular arrhythmias, contractile 

dysfunction, and Ca2+ overload is triggered as part of that 

pathology.35,37,54,55,57

Cardiac hypertrophy and heart failure have been reported 

in patients with hypertension, diabetes, insulin resistance, 

and obesity, and increased sympathetic nervous system and 

renin-angiotensin system activity is well demonstrated in 

these patients. Indeed, the main complexity in therapeutic 

disadvantages is the indirect contribution of chronic 

hyperinsulinemia to already overstimulated adrenergic and 

angiotensin II pathways, and requires long-term follow-up 

studies. Intensive glucose control has demonstrated an indirect 

correlation with decreased cardiovascular complications, 

including hypertension, myocardial infarction, and 

stroke. This clearly answers the important question of which 

comes first, ie, whether overinsulinization triggers the central 

nervous system indirectly or whether the central nervous 

system could operate as a main driver of hyperinsulinemia.

Dysregulation of intracellular Ca2+ homeostasis has been 

reported previously in situations of abnormal membrane lipid 

content, glucotoxicity, and hyperinsulinemia, as well as in 

hyperadrenergic states.49,57,58 Alterations in the expression 

and function of sarco(endo)plasmic reticulum Ca2+-ATPase, 

the Na-K-ATPase Na+/Ca2+ exchanger, and RyR
2
 have been 

identified in these patient groups, and associated with 

hypertension, type 1 and 2 diabetes mellitus, obesity, and 

dyslipidemia.28,57,58 Although metabolic syndrome does 

not always coexist with type 2 diabetes, obesity alone 

can increase the risk of developing type 2 diabetes and 

this in turn increases diabetes-associated cardiovascular 

complications.49

Future therapeutic concepts
Until recent years, normalization of the hyperdynamic cir-

culatory state in metabolic syndrome using conventional 

therapies, such as adrenergic receptor blockers, angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers, 

and calcium channel blockers, was the most reasonable 

therapeutic strategy (see Figure 1).2,4,5 Other important aims 

were to reduce body weight, increase exercise capacity, 

restore a normal plasma lipid profile, and improve meta-

bolic biomarkers. However, in spite of normalizing these 

parameters, cardiometabolic risk remains mostly irreversible 

if the disease continues in the long term.2–5 Cardioselective 

β
1
-adrenoreceptor blockers control heart rate and aortic 

pressure, and decrease the cardiac index, especially dur-

ing exercise (Figure 1). We recently documented that basal 

catecholamine levels are elevated in metabolic syndrome.3  

It is very clear that adrenergic receptor blockers can normalize 

the increased sympathetic nervous system activity, thereby 

at least being able to protect the RyR
2
 channel against Ca2+ 

leak during diastole.

The β
1
-adrenoceptor blockers, angiotensin-converting 

enzyme inhibitors, and angiotensin receptor blockers 

suppress the hyperadrenergic state, thereby restoring the 

stoichiometry of the RyR
2
 channel. Many studies, including 

CONSENSUS, SOLVD-T, Val-HeFT, and CHARM, have 

demonstrated that angiotensin receptor blockers are more 

effective than angiotensin-converting enzyme inhibitors in 

congestive heart failure.63–65 In the Val-HeFT trial, angiotensin 

receptor blockers reduced the heart failure hospitalization 

rate when added to conventional therapy, including an 

angiotensin-converting enzyme inhibitor in most patients, 

but had no effect on mortality.66,67 The CHARM trial dem-

onstrated that an angiotensin receptor blocker reduced mor-

bidity and mortality as a result of reduced systolic function 

with or without combination with an angiotensin-converting 

enzyme inhibitor,66,67 indicating that this treatment strategy 

is beneficial and preserves left ventricular systolic function. 

Adrenergic receptor blockers and angiotensin-converting 

enzyme inhibitors were compared head-to-head in patients 

with congestive heart failure in clinical trials such as ELITE 

I and ELITE II.66,67 There have been some clinical trials of 

an angiotensin-converting enzyme inhibitor combined with 

digoxin, diuretics (SOLD-T), and a β
1
-adrenoceptor blocker 

(CIBIS-2).63,64,66,67 One-year mortality-related improvement 

in survival in patients with congestive heart failure was 

found to be better in patients who received combination 

angiotensin receptor blocker and angiotensin-converting 

enzyme inhibitor therapy, eg, in the CHARM-Added trial 

(diuretic + digoxin + angiotensin-converting enzyme inhibi-

tor + β
1
-adrenoceptor blocker + angiotensin receptor blocker) 
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if compared with SOLD-T (diuretic  +  digoxin  +  angio-

tensin-converting enzyme inhibitor) and CIBIS-2 

(diuretic  +  digoxin  +  angiotensin-converting enzyme 

inhibitor  +  β
1
-adrenoceptor blocker).65 Overall, the clini-

cal trials demonstrated that combination of an adrenergic 

receptor blocker + angiotensin-converting enzyme inhibitor 

produced better outcomes for patients with congestive heart 

failure, in terms of cardiovascular mortality risk and hospital 

admissions.

These treatment regimes can restore sympathovagal bal-

ance and can reverse remodeling in the failing heart, as evi-

denced by a significant reduction in left ventricular volume and 

an improved contractile response.63–65,67 The β
1
-adrenoceptor 

blockers failed to meet the necessary safety profile in meta-

bolic syndrome and diabetes because they can affect glyco

genolysis, interfere with insulin release, further impair glucose 

tolerance, and increase serum triglycerides.68 For these rea-

sons, angiotensin receptor blockers, angiotensin-converting 

enzyme inhibitors or combinations of these agents fit better 

in the treatment regime.66,67 In fact, these algorithms could be 

used in clinical trials of metabolic syndrome to explore the 

most beneficial pharmaceutical strategies.

JTV519 (K201) is a promising, newly developed 1, 

4-benzothiazepine drug and a nonspecific blocker of Na+, K+, 

and Ca2+ channels, with antiarrhythmic and cardioprotective 

properties.69 Like diltiazem, JTV519 blocks the L-type Ca2+ 

current, but is not classified as a Ca2+ channel blocker.69,70 

Rather than acting as a β-adrenoceptor blocker, it blocks 

α
1
-receptors and intracellular Ca2+ pathways.69,70 It is a 

relatively nonselective blocker of cation currents, including 

the Na+ current (I
NA

) in a voltage-dependent and frequency-

dependent manner.71,72 The time course of Na+ current block-

ade with JTV519 is slower than with lidocaine, similar to 

quinidine, and is believed to have intermediate rather than 

fast kinetics.70 It also blocks the inward rectifying K+ current 

(I
K1

) and rapidly activating component of the delayed recti-

fied K+ current (I
Kr

), but not the slowly activating component 

(I
Ks

).73 JTV519 blocks the Ca2+ current (I
Ca

) and muscarinic 

acetylcholine receptor-operated K+ current (I
KAch

).70,73

JTV519 stabilizes the closed state of RyR
2
 and increases 

the binding affinity of FKBP12.6 for RyR
2
 (see Figure 1), 

thereby reducing and preventing Ca2+ leak, and protecting 

against ventricular arrhythmia, contractile dysfunction, and 

Ca2+ overload.2,16,26,69,74 This beneficial combination of activity 

dramatically ameliorates the progression of heart failure as 

a result of myocardial damage resulting from Ca2+ overload. 

The most recent evidence shows that JTV519 protects against 

Ca2+ leak from the sarcoplasmic reticulum independent of 

the interaction between FKBP12.6 and RyR
2
.75 Spontaneous 

sarcoplasmic reticulum Ca2+ release (leak) also occurs when 

the Ca2+ content in the sarcoplasmic reticulum reaches a 

threshold level, ie, overload of Ca2+ stores in the sarcoplasmic 

reticulum,75 and is known as store overload-induced Ca2+ 

release (SOICR), which is independent of FKBP12.6 binding 

to RyR
2
.70,75 SOICR causes delayed after depolarizations and, 

in turn, arrhythmias, such as those seen in catecholaminergic 

polymorphic ventricular tachycardia and arrhythmogenic 

right ventricular dysplasia type 2.70,75

Since 2000, JTV519 has been investigated in Phase II trials 

for its ability to protect against acute myocardial  infarction, 

and is suggested to reduce reperfusion injury following 

percutaneous transluminal coronary angioplasty and 

has been shown to be protective in models of ischemia-

reperfusion injury and heart failure.76 Stabilization of RyR
2
 

reduces detrimental intracellular Ca2+ leak and improves 

both diastolic and systolic contractile function in the 

human heart with or without an FKBP12.6-RyR
2
 binding 

interaction.75 It has also been shown that inhibition of SOICR 

by JTV519 could be a sophisticated treatment strategy 

for catecholamine-induced or inherited forms of cardiac 

arrhythmia (catecholaminergic polymorphic ventricular 

tachycardia and arrhythmogenic right ventricular dysplasia 

type 2).77 JTV519 prevents myocardial infarction and sud-

den cardiac death.69,70 It provides more effective myocardial 

protection than calcium channel blockers and β
1
-adrenoceptor 

blockers. JTV519 also has fewer negative inotropic and 

chronotropic effects,69,70 and, in particular, prevents myo-

cardial injury caused by ischemia and catecholamines to 

a greater extent than do nicorandil, prazosin, propranolol, 

verapamil, and diltiazem.69,70

Metabolic syndrome is associated with a hyperdynamic 

circulatory state characterized by increased blood pres-

sure, total blood volume, cardiac output, and metabolic 

tissue demand.78,79 Many laboratories have demonstrated 

that basal catecholamine levels are elevated in metabolic 

syndrome.3,4,9,10,12,16,25,49 We have also previously shown that 

induction of metabolic syndrome by chronic high-fat feeding 

increases circulatory plasma epinephrine levels by 55% and 

norepinephrine levels by 31%.3 The hyperadrenergic state 

seen in metabolic syndrome could trigger lethal arrhythmias 

and myocardial ischemia, especially during exercise.3–5

JTV519 is a promising new drug for possible use in the 

treatment of the cardiovascular disturbances associated with 

metabolic syndrome. It is a cardioprotective agent against 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

95

Cardiac ryanodine receptors in metabolic syndrome

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2012:5

ischemia and hyperadrenergic states for two important 

reasons; first of all, it can not only protect against but also 

reverse myocardial damage, and second, it has fewer inotropic 

and chronotropic effects than the calcium channel blockers 

and cardioselective β- adrenoceptor blockers.70 JTV519 sta-

bilizes the closed state of RyR
2
, is thought to increase the 

binding affinity of FKBP12.6 for RyR
2
, and protects car-

diomyocytes against SOICR, which is independent of the 

FKBP12.6-RyR
2
 interaction.70,75

JTV519 blocks cardiac I
NA

, I
K1

, I
Kr

, I
Ca

 and I
KAch

70 and 

inhibits I
KAch

 and I
Kr

 in atrial muscle cells, which are potential 

channels for atrial fibrillation.73,80 It also inhibits I
KAch

 in the 

atrial appendage which generates atrial fibrillation, mostly 

in the sinus node.73,80 JTV519 also inhibits ventricular tachy-

cardia and fibrillation,70 and causes prolongation of the QT 

intervals. It suppresses torsades de pointes in a dose-depen-

dent manner by blocking α
1
-adrenoreceptors and inhibiting 

abnormal Ca2+ release from the sarcoplasmic reticulum.70 

SOICR may also cause delayed after depolarizations and 

contribute to development of ventricular arrhythmias.75 

Therefore, JTV519 appears to be a very good candidate as an 

antiarrhythmic agent in the treatment of atrial and ventricular 

arrhythmias in patients with metabolic syndrome, especially 

during exercise.

Another clinical application of JTV519 could be in dia-

stolic heart failure. To date, the exact etiology of diastolic 

heart failure is unknown and there are no drugs available to 

treat it. JTV519 could be a good choice because it normalizes 

left ventricular end-diastolic pressure, protects against the 

effects of catecholamines, and restores aortic valve open-

ing in the diastolic phase.69,70 Some treatment approaches 

available for systolic heart failure include digitalis, cyclic 

nucleotide phosphodiesterase inhibitors (milrinone, inamri-

none), angiotensin antagonists (angiotensin-converting 

inhibitors and receptor blockers), β-adrenoceptor agonists, 

and α-adrenoreceptor antagonists.69,70

One of the main complications seen in metabolic 

syndrome is cardiovascular disturbance, ie, hypertension, 

arrhythmias, coronary artery disease, and heart failure. Meta-

bolic syndrome is associated with a hyperdynamic circulatory 

state characterized by hypertension and increased cardiac 

output, with an enhanced cardiometabolic risk profile.4,5,16 

JTV519  stabilizes the closed state of RyR
2
 and increases 

the binding affinity of FKBP12.6 to RyR
2
.70 It also protects 

cardiomyocytes against SOICR, which is independent of the 

FKBP12.6-RyR
2
 interaction,75 protects against stress-induced 

cardiomyopathy,69,70 and prevents and restores myocardial 

injury more effectively than do the β-adrenoceptor blockers, 

Ca2+ channel blockers, α-adrenoreceptor antagonists, and 

vasodilator agents.70 JTV519 appears to be the most effective 

in not only preventing but also reversing myocardial altera-

tions caused by ischemia and catecholamines, protecting 

against lethal arrhythmias, and improving diastolic heart 

failure.70 It could be a future therapeutic strategy to target the 

arrhythmias, myocardial ischemia, myocardial infarction, and 

diastolic heart failure seen in metabolic syndrome.
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