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The ability of cancer cells to adjust their metabolism in response to environmental changes
is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within
tumors compete for metabolic resources. Metabolic demands change frequently during
tumor initiation, progression and metastasis, challenging our quest to better understand
tumor biology and develop novel therapeutics. Vascularization, physical constraints,
immune responses and genetic instability promote tumor evolution resulting in immune
evasion, opportunities to breach basement membrane barriers and spread through the
circulation and lymphatics. In addition, the unfolded protein response linked to the
ubiquitin proteasome system is a key player in addressing stoichiometric imbalances
between nuclear and mitochondrially-encoded protein subunits of respiratory complexes,
and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic
changes, some of which affect metabolic adaptability, contribute to tumorigenesis and
metastasis through clonal expansion, epigenetic changes are also important and more
dynamic in nature. Understanding the role of stromal and immune cells in the tumor
microenvironment in remodeling cancer cell energy metabolism has become an
increasingly important area of research. In this perspective, we discuss the adaptations
made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We
discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through
changes in mitochondrial electron transport activity. We propose that integrated
responses to cellular stress in cancer cells are central to metabolic flexibility in general
and bioenergetic adaptability in particular and are paramount in tumor progression
and metastasis.

Keywords: bioenergetic flexibility, glycolysis-OXPHOS continuum, mito-nuclear gene expression, tumor
progression and metastasis, tumor microenvironment (TME)
INTRODUCTION

An upsurge in interest in cancer cell metabolism and bioenergetics in the last decade has greatly
increased our understanding of how developing cancer cells adapt to fluctuating changes in their
microenvironment by adopting different metabolic strategies. Rather than aerobic glycolysis being
an obligatory consequence of mitochondrial dysfunction as suggested by Warburg (1) almost 100
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years ago, glycolysis in many tumors is upregulated without
mitochondrial damage (2). Some authors now refer to this
phenomenon as “selfish metabolic reprogramming” (3) or, the
ability to attenuate OXPHOS if and when it suits to promote
survival, proliferation, invasion and metastasis, an archetypal
example of survival of the fittest.

Depending on the type of cancer cell, certain mutations and
epigenetic changes can combine to severely restrict the
respiratory capacity, and therefore mitochondrial energy
production, in highly glycolytic cancer cells. Respiration-
restricted cancer cells maximize carbon-conserving anabolic
metabolism necessary for cell proliferation by optimizing
glycolytic, glutaminergic and pentose phosphate pathways (4).
In addition, highly glycolytic cells increase lactic acid
dehydrogenase and plasma membrane electron transport
activities to ameliorate reductive stress caused by build-up of
NADH in cells with limited mitochondrial electron transport (5,
6). Cancer cells that are not respiration-restricted are advantaged
by their ability to use both glycolytic and mitochondrial energy
production strategies, depending on the availability of oxygen
and nutrients. Under hypoxic conditions, many cancer cells
quickly and effectively emulate the adaptations of their highly
glycolytic competitors.
THE GLYCOLYSIS-OXPHOS CONTINUUM

Although the concept of a metabolic switch, which suggests
OXPHOS can be turned on or off, is well established in the field,
we (7) and others (8) have suggested that there is a continuum
between an energy metabolism based largely on glycolysis and
one based largely on OXPHOS. In the absence of external energy
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sources, C2C12 myocytes and HEK293 fibroblasts, were shown
to obtain energy exclusively through OXPHOS by oxidizing
endogenous substrates, such as glycogen (9). The addition of
glucose resulted in a mixed energy metabolism with OXPHOS
rates dropping 20% and glycolytic rates increasing 10-100 fold
from near zero. Inhibiting OXPHOS increased glycolytic ATP
production even further in some cell types, fully compensating
for the loss of mitochondrially-generated ATP (9). Because of the
greater efficiency of OXPHOS compared with substrate
phosphorylation during glycolysis, cells only need to dedicate a
very small part (4-6%) of their maximum OXPHOS capacity to
contribute a large amount (40-50%) to their total energy budget
(8). The ease with which cells can adjust the contributions of
glycolysis and OXPHOS to their total energy budget has been
called the “supply flexibility index” by Mookerjee et al. (8). These
authors also present an elegant way to calculate the exact
contributions from glycolysis and OXPHOS to the total energy
budget based on raw oxygen consumption rate and extracellular
acidification rate values measured with different substrates and
inhibitors of glycolysis and OXPHOS, using the external flux
Seahorse analyzer (8). The ability to finely adjust these
contributions allows rapidly dividing cancer cells to respond
quickly to changes in oxygen and nutrient levels. It further allows
cells to balance the risks associated with high levels of reactive
oxygen species (ROS) generated during stress and inefficient
mitochondrial electron transport, notwithstanding the need for
adequate ROS levels for essential signaling and mitogenic
purposes under hypoxic conditions [reviewed in (10)]. At any
point in time, each cancer cell in a tumor is somewhere on this
continuum, depending on its genetic and epigenetic profile, its
microenvironment and its location on the primary-metastatic
tumor trajectory (Figure 1).
FIGURE 1 | Factors that influence the position of a cancer cell on the Glycolysis-OXPHOS energy metabolism continuum. See text for a more detailed description.
CTC, circulating tumor cells; EMT, epithelial to mesenchymal transition; MET, mesenchymal to epithelial transition.
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CONTROLLING THE GLYCOLYSIS-
OXPHOS CONTINUUM

Master regulators of the Glycolysis-OXPHOS continuum are the
hypoxia inducible factors (HIFs), transcription factors that
respond to changes in oxygen levels [reviewed by (11)]. The
heterodimer, HIF-1, is formed in hypoxic conditions when the
oxygen-sensitive HIF-1a subunit is stabilized by coactivator
proteins and translocated to the nucleus where it binds to the
HIF-1b subunit. In normoxic conditions, the von Hippel–Lindau
tumor suppressor protein (pVHL) binds to HIF-1a, resulting in
ubiquination and destruction by the proteasome. The HIF-1
dimer binds to the hypoxia response element on DNA, resulting
in transcription of genes that increase glycolytic activity through
up-regulation of glucose transporters, glycolytic enzymes and
lactate dehydrogenase (12). HIF-1 activation suppresses
OXPHOS by inhibiting the flow of acetyl CoA into the TCA
cycle through inhibition of pyruvate dehydrogenase. HIF-1
activation also increases the expression of vascular endothelial
growth factor (angiogenesis) and erythropoietin (erythropoiesis),
increasing oxygen and nutrient delivery [reviewed in (3, 11, 13).
The importance of HIFs in adapting cellular metabolism in
response to changes in oxygen levels was recognized by the
2019 Nobel Prize in Physiology or Medicine being awarded to
Kaelin, Ratcliffe and Semenza, whose research groups were
instrumental in elucidating HIF pathways (14).
GENETIC AND EPIGENETIC FACTORS
AFFECTING ENERGY METABOLISM
STRATEGIES OF TUMOR CELLS

The metabolic adaptation potential of individual cancer cells is
determined by their genetic and epigenetic profiles. Nuclear and
mitochondrial (mt)DNA mutations and epigenetically-driven
transcriptional changes are increasingly recognized as factors
that influence metabolic reprogramming, tumorigenesis, tumor
progression, invasion and metastasis. At the regulatory level, any
mutation or epigenetic change that increases HIF-1a
stabilization will push a cancer cell towards increased glycolytic
metabolism. For example, mutations that result in inability of
pVHL to bind to HIF-1a will result in HIF-1 activation in the
presence of oxygen, as was shown for pVHL mutations in renal
carcinoma and hemangioblastoma (15). At the operational level,
mutations or epigenetic changes that compromise OXPHOS,
such as in nuclear genes that encode enzymes of the TCA cycle
(16–18), the 79 protein subunits of the five respiratory
complexes, the 77 mitochondrial ribosomal subunits, or genes
that affect mtDNA copy number and complex assembly (19), will
bias energy metabolism towards glycolysis.

Metabolic reprogramming in tumor progression and
metastasis has been recently reviewed (20–22). Metabolic
reprogramming can be seen in the requirement of a glycolytic
phenotype, mediated by increased HIF-1a activity and PDK1
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expression, to enable 4T1 breast cancer cells to metastasize to the
liver, rather than to the bones or lungs (23). In metastatic
melanoma xenograft models, increased expression of the
monocarboxylate transporter, MCT1, increased metastatic
potential (24). MCT1 is a bidirectional transporter which
transports lactate out of highly glycolytic cells to maintain pH
and an NAD+/NADH ratio conducive to sustaining high
glycolytic rates in vitro. Interestingly, increased MCT1
expression in the melanoma xenograft models, led to an
increase in lactate uptake which was directly related to an
increase in metastatic potential (24, 25). Imported lactate is
converted to pyruvate in the TCA cycle, generating NADH
and a proton, which stimulates pentose phosphate pathway
(PPP) activity by reducing both intracellular pH and the NAD
+/NADH ratio. Lactate uptake through MCT1 as a preferred
source of fuel over glucose in vivo has been described previously
for human non-small cell lung cancer (NSCLC) (26). In
metastatic lung cancer and pancreatic ductal adenocarcinoma,
cumulative mutations in KRAS, the serine-threonine kinase,
STK11, and the E3 ubiquitin ligase metastasis suppressor,
KEAP1, establish an OXPHOS-driven phenotype, rendering
these cells sensitive to OXPHOS inhibition, pyrimidine
metabolism inhibitors and glutaminase inhibitors (20).

In addition to oxygen-dependent HIF regulation, oxygen-
independent regulation of HIF-1a, so-called pseudohypoxia, can
also activate HIF-1a through growth factor receptor mutations
or activation of their respective mTOR signaling pathways.
Examples include EGFR activation in lung adenocarcinoma,
HER2 amplification in breast and gastric cancer, RAS
mutations in lung and colorectal cancer, BRAF mutations in
melanoma and mutations in the PI3K/AKT lipid kinase signaling
pathways in various cancers (27).

Although mtDNA mutations are common across solid
cancers, the contribution of mtDNA mutations to cancer
progression and metastasis remains controversial, with a
metabolic licensing model being proposed for some tumors
(28, 29). Recent large scale molecular characterization of the
mutational landscape of mitochondrial genomes in human
cancers relative to matched control tissue identified truncations
markedly enriched in kidney, colorectal and thyroid cancers.
They further identified somatic mutation signatures with strand
bias that were similar across tumor types suggestive of mtDNA
polymerase (POLG) errors, and frequent nuclear transfers of
mtDNA, some of which disrupt therapeutic target genes (30). In
addition, multiplicity and heteroplasmy of mtDNA in cancer
cells were reported as significant issues.

MicroRNAs have also been shown to contribute to metabolic
regulation in cancer, for example by targeting hexokinase-2 to
induce proliferative or quiescent responses in tumor spheroids
(31–33). In addition, oncometabolites, such as D-2-
hydroxyglutarate that accumulate in AML, gliomas, and
colorectal cancers with IDH mutations, and inhibit dioxygenase
enzymes in canonical metabolic pathways, are often involved in
cancer metabolism by affecting epigenetic and post-translational
processes and signal transduction [reviewed by (34)].
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CHANGES IN METABOLIC
REPROGRAMMING AND THE
GLYCOLYSIS-OXPHOS CONTINUUM
AFFECTING TUMOR FORMATION
AND METASTASIS

Highly glycolytic cells express high levels of HIF-1a (11),
produce fewer ROS, and have been associated with increased
invasive and metastatic potential and poor patient outcomes (24,
25). However, even highly glycolytic cells retain some
mitochondrial electron transport activity and a basic level of
respiration. A complete absence of mitochondrial electron
transport and respiration is incompatible with tumorigenesis in
vivo as shown in metastatic mouse breast cancer (4T1) and
melanoma (B16) cell lines lacking mtDNA (35). These r0 tumor
cell lines are maintained in culture by supplementation with
uridine and pyruvate. Uridine is required because mitochondrial
electron transport generates ubiquinone, an essential cofactor for
dihydroorotate dehydrogenase (Dhodh), the fourth enzyme in
the de novo pyrimidine biosynthetic pathway (36). When
injected into mice, tumor cell lines lacking mtDNA do not
form tumors until they have acquired mitochondria, and
therefore mtDNA, from adjacent stromal cells following a lag
period of about 3 weeks. Knocking out the nuclear-encoded
Atp5b gene and therefore mitochondrial ATP synthase activity in
4T1 and B16 cells, slowed but did not stop tumor growth
demonstrating that OXPHOS itself is not a prerequisite for
tumor formation. Thus, although ATP production is
exclusively glycolytic in these cells, sufficient respiration
remained to fuel pyrimidine production required for cell
proliferation (36). These experiments functionally distinguish
between the ATP-generating and respiratory functions of
OXPHOS, and are supported by Dhodh knockout/knockin
results that confirm the requirement of Dhodh for tumor
growth (36). In other experiments, inserting the alternative
oxidase gene, AOX, into 4T1 and B16 cells lacking mtDNA
restored sufficient respiratory capacity to facilitate early tumor
growth (36).

More recently, a similar conclusion regarding functional
DHODH was reached using the human osteosarcoma cell line,
143B, using a four base-pair deletion in the MT-CYTB gene, an
essential component of Complex III, and CRISPR-Cas9 gene
editing to knock out the nuclear Complex III gene, Uqcrq, in the
mouse lung cancer cell line, KP, and in a genetic model of T-cell
ALL (37). In each model, tumor growth was abolished and
mitochondrial ubiquinol oxidation and Dhodh activity were
shown to be an absolute requirement for tumorigenesis.

Complex II is comprised of four nuclear-encoded subunits
that link the TCA cycle with mitochondrial electron transport
and respiration. It is an important alternative source of electrons
contributing to mitochondrial electron transport alongside
Complex I and DHODH, which can contribute about 10% to
total mitochondrial oxygen consumption (36). Recently, Spinelli
et al. showed that in human osteosarcoma 143B cells and in
several normal tissues, fumarate can act as the terminal electron
Frontiers in Oncology | www.frontiersin.org 4
acceptor when oxygen is limiting, involving reverse electron flow
through succinate dehydrogenase (SDH, Complex II) (38). This
would have the effect of maintaining de novo pyrimidine
biosynthesis by oxidizing ubiquinol, and thus ensuring
continued Dhodh activity. The extent to which this mechanism
supports coenzyme Q redox cycling and de novo pyrimidine
production in vivo under conditions of varying oxygen
availability is unclear. However, the potential for reverse
electron flow through SDH to support cell proliferation in
some tumors warrants further investigation.

The results described in the paragraphs above beg the
question of whether or not mitochondrial ATP production is
required for the maintenance of cancer stem cells, epithelial to
mesenchymal transition (EMT), maintenance of circulating
tumor cells, mesenchymal to epithelial transition (MET) and
the establishment of metastases in distant organs. In this context,
OXPHOS includes not only mitochondrial electron transport
and ATP synthesis, but also coenzyme Q redox cycling, ROS
production and proton pumping, linked processes that are
evolutionarily conserved in higher eukaryotic organisms.
THE MITO-NUCLEAR CROSSTALK
DILEMMA IN CANCER CELL ENERGY
METABOLISM

The existence of tumor cell lines without mtDNA raises questions
about mito-nuclear crosstalk in cells with severely compromised
respiratory function. Mitochondrial respiratory complexes I, III,
IV and V, are comprised of both mitochondrial and nuclear-
encoded protein subunits (13 and 79 respectively), while
mitochondrial ribosomes comprise 2 mitochondrially-encoded
ribosomal RNAs and 77 nuclear-encoded subunits. In the
absence of mtDNA, nuclear transcripts that contribute to these
mitochondrial respiratory and ribosomal complexes continue to
be synthesized in excess of need (39). Under normal physiological
conditions, the balance between nuclear- and mitochondrially-
encoded subunits of respiratory complexes is finely tuned (40–45).
In many cancers, mitochondrial respiratory gene expression is
suppressed (46), but it is currently unclear if an imbalance between
mitochondrial and nuclear gene expression and protein synthesis
may invoke cytosolic and mitochondrial unfolded protein stress
responses (Figure 2) that have the potential to become novel
targets in cancer treatment.

Differential gene expression analysis of 4T1 breast cancer cell
lines with and without mtDNA showed that the nuclear gene
encoding the immunoproteasome subunit, Psmb8, was poorly
expressed in the absence of mtDNA, and that expression was
restored in a cell line derived from a primary tumor that had
acquired mitochondria/mtDNA (39). These results suggest that in
cells with compromised respiration resulting from low mtDNA
copy number, cytosolic immunoproteasome remodeling may
remove excess nuclear-encoded respiratory and ribosomal
subunits as part of the cytoplasmic unfolded protein response
(UPR) (Figure 2).
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Analysis of cell lines with partially compromised respiratory
function linked to mtDNA copy number where differential
expression of Psmb8 may be intermediate between cell lines with
and without mtDNA, may add to our understanding of
mechanisms relating to imbalances in mitochondrial and nuclear-
encoded respiratory subunit complexes. In addition to cytosolic
proteosome activity, excess nuclear-encoded respiratory and
mitochondrial ribosomal protein subunits, tagged with
mitochondrial import signals, may be recognized by the
mitochondrial UPR. When the mitochondrial UPR is
overwhelmed (Figure 2), cellular stress and mitophagy may
result. Exploration of the expression thresholds of these nuclear-
encoded respiratory and ribosomal polypeptides may reveal
targetable vulnerabilities of cancer cells biased towards
proliferation, glycolytic metabolism and metastatic progression.

Mitochondrial DNA copy number is depleted in many solid
tumors (47), while expression of different protein-encoding genes in
mtDNA and even within a particular respiratory complex can vary
by more than two orders of magnitude, with genes encoding
subunits of Complex I (Ndu1) and V (Atp6 and Atp8) being the
most highly expressed in 4T1 cells (38). In contrast to individual
respiratory complexes where protein synthesis of mitochondrial and
nuclear-encoded subunit genes are in general closely correlated
across primary cells from different tissues and tumor cell lines (40–
45), mitochondrial and cytosolic mRNA abundance for subunits of
the respiratory complexes are less well matched (44). What is
currently not known is if tumor cells with mtDNA but with low
levels of respiration (e.g. hypoxia-adapted cells) also exhibit
dysregulated expression of mitochondrial and nuclear genes
encoding subunits of the respiratory complexes and
mitochondrial ribosomes. Also unclear are the roles of nuclear-
encoded respiratory complex assembly factors, mitochondrial and
nuclear genetic and epigenetic processes, as well as intermediate
metabolites and onco-metabolites, in maintaining the correct
Frontiers in Oncology | www.frontiersin.org 5
balance of mitochondrial respiratory complex subunits encoded
by nuclear (n)DNA and mtDNA.
THE PRIMARY CANCER-METASTATIC
TRAJECTORY AFFECTS ENERGY
METABOLISM STRATEGIES

Although non-cancerous cells have limited plasticity with respect
to their energy metabolism strategies, they tend to follow similar
trends to cancer cells. Thus, rapidly dividing normal cells,
activated immune cells, non-quiescent pluripotent and
embryonic stem cells, progenitor cells, and myoblasts exhibit
characteristics of aerobic glycolysis. As discussed earlier, this
metabolic strategy supports anabolic metabolism, using carbon
for building macromolecules rather than squandering it as
carbon dioxide, a waste product of respiration.

Recent results involving rapidly dividing tumor cell lines suggest
that base level respiration of about 10% of normal oxygen
consumption is required to support cell proliferation (36).
Another recent study identified fumarate as an alternative
electron sink for maintaining ubiquinone levels essential for
DHODH activity, de novo pyrimidine biosynthesis and nucleic
acid production (38). Ideally, these strategies would be expected to
minimize ROS production, and consequently reduce damage to
mtDNA proximal to CI and CIII, where most superoxide radicals
are generated. Where mitochondria are localized close to the
nucleus, and where antioxidant and DNA repair mechanisms are
overwhelmed, mutational nDNA damage would likely result. In
contrast, non-dividingdifferentiated cells, suchasmuscle, brainand
functionally differentiated cells in tissues, together comprising the
majority of somatic cells in the body, rely on OXPHOS because of
their high energy demands, and are less likely to be disadvantaged
A B

FIGURE 2 | Formation of functional respiratory complexes in the presence (A) and absence (B) of mtDNA. (A) In the presence of adequate mtDNA transcription and
translation, the nuclear- encoded subunits enter the mitochondria through the outer (TOM) and inner (TIM) mitochondrial membrane transporters and combine
stoichiometrically with mitochondrially-encoded subunits to form functional respiratory complexes. (B) In the absence of mtDNA, no mitochondrially-encoded
subunits are synthesized, and nuclear-encoded subunits are either directly degraded by the cytosolic UPR through the proteasome or enter mitochondria and are
degraded by the mitochondrial UPR via mitochondrial proteases. Some of these subunits leave the mitochondria again through reverse transport through TOM and
TIM and are degraded by the cytosolic proteasome.
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by high ROS levels. With either functionally differentiated non-
dividing cells, or rapidly proliferating cells in tumors or non-cancer
cells, cellular stress, senescence, aging or cellular damagewill lead to
inefficient mitochondrial electron transport, electron leakage and
ROS production resulting in DNA damage, lipid peroxidation and
protein oxidation.

Although initially thought to be highly glycolytic, stem cells
and cancer stem cells, that can be in either a quiescent (dormant)
or self-renewing state, are now known to exhibit significant levels
of OXPHOS (48–51). However, efficient mitochondrial electron
transport, and slow or intermittent self-renewal undoubtedly
allows time for repair of cellular damage and maintenance of
antioxidant defense mechanisms, which include mitochondrial
and cytosolic enzymes such as superoxide dismutases,
glutathione peroxidase and catalase.
THE COMPLEX ROLE OF THE TUMOR
MICROENVIRONMENT IN REGULATING
TUMOR CELL ENERGY METABOLISM

The tumor landscape is diverse, with its multitude of cancer cells
with different adaptive potential. In addition to highly proliferative
cells and non-proliferating cells at different stages of differentiation,
tumors also contain slowly self-renewing cancer stem cells or stem-
like cells with limitless growth potential. Each of these cell types
adapts their metabolic strategies to suit their own needs to thrive in
a highly competitive tumor microenvironment, characterized by
strongly fluctuating oxygen and nutrient levels caused by a highly
compromised tumor microvasculature. The cellular components of
the tumor microenvironment consist of tissue of origin cells,
immune cells, vascular cells and stromal cells. Each of these cell
types can either inhibit or promote tumor progression, invasion and
metastasis, depending on their activation status, which in turn
depends on the cytokine/chemokine environment produced
through intercellular communication [reviewed in (52)]. The
metabolic requirements of individual cancer cells further depend
on their localization in either the early primary tumor, a large well
established primary tumor, invading tumor cells, intravasating
tumor cells, circulating tumor cells (CTCs), extravasating tumor
cells or cells establishing themselves in a new metastatic niche, as
successful metastasis is directly affected by the composition of the
tumor microenvironment (48).

The metastatic process is punctuated by a number of
challenges that cancer cells must overcome that require
metabolic reprogramming. These challenges include: the
endothelial to mesenchymal transition (EMT) which facilitates
invasion, intravasation and survival as circulating tumor cells,
and the mesenchymal to endothelial transition (MET) required
for establishing micro metastases. Both hypoxia-mediated EMT
and hypoxia-independent EMT pathways have been described
(53). HIF-1a promotes EMT and invasion via activation of the
TGF-ß-SMAD3 pathway in breast cancer patients (54), the Wnt/
ß-catenin pathway in hepatocellular carcinoma (55) and prostate
cancer (56), and hedgehog signaling in pancreatic cancer cells
(57). In addition, there are a number of non-HIF-1a hypoxia-
Frontiers in Oncology | www.frontiersin.org 6
induced pathways that promote EMT, such as AMPK, PI3K-
Akt-mTOR, NF-kB and MAPKs which have recently been
reviewed (53). The oxidative environment in the blood stream
is a major challenge for CTCs, with only 0.01% surviving to form
metastases (20). Upregulation of the PPP to generate glutathione, a
prominent intracellular antioxidant, is a feature ofmanymetastatic
cancers, including breast and lung cancer andmelanoma (20). The
establishment of metastases requires metabolic plasticity and
flexibility to a new TME where nutrient availability is likely to be
very different from that of the primary tumor TME (20, 21).
Increased expression of enzymes involved in asparagine, proline
andserinemetabolism, increaseduptakeofpyruvateand lactate and
acetate to provide alternative forms of energy and increased activity
of the PPP have all shown to increase the metastatic ability of a
number of cancers, such as breast and brain cancer and melanoma
[recently reviewed in (22)].

Heterogeneity in the primary tumor can determine the site of
metastasis; in melanoma, cells with an OXPHOS phenotype
metastasize to the brain, whereas those that are more glycolytic
metastasize to the lungs. Moreover, high MCT-1 expressing
melanoma cells have a much higher metastatic potential than
cells that express MCT-1 at a lower level (57).
SUMMARY AND FUTURE PERSPECTIVES

The bioenergetic and metabolic characteristics of cancer cells reflect
many of the properties of normal self-renewing stem cells and their
rapidly proliferating progenitors where commitment to differentiate,
and differentiation per se, are markedly compromised or lost.
Dedifferentiation is also known to contribute to the development
of some cancers. In this context, differentiation induction as a cancer
treatment strategyhasbeenused successfully for several decadesnow,
for example in the forced differentiation of acute promyelocytic
leukemia by a derivative of vitamin A (53). Alterations in normal
cell physiology that contribute to tumorigenesis, progression and
metastasis are brought about by accumulating genetic and epigenetic
changes that are associated with dynamic alterations in the tumor
microenvironment. The complexity of these adaptive changes in
tumor cells demands in-depth understanding of the individual
changes involved, as well as system approaches that integrate hard-
wired genetic and reversible epigenetic changes in individual cancers
that affect nucleated cell types in the body that give rise to cancer.

Of particular interest in this context are the underlying changes
in energy metabolism and metabolic reprogramming that are a
common feature of tumor cell biology. This is particularly
important because it involves contributions from both nuclear
and mitochondrial genomes. These evolutionarily distinct
genomes are interdependent and underpin the balance between
glycolytic ATP production and ATP generated by oxidative
phosphorylation in mitochondria. The simplistic dogma that
rapidly proliferating cells, including tumor cells, progenitor cells
and immune cells, use aerobic glycolysis while functionally-
differentiated tissue cells depend on oxidative phosphorylation has
become much more nuanced recently with the realization that stem
cells, including cancer stem cells, exist in either quiescent or self-
March 2022 | Volume 12 | Article 857686
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renewing states, and that rapidly-proliferating cells exhibit
bioenergetic plasticity dictated by the availability of oxygen,
glucose, glutamine and other nutrients. In reality, these cells
seldom derive more than 50% of their ATP from glycolysis (1).
In addition, genetic approaches have allowed oxidative
phosphorylation to be separated into 1) respiration, essential for
de novo pyrimidine and nucleic acid biosynthesis and therefore cell
proliferation and tumor formation, and 2) mitochondrial ATP
production via Complex V (ATP synthase) which is not essential
for tumorigenesis (36).

Together, these results suggest multiple layers of regulation of
respiratory complex production and function at the
transcriptional and translational level of mitochondrial and
nuclear respiratory complex gene and protein expression, as
well as mitochondrial protein import and respiratory complex
assembly, with rate-limiting steps in the assembly of each
complex being a major factor (42, 44). Dynamic changes in the
tumor microenvironment orchestrate epigenetic changes that in
turn impact gene expression at each stage of tumor development,
while intermediate metabolites are well-established as
modulating factors in bioenergetic control which change
dynamically over time (34, 54).
Frontiers in Oncology | www.frontiersin.org 7
Better understanding of the bioenergetic and metabolic
adaptations in tumorigenesis and metastasis will highlight
treatment opportunities that target critical bioenergetic
bottlenecks in primary tumor growth, CTC production, micro-
metastases, and the metastatic progression that is responsible for
most cancer mortality.
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