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Abstract: The survival rate for metastatic osteosarcoma has not improved for several decades, since
the introduction and refinement of chemotherapy as a treatment in addition to surgery. Over two
thirds of metastatic osteosarcoma patients, many of whom are children or adolescents, fail to exhibit
durable responses and succumb to their disease. Concerted efforts have been made to increase
survival rates through identification of candidate therapies via animal studies and early phase trials
of novel treatments, but unfortunately, this work has produced negligible improvements to the
survival rate for metastatic osteosarcoma patients. This review summarizes data from clinical trials
of metastatic osteosarcoma therapies as well as pre-clinical studies that report efficacy of novel drugs
against metastatic osteosarcoma in vivo. Considerations regarding the design of animal studies and
clinical trials to improve survival outcomes for metastatic osteosarcoma patients are also discussed.

Keywords: osteosarcoma; metastasis; metastases; sarcoma; tyrosine kinase inhibitors; immunother-
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1. Introduction to Metastatic Osteosarcoma and Its Current Treatment Regimens

Osteosarcoma is the most common primary cancer of the bone. Its emergence is
typically driven by mutations in the TP53 and RB1 genes of osteoblastic cells or their
precursors in the extremities, such as the tibia or femur [1–3]. Osteosarcoma has an annual
overall incidence rate of 3.1 per million [4]. It has a bimodal age distribution with a peak
incidence of 4.2 per million in children and young adults, decreasing to 1.7 per million in
adults aged 25–59, and a subsequent peak of 4.2 per million in older individuals [4].

The 5-year survival rate of osteosarcoma was as low as 20% when it was originally
defined in the 1950s [5]. The introduction of chemotherapy markedly improved survival.
An early randomized trial of adjuvant chemotherapy to treat osteosarcoma explored a
combination of doxorubicin, cisplatin, cyclophosphamide, high-dose methotrexate, dacti-
nomycin and bleomycin [6]. The authors reported a 2-year relapse-free survival rate of
66% versus 17% for the control (surveillance) group [6]. Another study later reported
comparable survival rates to the multi-drug regimen using only doxorubicin, cisplatin
and high-dose methotrexate [7]. A subsequent randomized trial compared the efficacy
of doxorubicin and cisplatin versus doxorubicin, cisplatin, cyclophosphamide, high-dose
methotrexate, dactinomycin, vincristine and bleomycin [8]. The trial achieved the same
survival rate in both treatment groups with improved tolerability in the two-drug regimen
group [8].

Most osteosarcoma patients currently receive doxorubicin, cisplatin and high-dose
methotrexate (referred to as “MAP”) as first-line therapy, alongside limb-sparing surgery to
remove the primary tumor. This regimen is associated with a 5-year survival rate of around
70% for localized disease. MAP is also administered as a first-line regimen to patients with
metastases at diagnosis, although it is less effective for these patients: between 10% to 40%
of them survive for 5 years or more after diagnosis.
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Retrospective studies have underscored the utility of metastasectomies for patients
with pulmonary metastases, including repeated operations to remove any subsequently
detected lung lesions [9–11]. Evidence also supports intervention with the less invasive
approach of radiofrequency ablation to destroy relatively small, uncalcified pulmonary
osteosarcoma metastases [12].

A wide variety of systemic therapies have been explored for patients with relapsed or
refractory osteosarcoma. Regorafenib (discussed below) is the only drug whose use as a
second-line therapy was uniformly recommended by the National Comprehensive Cancer
Network on the basis of high level (category 1) evidence, with high-dose ifosfamide plus
etoposide and sorafenib receiving recommendations as second-line regimens based on less
conclusive evidence [13].

Factors that portend particularly poor prognoses for patients with osteosarcoma metas-
tases include: distant bone lesions (compared to the more common lung metastases) [14–18],
bilateral (compared to unilateral) pulmonary metastases [16,19] and a greater number of
lung nodules [14,20]. Metastases in relapsed patients were reportedly less responsive than
metastases within previously untreated individuals, implying that prior chemotherapy
exposure (even to different classes of agents) may select for chemo-resistant cells [21].

At diagnosis, around 20% of osteosarcoma patients have detectable metastases. The
lungs make up 90% of metastatic sites, with other bones accounting for a further 8%
to 10% [22,23]. Many patients who do not have detectable metastases at diagnosis are
presumed to have micro-metastases that are undetectable using current imaging tech-
niques [24,25]. One of the challenges in improving the outcome for those with macroscopic
metastases is that some phase III clinical trials exclude patients with metastatic disease [23].
This can result in inconsistent treatment across institutes for patients with metastatic dis-
ease [23].

This review specifically summarizes pre-clinical and clinical trial data relating to novel
therapies for metastatic osteosarcoma, to document progress towards improving outcomes
for these patients.

2. Results of Published Trials
2.1. Chemotherapy

The standard neoadjuvant and adjuvant MAP chemotherapy regimen for patients
with localized disease is also administered to patients with metastatic disease, before and
after attempting to remove lesions by metastasectomy [23].

Various substitutions and additions have been explored, but unfortunately, none have
yielded increased survival rates for patients with metastatic osteosarcoma.

Newer generations of anthracycline, such as pirarubicin, that reportedly have better tu-
mor uptake and reduced toxicities have been examined as a substitute for doxorubicin [26].
A trial of 23 patients who were diagnosed with recurrent or refractory osteosarcoma were
treated with pirarubicin and cisplatin had a median overall survival rate of 10 months [26].
Although efficacy was limited, the authors recommended follow-up trials with a greater
cohort of patients given that all relapsed patients who did respond had metastatic dis-
ease [26].

Pemetrexed is an inhibitor of thymidylate synthase and has a broader range of action
than methotrexate. A phase II trial was conducted to evaluate the efficacy of pemetrexed as
a single agent in 32 metastatic osteosarcoma patients [27]. One patient in the cohort had a
partial response and the median overall survival rate was only 5.5 months; the study did
not meet its primary objective of five responses [27].

Cisplatin’s efficacy is hindered by dose-limiting nephrotoxicity. Trials have evaluated
the efficacy of carboplatin, a less toxic platinating agent [28], as a replacement; however, sev-
eral studies revealed that carboplatin was less effective than cisplatin at treating metastatic
osteosarcoma [17,20,29]. Researchers have also attempted to minimize cisplatin-induced
toxicity by administering the drug via inhalation to treat pulmonary cancers [30]. A phase
I/II trial was established to evaluate the efficacy of inhaled lipid cisplatin in recurrent
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osteosarcoma patients with pulmonary metastases [31]. Of the 19 patients who received
inhaled cisplatin, none exhibited common toxicities associated with cisplatin, such as
nephrotoxicity and myelosuppression [31]. Three patients achieved a complete response,
one a partial response and seven had stable disease [31]. The best responses were ob-
served in patients with lesions less than 2 cm in size [31]. A subsequent phase II trial
(NCT01650090) of inhaled cisplatin for metastatic osteosarcoma with a larger patient cohort
was completed in 2018, but no results have been published to date.

One phase II trial evaluated the addition of ifosfamide to doxorubicin and cisplatin for
metastatic disease but found no clinical benefit over standard treatment [32]. Although a
total of 30 patients achieved a disease-free status, 21 relapsed with pulmonary metastases an
average 15 months later resulting in an overall 5-year survival of only 18% and around 25%
in similar study [33,34]. Interestingly, increasing the dose of ifosfamide to treat metastatic
disease did not improve patient outcome [35].

The use of the topoisomerase II inhibitor etoposide as an additional agent, coupled
with MAP plus ifosfamide, has been evaluated in two trials for metastatic osteosarcoma. A
phase II/III trial evaluated the efficacy of this combination in 43 patients newly diagnosed
with metastatic osteosarcoma [36]. The two-year survival rate was 52% and complete
response rate 10% [36]. Significant toxicities were reported in the study, with two patients
dying as a result of therapy, 83% of patients developing neutropenia and five suffering
sepsis [36]. A later phase I/II trial studied the addition of etoposide to standard chemother-
apy plus ifosfamide in 13 patients with metastatic osteosarcoma [37]. Only six patients
completed the full regimen, with the remainder requiring dose reduction due to myelosup-
pression [37]. Median survival for patients with unresectable metastases was 13 months
and 31 months for those who underwent successful metastasectomy [37]. Trial data to date
suggest that the addition of etoposide into the chemotherapy regimen does not provide a
substantial clinical benefit.

A phase II trial examined the efficacy of the water soluble camptothecin analogue
topotecan, after promising data from in vivo testing on osteosarcoma xenografts [38,39].
Twenty-eight newly diagnosed patients with poor prognosis metastatic osteosarcoma were
treated with standard chemotherapy plus the topoisomerase inhibitor topotecan, but only
one partial response was observed [39]. Topotecan was well tolerated alongside chemother-
apy but was not recommended for further study due to its disappointing efficacy [39].

A phase II trial examined the efficacy of high-dose thiotpeta (an alkylating agent) with
autologous transplantation as an adjuvant to standard chemotherapy in 22 patients with
relapsed metastatic osteosarcoma, but reported no significant clinical benefit compared
to the 22 control patients who received chemotherapy alone [40]. Gemcitabine is an
analogue of deoxycytidine and was trialed as a single agent for advanced sarcoma patients,
including two with osteosarcoma, in a phase II trial based on promising activity in animal
models of various non-osteosarcoma cancer types [41]. Of the 29 evaluable patients, one
leiomyosarcoma patient experienced regression for five months and all other patients had
progressive disease [42]. Another trial of gemcitabine documented two cases of progressive
disease and four of stable disease in six osteosarcoma patients enrolled in a phase II study
for pre-treated sarcoma patients [43].

L-alanosine is an inhibitor of de novo adenine synthesis. It was evaluated in 65 carci-
noma and sarcoma patients, including seven osteosarcoma patients, three with metastases.
Participants’ tumors featured methylthioadenosine phosphorylase deficiency [44], a de-
terminant of sensitivity to L-alanosine [45]. No patients experienced objective responses.
Two osteosarcoma patients had stable disease and the other five experienced progressive
disease [44].
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2.2. Bone-Modifying Agents

The bisphosphonate zoledronic acid inhibits bone resorption by suppressing osteo-
clast differentiation, and also exerts anti-cancer activities through incompletely defined
pathways [46]. Zoledronic acid is approved to treat bone metastases from solid tumors.
It was first trialed as an additive to chemotherapy to assess toxicity and feasibility in
metastatic osteosarcoma patients in 2013 [47]. The authors found that it was safe to admin-
ister alongside chemotherapy, but any clinical benefits were difficult to define due to the
small number of patients in the trial [47]. A subsequent trial conducted in a similar fashion
with 318 patients, including 55 with metastases at diagnosis, found no clinical benefit for
patients who received zoledronic acid and chemotherapy versus chemotherapy alone [48].

2.3. Stem Cell Rescue

Many osteosarcoma patients initially respond to chemotherapy, but a challenge in
maintaining remission is balancing efficacy with the myelosuppressive activity of these
treatments [49]. Autologous stem cell rescue combined with high-dose chemotherapy is
an alternative treatment protocol for patients unlikely to respond to standard chemother-
apy [49]. Several trials have been conducted over the past two decades using stem cell
rescue to enable higher doses of treatment to be administered to patients with metastatic
osteosarcoma. Unfortunately, survival rates remained unchanged compared to standard
treatment protocols, and patients experienced more severe toxicities as a consequence of
the increased chemotherapy doses [50–53].

2.4. Immunotherapy

The relatively high level of infiltrating lymphocytes in osteosarcomas compared to
other sarcomas [40,54] have made them a promising candidate for immunotherapies [54,55].
One of the earliest trials of sole agent immunotherapy against metastatic osteosarcoma
explored the efficacy of inhaled granulocyte macrophage colony stimulating factor (GM-
CSF) against recurrent pulmonary metastases [56]. Although the treatment had low toxicity,
the authors detected no immunostimulatory effects against pulmonary metastases and no
improvement in patient outcome [56].

After encouraging results from treating non-metastatic osteosarcoma patients with the
immune modulator liposomal muramyl tripeptide (mifamurtide) [57], addition of this agent
to chemotherapy was explored in patients with metastatic disease [58,59]. Mifamurtide
activates macrophages and monocytes to stimulate the production of cytokines, which
may result in increased anti-tumor activity of infiltrating immune cells [59]. Metastatic
osteosarcoma patients treated with chemotherapy plus mifamurtide took significantly
longer to relapse than historical controls who just received chemotherapy [60]. However, in
the context of a randomized controlled trial, mifamurtide unfortunately did not significantly
boost the 5-year survival of metastatic osteosarcoma patients compared to those who
received chemotherapy alone [58], although low participant numbers may have precluded
detection of a subtle survival benefit [61]. No subsequent trials of mifamurtide in metastatic
osteosarcoma have been conducted, but it has been approved by the European Medicines
Agency to treat osteosarcoma patients aged between 2 and 30 [62].

The combination of recombinant interleukin 1α and etoposide, which was documented
to provoke anti-tumor activity by lymphoid cells [63], was trialed in eight patients with
relapsed metastatic osteosarcoma. Two had progressive disease and the rest partial or
mixed responses [64]. Although the clinical response was modest, the authors interpreted
these results as a good outcome considering the poor prognosis typically experienced by
patients who relapse with metastatic disease [64]. Unfortunately, the trial was stopped
early due to a halt in the production of recombinant interleukin 1α.

A high proportion of osteosarcomas, particularly pulmonary metastases, express
programmed cell death protein-1 ligand (PD-L1). This suggests that metastases may be
especially sensitive to PD-1 inhibitors such as pembrolizumab [55,65]. Several trials have
evaluated the efficacy of pembrolizumab against metastatic and advanced osteosarcoma,
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but only one of 49 evaluable patients across three separate trials had a partial response
to treatment [66–68]. Equally disappointingly, the majority of patients with metastatic
disease who participated in trials of PD-1 inhibitors, such as nivolumab, camrelizumab and
ipilimumab, experienced progressive disease [69–71].

Many osteosarcoma patients have human epidermal growth factor receptor 2 (HER2)
positive tumors, which formed the basis of a trial evaluating HER2-specific chimeric antigen
receptor modified T-cells (CAR T-cells) against HER2-positive sarcomas [72]. Unfortunately,
CAR T-cell therapy was no more effective than PD-1 inhibition with 75% of osteosarcoma
patients experiencing progressive disease and the remainder only stable disease [72]. Other
immunotherapies that rely on the anti-cancer activity of cytotoxic lymphocytes, such as
dendritic and T-cell receptor therapies, have failed to improve the outcome of patients with
metastatic osteosarcoma [73,74].

Although the previously described immunotherapies failed to improve patient out-
comes, a prospective study of metastatic osteosarcoma patients who received MAP in
addition to IL-2 and lymphokine activated killer (LAK) cell reinfusion yielded more promis-
ing results [19]. Of 27 patients who received LAK cell reinfusion and IL-2, 11 remained
alive at the time of publication with an overall survival rate of 45% at 130-month median
follow up [19].

2.5. Drugs Targeting Tyrosine Kinases

Receptor tyrosine kinases represent a broad set of targets, some of which are often
overexpressed in osteosarcomas, giving rise to a novel approach of treating metastatic
osteosarcoma with tyrosine kinase inhibitors (TKI) [75]. Poor osteosarcoma patient out-
come is associated with overexpression of HER2 [76], which prompted evaluation of the
HER2 antibody trastuzumab with chemotherapy to treat HER2-positive metastatic osteosar-
coma [77]. Patients who received trastuzumab plus chemotherapy had a 30-month overall
survival rate of 59%, versus 50% for those who were only treated with chemotherapy [77].
Although trastuzumab was safe to administer to patients receiving chemotherapy, there
was no significant difference in patient outcome [77].

OncoLar is a somatostatin analogue that inhibits IGF-1 production, which can suppress
the growth of osteosarcoma in vitro [78] and metastasis in vivo [79]. Based on these data,
OncoLar was evaluated in a phase I trial of metastatic or recurrent osteosarcoma in 19
patients. It was well tolerated but did not produce a clinical response in any patients [80].

Robatumumab is an IGF-1 receptor inhibitor that showed promising pre-clinical
activity in subcutaneous patient-derived xenografts [81] and was evaluated in a phase II trial
of sarcoma patients with resectable and un-resectable metastases [82]. Of 31 osteosarcoma
patients with resectable metastases, one had a complete response and two had a partial
response to treatment, whereas none of the 29 osteosarcoma patients with un-resectable
metastases responded to treatment [82].

Many of the TKIs currently being evaluated have multiple targets, including receptor
and intracellular tyrosine kinases that drive pro-tumorigenic pathways, such as angiogene-
sis and proliferation [83]. Data from clinical trials evaluating TKIs for sarcoma suggest that
inhibition of multiple tyrosine kinases is more effective than targeting a single kinase [84].

Regorafenib is a multitarget TKI that has been tested for treating metastatic osteosar-
coma across two randomized phase II clinical trials. The REGOBONE trial compared
regorafenib versus placebo in patients with metastatic osteosarcoma who had failed to
respond to chemotherapy. Regorafenib significantly delayed disease progression. Of 26
eligible treated patients, two had partial responses and 15 stable disease with the remainder
showing disease progression [85]. SARC024 also trialed regorafenib in a similar fashion and
documented a significant improvement in median progression-free survival vs. placebo (3.6
versus 1.7 months) [86]. Surprisingly, despite regorafenib markedly slowing progression in
both trials, it unfortunately did not have a significant effect on overall survival [85,86]. As
discussed below, imperfect correlations between surrogate endpoints and overall survival
raise questions about the optimal primary endpoints for clinical trials. Insights into the
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basis of such discrepancies may unearth opportunities to build on the anti-progression
activity of regorafenib (and perhaps other TKIs) to improve patient survival.

Sorafenib is another multitarget TKI that has been well studied in osteosarcoma
patients. In a phase II trial of 35 patients with metastatic or advanced osteosarcoma,
sorafenib treatment led to a reduction in tumor burden in 14% of patients, but only 29% had
not progressed within 6 months of commencing treatment [87]. A subsequent phase II trial
of sorafenib included everolimus in hope of blocking the mTOR pathway, which may confer
resistance to TKI inhibition [88]. Therapy-related toxicity necessitated dose reductions in
66% of patients. Encouragingly, 45% of patients did not suffer disease progression within
six months, although only 5% of patients survived for more than two years [88].

Cabozantinib is an inhibitor of VEGFR2 and MET and was studied in 43 osteosarcoma
patients, of which 39 had pulmonary metastases, in a phase II clinical trial [89]. Similar
results to the trials of sorafenib were observed, with a 6-month progression-free survival
rate of 33% and only five patients experiencing partial responses [89]. Apatinib is an
inhibitor of VEGFR2, which was studied in a phase II trial of 37 patients for advanced
osteosarcoma and resulted in a four-month progression free survival rate of 57% [90].
Cediranib, which efficiently targets members of the VEGFR and PDGFR families [91], was
assessed in a phase I trial that included four osteosarcoma patients. One experienced a
34% reduction in the size of their pulmonary metastases after two cycles of treatment, but
the others did not respond [92]. Similarly, marginal efficacy was observed in the SARC009
phase II trial of dasatinib (a broad-spectrum kinase inhibitor [93]), which included 46
patients with advanced osteosarcoma. Tumors shrank in three of these patients and disease
stabilized in another three, and 15% of the osteosarcoma patients survived for at least two
years [94].

2.6. Other Drug Therapies

Other drug classes have been trialed for metastatic osteosarcoma based on promising
pre-clinical data, but have yielded generally disappointing outcomes.

Glembatumumab vedotin is an antibody-drug conjugate that targets an anti-mitotic
agent to cells expressing glycoprotein non-metastatic B protein, which is overexpressed
in most osteosarcomas [95]. When tested in a phase II trial of 22 recurrent osteosarcoma
patients, only one patient had a partial response and one patient’s death may have been
attributed to glembatumumab vedotin therapy [96]. Radium 223 dichloride has a specificity
for highly mineralized areas [97] and was evaluated in 18 high risk osteosarcoma patients,
the majority of whom had bone metastases [98]. Minimal hematological toxicity was
observed; however, the 12-month overall survival rate was only 9% [98]. Ecteinascidin
743, which had some activity against drug-resistant osteosarcoma cells in vitro [99], was
evaluated in a phase II trial of 23 patients, with 88% bearing pulmonary metastases [100].
As a single agent, its efficacy was limited, with only three patients experiencing minor
responses [100]. The mTOR inhibitor ridaforolimus was first evaluated in Ewing sarcoma
patients in a phase I trial against advanced solid tumors, which reported 4 partial responses
in 32 evaluable patients [101]. These results were the rationale for a phase II trial of
ridaforolimus in 212 advanced sarcoma patients including 54 primary bone tumor patients,
51 of whom were diagnosed with pulmonary metastases [102]. Ridaforolimus was more
effective in osteosarcoma patients than participants with soft tissue sarcomas. Three
osteosarcoma patients achieved partial responses (two confirmed, one unconfirmed) and
the bone cancer patients’ 6-month progression-free survival rate was 25% [102]. The authors
assayed the levels of eight proteins within the mTOR pathway within tumors, but none
predicted clinical responses [102].
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Despite the numerous trials conducted to evaluate novel therapies for metastatic
osteosarcoma, the long-term survival of patients remains unchanged (Table 1).

Table 1. Summary of metastatic osteosarcoma clinical trials and their outcomes. Class of the inves-
tigational agent on which the study focused: C, chemotherapy; B, bone modifying agents; S, stem
cell rescue; I, immunotherapy; T, tyrosine kinase inhibitors; O, other drug therapies. Responses: CR,
complete response; PR, partial response; SD, stable disease; PD, progressive disease. OS, overall
survival; PFS, progression free survival; EFS, event free survival.

Therapy Class Phase Outcome Reference

Pirarubicin-cisplatin C N/A Median OS: 10 months [26]

Pemetrexed C II Median OS: 5.5
months [27]

Carboplatin C II 3-year OS: 31.9% [17]
Carboplatin prior to

MAP C N/A 3-year OS: 65% [29]

Inhaled cisplatin C I Twelve SD, four PD [30]

Inhaled cisplatin C I/II Three CR, one PR,
seven SD, eight PD [31]

Cisplatin, ifosfamide
and doxorubicin C II Response rate: 33% [32]

MAP and ifosfamide C Follow-up 5-year OS: 24% [33]
MAP and ifosfamide C N/A 2-year OS: 55% [34]
MAP and ifosfamide C N/A 2-year OS: 53% [35]
MAP, ifosfamide and

etoposide C II/III 2-year OS: 52% [36]

MAP, ifosfamide and
etoposide, C I/II Median EFS: 13

months [37]

MAP and topotecan C II 5-year OS: 22% [39]
MAP and high-dose

thiotepa C II 2-year OS: 66.7% [40]

Gemcitabine C II Two PD [42]
Gemcitabine C II four SD, two PD [43]
L-alanosine C II two SD, five PD [44]

MAP, ifosfamide,
etoposide and

zoledronic acid
B I 2-Year OS: 60% [47]

MAP, ifosfamide and
zoledronic acid B III 3-year EFS: 57.1% [48]

High-dose
chemotherapy and stem

cell rescue
S N/A 3-year OS: 20% [50]

High-dose
chemotherapy and stem

cell rescue
S II Median OS: 34 months [51]

High-dose
chemotherapy and stem

cell rescue
S II 3-year OS: 55% [53]

GM-CSF I N/A 3-year OS: 35.4% [56]
MAP and mifamurtide I III 5-year OS: 53% [58]

Mifamurtide I II Median OS: 40.5
months [60]

Interleukin-1α and
etoposide I II Three PR, one SD, two

PD [64]

Pembrolizumab I II One PR, six SD, 15 PD [66]
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Table 1. Cont.

Therapy Class Phase Outcome Reference

Pembrolizumab I II Median OS: 5.6
months [67]

Pembrolizumab I II Median OS: 6.6
months [68]

Nivolumab with or
without ipilimumab I II

Without, 1-year OS:
40.4%With, 1-year OS:

54.6%
[69]

Ipilimumab I I One SD, seven PD [70]
Apatinib and
camrelizumab I II 6-month PFS: 50.9% [71]

HER2-CAR-T-cell
therapy I I/II Four SD, 13 PD [72]

Dendritic cell therapy I I/II 3-year OS: 2.9% [73]
CD4+ T-cell therapy I I/II One PR [74]

MAP, ifosfamide,
etoposide and
trastuzumab

T II 30-month OS: 59% [77]

OncoLar T I No clinical responses [80]

Robatumumab T II

Unresectable, median
OS: 18 months.

Resectable, median
OS 8 months

[82]

Regorafenib T II Two PR, fifteen SD,
nine PD [85]

Regorafenib T II Median PFS: 3.6
months [86]

Sorafenib T II Median OS: 7 months [87]
Sorafenib and

everolimus T II Median PFS: 5 months [88]

Cabozantinib T II 6-month PFS: 33% [89]
Apatinib T II Four-month PFS: 57% [90]
Cediranib T I One PR [92]
Dasatinib T II Four-month PFS: 13% [94]

Glembatumumab
vedotin O II One PR, eighteen PD [96]

Radium 223 dichloride O I 6-month OS: 48% [98]
Ecteinascidin 743 O II Twenty-three PD [100]

Ridaforolimus O II 6-month PFS: 25% [102]

3. Animal Studies

Many studies have been published evaluating the efficacy of candidate treatments
for metastatic osteosarcoma using mouse models. These models are often generated by
orthotopic or subcutaneous injection of human or murine osteosarcoma cells into mice,
which can metastasize to the lungs over the course of an experiment (Table 2). The presence
of a primary tumor in these models makes it difficult to ascertain whether a reduction in
metastatic burden is a consequence of a smaller primary tumor in treated mice, seeding
fewer cells to the lungs, and/or if the treatment acts directly on established metastases. A
reduction in the size of metastases (in addition to their number) in treated mice may imply
that the treatment targets osteosarcoma cells within the lungs. Further studies are necessary
to confirm these results. Primary tumors are typically removed by surgery in clinical
settings, yet this is rarely modeled in animal studies for logistical and ethical reasons.
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Table 2. Summary of studies reporting the efficacy of novel therapies (not yet evaluated in clinical tri-
als) against metastatic osteosarcoma using pre-clinical models of mice bearing primary osteosarcomas.
N, significantly reduced number of individual metastases compared to control mice; S, significantly
reduced size of metastases compared to control mice; OT, orthotopic tumor; IM, intramuscular tumor;
SC, subcutaneous tumor; I, isograft; X, xenograft.

Drug Target Model Efficacy Reference

Tegavivint TBL1 OT, I N, S [103]
Anlotinib Tyrosine kinases OT, X N, S [104]

Exosomal miRNA-206 TRA2B SC, X N [105]
Halofuginone TGF-β IM, X N, S [106]

Proscillaridin A JAK2/STAT3 SC, X N [107]
TH1579 MTH1 IM, X N [108]

Infliximab TNFα OT, X N [109]
Squalenoyl-

Gemcitabine and
Edelfosine

Pyrimidine analogue,
cell membrane OT, X N [110]

LCL161 cIAP1/2 IM, X N, S [111]
Gefitinib EGFR OT, I N, S [112]

miRNA-1225 YWHAZ SC, X N [113]
Hybrid liposomes Cell membrane SC, I S [114]

Anti-midkine antibody Midkine IM, X S [115]
XGFR antibody IGF-IR and EGFR OT, X N [116]

Melittin Wnt/ β-catenin OT, X N [117]

PR619 Ubiquitin specific
proteases OT, X N [118]

Auranofin Thioredoxin system SC, X S [119]

Oleanolic acid PI3K/Akt/mTOR/NF-
κB OT, X S [120]

Anginex gene therapy
and radiation Endothelial cell growth OT, X S [121]

PEDF Angiogenesis OT, X S [122]

Decitabine Estrogen Receptor
Alpha OT, X S [123]

CD47 blockade CD47 SC, I S [124]

Gemcitabine, rapamycin Cytidine analogue,
mTOR SC, I, OT, X N [125]

Lycorine Wnt/β-catenin OT, X N, S [126]
BMTP-11 IL-11:IL-11Rα OT, X N, S [127]

Esculetin, fraxetin M2 macrophage
differentiation SC, I N [128]

Anti-Tim3, PD-L1,
anti-OX-86 and surgery Tim3, PD-L1, anti-OX-86 SC, I N, S [129]

AEG-1 siRNA Astrocyte elevated
gene-1 RNA SC, X S [130]

L-MTP-PE, zoledronic
acid

Nonspecific
immunomodulation,

hydroxyapatite
OT, X, I N [131]

Eribulin Microtubules SC, I S [132]
Apatinib VEGFR2 SC, X N [133]

Xanthoangelol Stat 3 phosphorylation SC, I N [134]

Edelfosine nanoparticle Phosphatidylinositol
phospholipase C OT, X N, S [135]

LB100 phosphatase 2A SC, X N [136]

Disulfiram Aldehyde
dehydrogenase OT, I N, S [137]

Nivolumab PD-1 SC, X N, S [138]
Zoledronic acid hydroxyapatite SC, I S [139]
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Table 2. Cont.

Drug Target Model Efficacy Reference

Midostaurin Tyrosine kinases OT, I N [140]
Meloxicam COX-2 SC, I N [141]

Pigment
epithelium-derived

factor
Angiogenesis OT, X N [142]

PEDF derived peptides Angiogenesis OT, X N [143]
VEGF-SiRNA VEGF SC, X N [144]
Parthenolide NF-κB SC, I S [145]

It is sobering to reflect that the previously described clinical trials failed to recapitulate
the exciting efficacy published using pre-clinical animal models. This mismatch may reflect
inadequacies of these animal models, in addition to a publication bias favoring reporting
of positive outcomes, which presumably would be more prominent in pre-clinical than
clinical studies.

Directly seeding osteosarcoma cells to the lungs by intravenous injection can be used
to establish a metastatic model without a primary tumor (modeling a context in which
a patient’s tumor was surgically removed) [146–150]. These “experimental metastasis”
preclinical models of osteosarcoma allow researchers to specifically evaluate whether a
novel therapy can effectively target pulmonary metastases.

Although these models are a powerful tool, it can be difficult to determine if a drug
is active against established metastases unless researchers commence treatment after
metastases have formed. Authors evaluating therapies such as 3-hydroxyflavone, eu-
xanthone, CXCR4, Timosaponin, TRAIL, Panobinostat, mycophenolic acid, zoledronic
acid, rapamycin, parthenolide or quercetin began treatment prior to the injection of cells
or shortly afterwards [145,147,148,151–158]. In those studies, efficacy may reflect action
against tumor cells within the circulation and/or growing in the lungs. Destroying circu-
lating tumor cells may be desirable, as could preventing cells from acquiring migratory
phenotypes, intravasating, extravasating, forming micrometastases in distant sites or acti-
vating the proliferation of cells comprising dormant micrometastases. Pathways controlling
these key steps of osteosarcoma metastases is an active and fascinating area of research,
which has been recently reviewed [159,160]. However, the observation that surgical removal
of primary tumors is usually insufficient to cure patients implies that most osteosarcoma
patients harbor metastases (subdetectable or overt) when they are diagnosed. As discussed,
the prognosis of patients with metastases that are large enough to be detected at diagnosis
is much worse than those with ostensibly localized disease. Therapies that suppress early
steps in the metastatic process seem unlikely to benefit osteosarcoma patients, particularly
those with macro-metastatic disease (“locking the barn door after the horse has bolted”).
It is conceivable that identification of molecular features of osteosarcoma cells possessing
metastatic activity could facilitate development of targeted therapies capable of specifically
eliminating those cells. Improving cure rates for patients with osteosarcoma metastases will
probably require agents that can kill osteosarcoma cells comprising established metastases.

Studies in which authors waited at least one week post-cell injection prior to commenc-
ing treatment make a more compelling case for a drug’s efficacy against metastases, as the
cells would have presumably arrived at the lungs and begun forming pulmonary tumors.
The mTOR inhibitor rapamycin improved the survival rate of xenograft and isograft mice
bearing pulmonary metastases compared to those treated with vehicle [161]. The oncolytic
adenoviruses Delta24-RGD and VCN-01 both reduced the size and number of pulmonary
metastases compared to control-treated mice in models of metastatic osteosarcoma using
established cell lines and patient-derived cells [162]. Treatment of mice with the CXCR4
antagonist AMD3100 reduced the number of metastatic nodules in the lungs compared to
vehicle-treated mice. In that study, the authors waited four weeks post-cell injection before
starting treatment, so it is likely that metastases were established prior to treatment [163].
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Ideally, researchers would confirm the presence of metastases in mice prior to starting
treatment. Very few studies have been published in which the authors detected established
metastases in the lungs of mice by microscopy (in pilot experiments) and/or in vivo
imaging before beginning treatment. Nasarre et al. observed additive cooperation between
PD-1 inhibitor and an antibody targeting Secreted Frizzled-Related Protein 2 (SFRP2) to
reduce the number of metastases on the surface of mouse lungs by commencing treatment
mice with the antibody in conjunction with a PD-1 inhibitor eight to twelve days after
cells were intravenously injected [164]. The proteasome inhibitor ixazomib inhibited
the growth of established pulmonary metastases after their presence was confirmed by
bioluminescence imaging in two xenograft models, and moderately enhanced survival [165].
The kinase inhibitor sorafenib inhibited the growth of pulmonary metastases and reduced
their size in a xenograft model of metastatic osteosarcoma, in addition to inhibiting the
growth of subcutaneous osteosarcomas [166]. Sorefenib has since been evaluated to treat
metastatic osteosarcoma in two clinical trials, as summarized above [87,88]. Another
study found that the Smac mimetic LCL161 targeted established osteosarcoma metastases,
inhibiting their growth or inducing their regression or elimination, significantly enhancing
survival of mice compared to those treated with vehicle [167].

As an alternative to mouse xenografts and isografts, dogs present a useful model for
evaluating new therapies for spontaneous metastatic osteosarcoma. Canine osteosarcoma
shares many characteristics with human osteosarcoma, including immune infiltration,
microenvironment, genetics and presentation of metastatic disease [168,169]. Although the
incidence of osteosarcoma in humans is relatively low, it is 27 times higher dogs, which
makes it easier to establish clinical trials with large patient numbers [168]. Some trials
have been conducted using dogs as a model for metastatic osteosarcoma to evaluate new
therapies, including Auranofin, which improved overall survival combined with standard
care [170], and Palladia, which was ineffective as a single agent [171,172].

4. Current Clinical Trials

Of the clinical trials currently being conducted for metastatic osteosarcoma, almost
half are evaluating immunotherapies such as mifamurtide, IL-2 or PD-1 inhibitors (Table 3,
Figure 1). Tyrosine kinase inhibitors have also garnered a lot of interest, with multiple
trials expanding on the published data of promising agents from this class, including
regorafenib [85,86].

Table 3. Summary of ongoing metastatic osteosarcoma clinical trials.

Clinical Trials.Gov
Identifier Therapy Phase Patients

Enrolled
Completion

Date

NCT01590069 Aerosolized Aldesleukin I 70 December 2022
NCT01953900 iC9-GD2-CAR-VZV-CTLs I 26 October 2034

NCT02517918

Metronomic
chemotherapy

(cyclophosphamide and
methotrexate and
zoledronic acid)

I 26 March 2022

NCT03612466 CycloSam® and external
beam radiotherapy

I 20 September 2024

NCT04877587 Gemcitabine and
ascorbate I 20 May 2023

NCT00788125
Dasatinib, Ifosfamide,

Carboplatin, and
Etoposide

I/II 143 December 2021

NCT03811886 Natalizumab I/II 20 October 2023
NCT02243605 Cabozantinib S-malate II 90 June 2019
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Table 3. Cont.

Clinical Trials.Gov
Identifier Therapy Phase Patients

Enrolled
Completion

Date

NCT02357810
Pazopanib Hydrochloride

and Topotecan
Hydrochloride

II 178 June 2022

NCT02389244 Regorafenib II 132 March 2023
NCT02470091 Denosumab II 56 September 2022

NCT02484443 Dinutuximab and
Sargramostim II 41 March 2020

NCT03063983

Metronomic
chemotherapy

(cyclophosphamide and
methotrexate)

II 158 January 2022

NCT03643133 Mifamurtide and
chemotherapy II 126 October 2028

NCT03742193
Apatinib and

Gemcitabine-docetaxel
chemotherapy

II 43 September 2022

NCT04183062 BIO-11006 and Gemtax II 10 November 2023

NCT04668300 Oleclumab and
Durvalumab II 75 June 2024

NCT04690231 Apatinib, etoposide and
ifosfamide II 79 June 2021

NCT04803877 Regorafenib and
Nivolumab II 48 June 2026

NCT05019703 Atezolizumab and
Cabozantinib II 40 December 2027

NCT03932071 Zoledronic Acid IV 150 January 2023

Figure 1. Therapies and their mechanism of action currently being evaluated to treat metastatic
osteosarcoma in clinical trials.
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5. Future Directions

Despite intensive efforts to improve the outcome of patients diagnosed with osteosar-
coma, including those with overt metastases, the survival rate for patients reported in
clinical trials evaluating new therapies has only modestly increased at best. It seems the
long-sought substantial improvements in patient survival will require additional basic
biology research and development of drugs engaging relevant molecular targets, followed
by well-designed animal experiments and phase II clinical trials, hopefully leading to the
identification of promising candidate therapies for evaluation in phase III trials. Optimal
clinical trial design will hasten progress towards this goal.

5.1. Endpoints and Comparators in Phase II Trials

Mineralization associated with osteosarcomas limits the utility of radiographic imag-
ing for monitoring tumor responses to neo-adjuvant treatment [173,174]. Histological
evaluation of resected primary tumors after pre-surgical chemotherapy has strong prog-
nostic value, although the strength of this correlation diminished as treatment intensity
increased [175]. Long-term survival after therapy hinges on the elimination of metas-
tases (whether detectable or not), so the predictive power of primary tumor responses to
chemotherapy implies that the cells that constitute a patient’s primary tumor and their
metastases tend to exhibit similar chemo-sensitivity. It is, therefore, surprising that concor-
dant histological responses between primary tumors and synchronous metastases were
only recorded in half of the patients studied by Bacci et al., and heterogenous responses
were observed among multiple metastases from some patients [34]. Some drugs appear
to exert more toxicity towards subdetectable than overt metastases: replacing cisplatin
with carboplatin did not alter the survival rate of patients with localized osteosarcoma, but
severely diminished the proportion of patients with metastatic disease who survived for
5 years or more [20]. It may, therefore, be simplistic to assume that novel drugs that can
provoke substantial necrosis in primary tumors will necessarily have the same destructive
effect on metastases. Likewise, it is conceivable that some classes of drugs may target
metastases better than primary tumors. The basis for differential sensitivity between pri-
mary osteosarcomas and metastases is unclear, but it could relate to distinct phenotypes of
cancer cells that comprise primary versus metastatic tumors, differences in vascularization
between primary tumors and metastases (which could influence intratumoral drug con-
centrations), or variation in the non-cancer cell composition of primary versus metastatic
tumors. The strong prognostic influence of the metastatic site (e.g., bone or lymph node
versus lung) highlights the differential drug sensitivities of osteosarcomas growing in
different anatomical sites. These issues, coupled with the requirement for patients to
have measurable tumors, reinforce the disadvantages of using objective response rates as
primary endpoints in osteosarcoma trials [176,177].

The most meaningful endpoint for clinical trials of osteosarcoma treatments is overall
survival (OS). In practice, however, progression-free survival (PFS) (or “event-free survival”;
EFS) is more commonly used as a primary endpoint in phase II trials. Concerningly, while
PFS and OS data correlated tightly in trials involving Ewing sarcoma patients [178], PFS
was a less accurate predictor of OS in trials of localized osteosarcoma patients [179]. As
mentioned above, delayed progression may not foretell prolonged survival, “progression”
is more subjective than death, so bias must be avoided, and inconsistencies in the timing
of progression monitoring between groups may lead to spurious apparent differences in
outcomes [180,181]. In trials involving newly diagnosed patients with (seemingly) localized
and resectable osteosarcomas, in many of whom “progression” would mean growth of
micro-metastases to detectable size, a PFS endpoint may offer the advantage of speed while
signifying a prognostically important event. If due caution is paid to its potential pitfalls, on
balance PFS may be a reasonable primary endpoint in this context. However, the expected
lifespans of patients with recurrent/relapsed disease and/or unresectable osteosarcomas
are short. Hence, in trials involving such patients, overall survival may be a more suitable
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primary endpoint, as it would avoid the risks to data quality associated with PFS without
substantially extending the trial’s duration.

Whether phase II trials should randomize patients to experimental therapies versus
placebo is controversial. Some experts contend that single-arm trials with early endpoints
can be informative and efficient, as historical benchmarks obviate the need to split relatively
scarce patients between two treatment groups. The “New Agents for Osteosarcoma Task
Force” devised a structured approach [177] to select agents for evaluation in phase III
clinical trials, based on consideration of pre-clinical data and comparison of EFS measures
from single-arm phase II trials with historical benchmarks [182]. Using this approach, the
task force prioritized assessment of tyrosine kinase inhibitors [177]. However, others doubt
the validity of using benchmarks from previous trials [176,183], arguing that participants
in phase II trials should be randomized to receive the investigational agent or not, to allow
a direct comparison of outcomes. Whether control patients are historical, or randomized
participants within the trial, it is crucial to compare treatment efficacy between patients
who share similar prognoses. Parameters including prior treatment, tumor resectability, the
number of lung metastases and the presence/absence of extrapulmonary metastases could
be used to stratify patients in each arm into groups sharing similar prognoses. Using PFS
rather than OS as the primary endpoint is more fraught in single-arm than randomized
trials. In single-arm trials, the definition of progression (including imaging sensitivity)
and monitoring interval, in addition to patient prognoses, must match those used in the
historical comparators for outcomes to be directly comparable. By careful selection of
comparator datasets from previous trials, and ideally using OS as the primary endpoint,
the logistical benefits of single-arm phase II trials may be achievable without unduly
compromising the quality of the data and the strengths of conclusions that can be drawn
from it.

5.2. Predicitive Biomarkers

In addition to providing insight into the potential utility of new therapies, clinical trials
that incorporate predictive biomarker assays may reveal avenues for further research that
may ultimately improve outcomes for patients. Understanding the physiological, cellular
and/or biochemical factors that allow even a small proportion of patients to respond to a
particular drug may facilitate personalized treatment approaches based on the features of
patients’ primary tumors or metastases.

Biomarkers were explored to predict patient responses to ridaforolimus, but none
of the eight markers assayed varied between patients who did or did not respond to
treatment [102]. This may be a consequence of the authors’ use of archived tissue samples
or could signify that the complexity of the mTOR pathway makes it difficult to identify a
single component responsible for resistance/sensitivity to treatment [102].

A study comparing whole genome and exosome sequences between osteosarcoma
patients’ primary tumors and their pulmonary metastases revealed that metastases had
a much higher tumor mutational burden and genomic instability [184]. Metastases
also had a higher level of infiltrating lymphocytes and increased expression of PD-L1,
raising hope that they may be more sensitive to immune checkpoint inhibition [185]. In
practice, the efficacy of immunotherapy for osteosarcoma has so far been tantalizing
but limited. In the phase II trial of apatinib and the anti-PD-1 agent camrelizumab, the
authors did not reach their prespecified threshold of 60% 6-month progression free sur-
vival [71]. They did, however, note that the two patients with overexpression of PD-L1
experienced durable disease control [71]. Expression of PD-L1 alone as a biomarker
to predict patient response to PD-1 inhibitor immunotherapy has so far proved to be
unreliable for most cancers [186]. An analysis of all FDA-approved checkpoint inhibitors
found that PD-L1 expression only predicted improved responses in 30% of cases across
numerous trials [186]. This figure is likely an overestimate as the analysis only examined
successful trials that resulted in FDA approval [186]. Counterintuitively, the correlation
between overexpression PD-L1 and efficacy of immune checkpoint inhibitors appears to
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differ between inhibitors that share molecular targets. For example, the PD-1 inhibitor
atezolizumab was more effective in improving urothelial carcinoma patient outcomes
for those with PD-L1-expressing tumors versus participants with PD-L1-negative tu-
mors [187], whereas pembrolizumab improved patient outcome regardless of PD-L1
status [188]. In some cases, patients experienced durable responses to PD-1 inhibitor
therapy, despite having PD-L1 negative tumors [189].

Several clinical trials of PD-1 inhibitors for carcinomas suggest that tumor mutational
burden (TMB) may be useful for predicting patient response to immunotherapy [190–193].
High TMB predicted improved patient response to treatment independently of PD-L1
status in non-small-cell lung cancer patients [194]. The implications of high or low TMB in
osteosarcoma patients is not well defined; however, osteosarcoma patients with a higher
TMB were reported to be more likely to experience longer progression-free survival than
patients with a lower TMB [195]. One case study of a patient with pulmonary osteosarcoma
metastases and high TMB treated with PD-L1 inhibitor therapy reported a durable response
to treatment, with the patient experiencing a remission for at least two years despite
discontinuation of treatment due to therapy related toxicities [196]. A separate case study
of an osteosarcoma patient with bone and lung metastases and a high TMB experienced a
33-month remission when treated with the PD-1 inhibitor pembrolizumab and controlled
disease for 60 months [197]. The results from these two case studies, in addition to robust
data from trials with larger cohorts of carcinoma patients, suggest that TMB may be a
useful indicator of responsiveness to PD-1 inhibitors in osteosarcoma. Analysis of the
TMB of historical samples from patients who were enrolled in PD-1 inhibitor clinical trials
would help determine if there was a correlation between the level of TMB and response to
treatment.

6. Conclusions

The paucity of better-than-expected survival outcomes in osteosarcoma clinical trials
summarized above suggests that a dramatic improvement in outcomes for the majority
of metastatic osteosarcoma patients will probably require targeting of a novel process or
molecule, distinct from those engaged by agents used in clinical trials to date. Hopefully,
ongoing pre-clinical research will uncover such game-changing novel targets. Until/unless
those approaches bear fruit, extending lifespans for some osteosarcoma patients may
hopefully be realized by assembling a panel of therapies that exhibit efficacy in subsets of
patients, coupled with development of biomarker assays to enable tailoring of treatments
to individual patients.
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