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Summary

Most bacteria have poorly characterized environmen-

tal reservoirs and unknown closely related species.

This hampers the study of bacterial evolutionary

ecology because both the environment and the

genetic background of ancestral lineages are

unknown. We combined metagenomics, comparative

genomics and phylogenomics to overcome this limi-

tation, to identify novel taxa and to propose

environments where they can be isolated. We applied

this method to characterize the ecological distribu-

tion of known and novel lineages of Acinetobacter

spp. We observed two major environmental transi-

tions at deep phylogenetic levels, splitting the genus

into three ecologically differentiated clades. One of

these has rapidly shifted towards host-association by

acquiring genes involved in bacteria-eukaryote inter-

actions. We show that environmental perturbations

affect species distribution in predictable ways:

bovines have very diverse communities of Acineto-

bacter, unless they were administered antibiotics, in

which case they show highly uniform communities of

Acinetobacter spp. that resemble those of humans.

Our results uncover the diversity of bacterial line-

ages, overpassing the limitations of classical

cultivation methods and highlight the role of the envi-

ronment in shaping their evolution.

Introduction

The evolution of many bacterial lineages, like Acinetobacter,

is driven by rapid change in gene repertoires in response to

environmental challenges (Ley et al., 2006; Treangen and

Rocha, 2011). This is especially apparent in the emergence

of nosocomial pathogens, since the acquisition of new

genetic tools allows previously inoffensive isolates to

become virulent in a context of niche depletion caused by

antibiotherapy (Peleg et al., 2008; Vallenet et al., 2008; Tou-

chon et al., 2009; Bialek-Davenet et al., 2014). Hence, the

historical changes in gene repertoires are associated with

environmental adaptations (Gianoulis et al., 2009; Martinez,

2009). In theory, the colonization of a new environment is

accompanied by adaptive genetic changes that facilitate its

colonization (Smillie et al., 2011). Despite the theoretical

support to the relationship between environment and

genetic diversification (Ehrl�en and Morris, 2015), its study in

microbiology has lagged behind due to two main reasons.

First, the environmental reservoirs of bacterial species are

not well characterized. This is especially true in species

including strains with an antagonistic behaviour towards

humans, where most of the knowledge is biased towards

clinical isolates even when most lineages are avirulent

(Doughari et al., 2011). Second, the analysis of the evolu-

tion of these lineages is often impaired by lack of known

closely related species (Heath et al., 2008), which hinders

our capacity to understand how the evolutionary history of

the lineage is associated with its environmental distribution.

To overcome these limitations, we have studied the envi-

ronmental distribution of a bacterial lineage using

metagenomic data. Metagenomics facilitates the analysis

of bacterial biodiversity and the identification of novel taxa

because it bypasses the need for microbial cultivation or

isolation (Handelsman, 2004; Rodriguez-R and Konstanti-

nidis, 2014). The recent development of these techniques

has greatly expanded the nucleotide sequence databanks,

which can be queried to identify bacterial taxa. We have

used the Acinetobacter genus as a model to our study. Its

members are thought to colonize a wide variety of environ-

ments (Doughari et al., 2011), and their phylogenetic

relationships have been recently resolved through

genome-wide comparative analyses (Sahl et al., 2013;
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Touchon et al., 2014). Acinetobacter are intrinsically resis-

tant to many toxics, including antibiotics, which gives them

an adaptive advantage in the hospital. One species, A.

baumannii, is one of the most important nosocomial patho-

gens, and several other species may be emerging as novel

nosocomials (Tjernberg and Ursing, 1989; Bergogne-

B�er�ezin and Joly-Guillou, 1991; Seifert et al., 1997).

In this work, we use the Evolutionary Placement Algo-

rithm (EPA) to map metagenomic data in a phylogeny. EPA

uses a pre-existing phylogeny and a multiple alignment to

place a novel sequence from a single copy gene biomarker

in the tree (Berger et al., 2011). If a fragment is from a spe-

cies represented in the tree, the EPA places it next to the

corresponding tip. If a fragment is from a species lacking

close representatives in the tree, the EPA places it at the

internal branch where that species would branch if it were

present in the tree. Hence, EPA provides valuable informa-

tion on the existence of previously unknown taxa, their

environmental distribution and their phylogenetic relation-

ship with the known species.

We have used thousands of lineage-specific protein pro-

files and EPA to obtain a fine-scale classification of

metagenomic sequences in a bacterial genus. Our

approach identifies known and unknown taxa within the

focal lineage, Acinetobacter in this case, and associates

them with an environment and a position in the phyloge-

netic tree of the genus. It also serves as a proof of concept

for a method that can be applied to other bacterial clades.

We test the ability of our method to identify novel lineages

in an environment, to partition a clade in relation to habitat

preferences and to study the change in community compo-

sition following an environmental perturbation. The latter

also sheds light on how the evolution of the ability to inter-

act with eukaryotes can facilitate the emergence of

virulence in humans, when microbial niches are affected

by antibiotic treatments.

Results

Overview of the method and assessment of its quality

We developed a pipeline to identify clade-specific sequen-

ces in metagenomic data and place them on a reference

phylogenetic tree in four major steps (see Experimental

procedures, Supporting Information Fig. S1). First, we built

protein profiles for every protein family of the core-

genomes of the focal clade, a close outgroup and a distant

outgroup. Second, we retrieved, curated and annotated a

large set of metagenomes from different environments.

We integrated the two datasets by searching in the meta-

genomic data for proteins (or peptides) matching the

profiles of the core-genomes. Third, we used linear dis-

criminant analysis (LDA) and self-organizing maps (SOM)

to remove the distantly related sequences from the hits.

Finally, the remaining peptides were placed in the focal

clade tree by maximum likelihood using EPA. The first

three steps ascertain that few non-pertinent sequences

are subject to EPA. This makes the procedure much faster

than if all peptides were subject to the EPA, because this

latter step is very time-consuming. We used this procedure

to study Acinetobacter, using Moraxella and Psychrobacter

as close outgroups and Pseudomonas as a distant out-

group. The choice of these outgroups was based on the

phylogenetic distance: the first group is the sister-clade of

Acinetobacter in our dataset, whereas the Pseudomonas

is the subsequent one (among clades with several

completely sequenced genomes). Although the core-

genome of Acinetobacter was composed of 923 genes,

only 647 of them where shared with the outgroups. To

avoid possible misassignments due to the lack of ortholo-

gous genes in the outgroups, only the latter were used.

We assessed the quality of the classification

(LDA 1 SOM) by randomly sampling peptides from the

genomes of Acinetobacter and the close outgroup (Sup-

porting Information Figs S2 and S3). LDA assigned

incorrectly only 7.8% of the peptides from core-genomes.

However, 16% of peptides from other proteins matched

the core-genome profiles, because they were homologous,

leading to 39% of erroneous assignations. Expectedly,

these matches had lower scores than those from members

of core-gene families. To remove them, we restricted our

analysis to peptides that had a sufficient score (parameter

SA,A,i) and that matched the profiles of Acinetobacter by at

least 9% better (parameter Ri) than those of the outgroups

(see Experimental procedures). This effectively removed

the matches of paralogs. Nevertheless, 17 core-genes of

Acinetobacter (out of 647) were consistently misclassified

because they had highly similar homologs outside Acineto-

bacter (presumably due to horizontal gene transfer). We

discarded the corresponding protein profiles from further

analyses. A final number of 630 core genes was used for

further analyses. The receiver operational characteristic

(ROC) curves of the entire classification procedure showed

a remarkably good trade-off between sensitivity and

specificity even for small peptides (Supporting Information

Fig. S4). Upon validation, the set of parameters used in

our subsequent analysis returned less than 0.5% of false

positives (Supporting Information Table S5, see Experi-

mental procedures).

We tested the consistency of the method by analysing

six novel Acinetobacter genomes. These genomes provide

an independent validation set because they were not used

in the previous analysis (they only became available after

the start of the project), and were distant from all the others

(average nucleotide identity: ANI< 0.95, see Experimental

procedures). To validate the procedure, we selected

random parts of proteins (small peptides) from these

genomes with sizes representative of the metagenomics

datasets and placed them on the reference tree of
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Acinetobacter. We also built a new phylogenetic tree of the

core genome of the genus including the novel genomes

(Supporting Information Fig. S5). For each of the six taxa,

we computed the differences between the observed place-

ment of the peptides in the reference phylogenetic tree

and the expected one (given by the new core genome

tree). The differences were small: 97% of the peptides

were placed less than 4% away from the expected position

(the percentage is the distance between the positions,

divided by the maximal tip to root distance in the tree, Sup-

porting Information Fig. S6). We concluded that our

procedure accurately maps metagenomic peptides on the

phylogenetic tree of Acinetobacter. The EPA has been pre-

viously used to obtain a broad taxonomic classification of

metagenomic data using a small set of universal marker

genes (as done in PhyloSift) (Darling et al., 2014). We

evaluated the benefits of using the profiles from the com-

plete core-genome instead of the universal markers. Our

approach was better at identifying Acinetobacter fragments

and at placing them in the tree (Supporting Information

Figs S7-S12, see ‘Validation of the Core-Genome EPA

compared to Phylosift’ in Supporting Information). Hence,

the use of a large number of core genes increases the

discriminative capacity of EPA when the study is focusing

on a given microbial clade.

Abundance of Acinetobacter in microbial communities

Our method allows to identify the microbial communities

whose metagenomes contain sequences from Acineto-

bacter. To evaluate its accuracy, we checked if the six

novel Acinetobacter genomes used to validate the EPA

procedure were placed in branches of the tree over-

representing the environments where they were isolated.

This was indeed the case for the six taxa (see ‘Validation

of the EPA using novel Acinetobacter genomes’ in Sup-

porting Information), showing that EPA helps identifying

the environments where novel taxa can be found.

We then retrieved 2568 metagenomic datasets from 126

independent locations and classed them in types of envi-

ronments (see Experimental procedures). We identified

Acinetobacter in 817 out of 2568 datasets. We placed

274 890 of the peptides of these sets (0.06%) using EPA

in the reference tree of Acinetobacter. Four environments

had particularly high frequencies of Acinetobacter spp.

(Fig. 1): (i) soil, (ii) host-associated environments (host),

(iii) natural aquatic environments (water) and (iv) aquatic

environments, rich in organic material, either associated

with waste treatment plants (wastewater) or marine sedi-

ments. Peptides from Acinetobacter were identified at

much lower frequencies in the other environments

(Supporting Information Fig. S13), and were lacking in

extreme environments, notably in hyperthermophilic,

hypersaline or mine drainage samples. We found peptides

matching the same branches in different environments

(Fig. 1). Importantly, we placed 38% of the peptides in the

internal branches of the phylogenetic tree, suggesting that

many novel taxa of Acinetobacter remain to be uncovered.

Distinct environmental distribution in three major clades

The peptides from certain environments were placed much

more frequently in certain branches of the phylogenetic

tree than in others. In particular, the peptides from the four

environments with higher frequency of Acinetobacter

(aquatic, host-associated, soil and wastewater) were not

randomly placed in the tree (all P< 0.0001, Bartel’s Rank

test). To obtain an accurate picture of the distribution of the

Acinetobacter in terms of phylogeny and environment, we

computed the environmental sources over-represented

among the peptides placed in each branch of the tree (Fig.

1). As mentioned above (see Introduction), the data plotted

in the internal branches of the tree does not represent

ancestral states. Instead, it represents taxa absent from the

tree that branch at the position specified by the EPA. The

environments where these taxa are over-represented are

plotted at the corresponding internal branches. The EPA

revealed three large clades with distinctive over-

represented environments (named I to III, Fig. 1). To char-

acterize the differences between these clades, we

computed the dissimilarity matrix of the environmental dis-

tribution of the peptides placed in each branch of the tree

(see Experimental procedures). This revealed that phyloge-

netically close taxa were more frequently found in similar

environments than distantly related taxa (Kruskal–Wallis

test between within-clade dissimilarities and between-clade

dissimilarities P< 0.005). The analysis of the matrix with

non-metric multidimensional scaling (NMDS) confirmed

that within-clade branches cluster together (Fig. 2), thus

revealing the distinctness of the three main Acinetobacter

clades.

Clade I shows the highest intra-clade ecological diver-

gence among the three clades (ANOVA P< 0.001).

Members of this clade, including the Acinetobacter

calcoaceticus-A. baumannii (ACB) complex, were over-

represented in soil and human-associated environments.

A. calcoaceticus and A. pittii were very common in soil (the

former being the most abundant) and present at low fre-

quency in humans and other hosts. In contrast, A.

baumannii was very abundant in humans. Members of

clade II were frequently found in aquatic environments and

rarely associated with hosts. Members of clade III were

more frequently found in aquatic environments rich in

organic matter, such as wastewater samples and marine

sediments. The environments associated with deeper

branches of clades II and III were more similar between

them than those of branches closer to the tips of the tree

of the same clades (Fig. 2). This is revealed by the smaller
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Kullback–Leibler (KL) dissimilarities between the sets of

deeper branches, which translated into a strong aggrega-

tion and a marked overlap in the NMDS representation.

The previous results suggest that we can use our

approach to study the evolution of environmental

distributions of bacterial taxa. Initially, we found no signifi-

cant correlation between the patristic distance and the

environmental distribution of taxa (Spearman’s q 5 0.08,

P 5 0.12). However, when we split the genus in the three

clades, we found a highly significant correlation between
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the two variables (Fig. 3 and Supporting Information Fig.

S14). The difference between these two analyses seems

to result from an amalgamation effect: the trend present in

different groups of data disappears when these groups are

combined (Good and Mittal, 1987). Hence, the environ-

mental distribution of bacteria changed abruptly at the

origin of each major clade and then changed gradually, at

different rates, in each clade. Interestingly, our analysis

shows that the rate of habitat diversification was much

higher in clade I than in the others.

Host-associated Acinetobacter

Certain taxa were preferentially associated with certain

hosts (Fig. 4), usually those where they were first isolated.

However, some taxa were found in unexpected hosts. For

example, A. lwoffii that was previously described in

humans (Oh et al., 2014), and its association with clinical

samples suggests its possible emergence as an opportu-

nistic pathogen (Tega et al., 2007; Hu et al., 2011; Tayabali

et al., 2012), was also found in the gut of Anopheles gam-

biae, where it represented around 20% of the total

Acinetobacter assignations.

Taxa of clade I were very abundant in human-associated

microbiomes, whereas those of clades II and III, and those

placed deeper in the tree, were rare (Fig. 4). This suggests

that frequent human-association emerged few times in the

natural history of the genus and was particularly important

in taxa from clade I. To detail the association of Acineto-

bacter with humans, we queried specifically the data of the

Fig. 1. Results of the evolutionary placement analysis.

We computed for each branch the distribution of the environmental categories associated with the fragments placed in the branch. The colour

boxes indicate the branches in which the representation of fragments from certain environments was significantly higher than the average

abundance for each environment across the tree (one-way Kruskal–Wallis test, P-value< 0.001). White boxes represent branches without any

significant over-representation. The pale backgrounds represent the three large clades with similar broad environmental distribution. The

distribution of dissimilarities between ancestral and descendant branches was calculated. Branches showing the top 95% of the ecological

shifts towards their descendants are marked in red (see Experimental procedures). For clarity of the display, the small branches in the tree

were slightly extended to allow the inclusion of the colour boxes, and only environments significantly over-represented were kept. A version

including all environments can be found in Supporting Information (Fig. S18). The calculations were all done with the original tree (see

Supporting Information Fig. S16). [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 2. Non-metric multidimensional scaling analysis of the
Kullback–Leibler dissimilarity matrix of the environmental diversity
associated to each branch.

Each point represents a branch in the phylogenetic tree of

Acinetobacter. Colours define the clade of the branch. Branches

that do not belong to any of the three clades were not displayed.

Terminal branches are represented by circles, and deep branches

by triangles. The area defined by the clusters in the N-dimensional

space was represented as the smallest ellipse covering at least

95% of the variance of the cluster. To calculate this area we used

the ‘ade4’ R package (Thioulouse et al., 1997). [Colour figure can

be viewed at wileyonlinelibrary.com]

Fig. 3. Scatterplot of the Bray–Curtis dissimilarity (Y axis) between
the different terminal branches and their phylogenetic distance (X
axis) inside each clade.

The different clades (I, II and III) are represented by the three

different colours. Spearman q values of the associations are: 0.61

(clade I), 0.11 (clade II) and 0.31 (clade III), all P< 0.05. The

fitness (R2) and slope (m) of the regression line are indicated in the

figure, all P< 0.05. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Human Microbiome Project (HMP) and the Home Micro-

biome Project (HoMP) (Consortium, 2012; Lax et al.,

2014). We found similar Acinetobacter in skin and house-

related samples of the same household in HoMP data

(Spearman’s q 5 0.82, P< 0.0001) (Supporting Informa-

tion Fig. S15). The identification of the natural reservoirs of

A. baumannii is an important topic of research, given the

role of this species as a nosocomial pathogen. A. bauman-

nii was over-represented in the metagenomic datasets

from host-associated environments (chi-square test,

P< 0.0001), biofilms (P<0.001, same test) and soil

(P< 0.0001, same test). This fits previous observations

using classical identification methods (Houang et al., 2001;

Vangnai and Petchkroh, 2007; Hamouda et al., 2011; Rafei

et al., 2015). In the oral samples of the HMP, 86% of the

Acinetobacter peptides were from A. baumannii.

Community response to environmental perturbations

The previous analyses showed that we could detail the

evolution of environmental distributions on the tree of the

genus. We then enquired on the possibility of identifying

differences caused by environmental disturbances. There

is now ample evidence that antibiotic treatments shape

human microbiomes (Jakobsson et al., 2010; Sommer and

Dantas, 2011; Maurice et al., 2013), and it has been sug-

gested that A. baumannii’s success as a nosocomial

pathogen is largely due to its intrinsic resistance to antibiot-

ics and disinfectants (Fournier et al., 2006; Dijkshoorn

et al., 2007; Wisplinghoff et al., 2007; Diancourt et al.,

2010; Kempf and Rolain, 2012). We therefore tested if our

method was able to identify differences in the Acineto-

bacter present in animals’ microbiome treated or not with

antibiotics. Comparison of bovine rumen metagenomes of

treated and untreated animals with the metagenomes of

humans and soil [metagenome references mgm4563763-

86; mgm4497370-412 (Chambers et al., 2015)], showed

that the human and treated bovine samples had much less

genetic diversity than the untreated and soil samples (Fig.

5A). The matrix of KL distances showed that human and

treated bovine samples were much more similar than the

others in terms of their composition in Acinetobacter (aver-

age distance to the group centroid of 1.96 and 0.44

respectively). Soil and untreated bovine samples were

apart and equidistant from this group (7.5 and 5.97 respec-

tively, ANOVA P 5 0.09) (Fig. 5B). The resemblance

between the composition of Acinetobacter in soil and

untreated bovines suggests that soil-associated microbiota

is acquired during foraging and incorporated into cattle

rumen depending on the composition of the individual

microbiota (in terms of Acinetobacter spp.). On the other

hand, the similarity between treated bovines and humans

suggests that antibiotic treatments in the former favour

over-representation of Acinetobacter taxa that are usually

identified in humans.

Genetic and functional bases of ecological differentiation

Our method aims at placing taxa in a known phylogenetic

tree using the core genome. Yet, if one is interested in ana-

lysing genetic determinants associated with environmental

transitions, or clades in a tree, one can analyse the pan-

genome of the clade. To illuminate the genetic basis of

transitions between clades, we searched for the genes

associated with clades I to III. For this, we assessed the

relative representation of every gene family of the genus

pan-genome in the three clades and annotated these fami-

lies using eggNOG (see Experimental procedures,

Supporting Information Table S6). A total of 864 (out of

26 600) gene families were overrepresented in a specific

clade (P< 0.05 after FDR). The vast majority of them

(88%) were over-represented in clade I. Many of those

families were associated with metabolism (53%, Chi-

square test, P<0.0001), and especially amino-acid

metabolism (51% of the metabolism hits, P< 0.0005,

same test). Some of these genes were found in clusters in

the genomes, including some complete operons. For

example, the urease operon, involved in colonization and

virulence in a number of nosocomial pathogens (Mora and

Arioli, 2014), was over-represented in clade I. The remain-

ing families (38%) over-represented in clade I were

Fig. 4. Relative abundance of peptides from host-associated
environments placed on the different branches of the Acinetobacter tree.

Total abundances have been divided by the total abundance of

peptides assigned to each branch, but only host-associated

environments are displayed. Colours represent host types. [Colour

figure can be viewed at wileyonlinelibrary.com]
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involved in environmental interactions, including sidero-

phore biosynthesis and transport or antibiotic resistance.

Only cell wall and envelope biogenesis were over-

represented in clade II (Chi-square test P 5 0.00049). No

categories were over-represented in clade III. Hence, most

clade-associated genetic traits were acquired by genomes

of clade I and may be involved in its evolution towards

association with animals.

Discussion

Methodological limitations and implications

Other methods have tried to identify genus-specific

sequences in metagenomics data. Methods such as

PhymmBL, Kraken or Metaphlan, aim to assess the taxo-

nomic distribution of metagenomic datasets by matching

them against a subset of genomic markers (Brady and

Salzberg, 2009; Segata et al., 2012; Wood and Salzberg,

2014). These methods can process large amounts of infor-

mation with good accuracy for known taxa, because they

look for highly similar hits against either a small set of uni-

versal markers (in the case of PhymmBL) or a subset of

species-discriminant markers (in the case of Kraken and

Metaphlan). However, these methods do not place the

sequence in a phylogenetic scenario and do not provide

precise information on the evolutionary distance between

the environmental taxa and the references. EPA of

sequence fragments was pioneered by Phylosift, which

uses 37 nearly universal single copy genes to obtain a

broad classification of bacteria and archaea (Darling et al.,

2014). In contrast, our method uses thousands of clade-

specific genes and is thus expected to be more accurate at

the genus-level, at the cost of having to identify the core

genome of the clade, and of the outgroups, and compute

the associated protein profiles. This requires a certain

degree of expertise from the user in order to produce the

required core-genomes, protein alignments and the phylo-

genetic tree. Nevertheless, there are different user-friendly

tools available, such as Roary (Page et al., 2015), that pro-

duce the necessary core genome data for our pipeline.

While the method is reproducible, its accuracy is expected

to increase with the number of profiles and with the dis-

tance of the closest outgroup. Accordingly, we were able to

map ten times more fragments with our method, while

fetching seven times fewer false positives, with our method

relative to phylosift (see ‘Validation of the Core-Genome

EPA compared to Phylosift’ in Supporting Information).

Hence, these two different ways of using EPA are comple-

mentary; phylosift is more adequate to identify large phyla,

whereas our approach is more accurate to study the eco-

logical diversification of lineages at the genus level. If the

goal of the analysis is to study even narrower taxa, such a

clonal complex in a species, then these phylogenetic meth-

ods must be replaced by methods focusing on the

identification of strain-specific genes.

As the other abovementioned programs, our method

assumes that sequences branching in the Acinetobacter

tree are from Acinetobacter genomes. This will produce

false positives when genomes from other taxa have

recently acquired genes from Acinetobacter. We believe

that this problem will have little effect on the context of

large-scale analyses because core genes, contrary to

clade-specific genes, are transferred between distant

Fig. 5. A. Intragroup divergence variability. Bars represent the
complete variance of each dataset. All pairwise comparisons were
significantly different (P< 0.05, Wilcoxon tests).

B. Principal Coordinate Analysis of the Bray–Curtis dissimilarity

associated to taxonomic diversity of four different metagenomic

datasets. Each dot represents the projection of the Bray–Curtis

dissimilarity into the dissimilarity space. Colours are assigned

according to the metagenomic dataset. [Colour figure can be

viewed at wileyonlinelibrary.com]
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species at low rates (Abby et al., 2012). Also, the use of a

large number of core genes should diminish the effect of a

given event of horizontal gene transfer. Accordingly, the

results of the LDA 1 SOM analysis showed a very high

accuracy, confirming that sequences from the outgroups

were not mistaken as Acinetobacter.

In this study, we selected the closest known genera to

Acinetobacter as the close outgroup. We assessed the

performance of our pipeline when the outgroups were

more distant, Moraxella (closest outgroup) and Enterobac-

teria (distant outgroup) (see Supporting Information). The

selection of different outgroups had an impact on the num-

ber of fragments kept during the discriminative phase, as

13.4% of the fragments coming from Moraxella passed the

discriminant analysis and were kept for the evolutionary

placement, within which only very few (2.4%) were placed

inside the Acinetobacter genus. Hence, a few sequences

of clades more closely related to the genus than to the

closest outgroup considered in the analysis can be

mapped erroneously in the genus. Importantly, the place-

ment of Acinetobacter fragments was not affected by

changing the outgroups.

Our method has the interesting property of identifying

where the taxa branch in the known phylogeny and in

which environments they are more susceptible to be iso-

lated. This could dramatically accelerate the identification

of novel bacterial taxa and their niches. It is interesting to

observe that many of the novel lineages of Acinetobacter

had not been observed before, in spite of previous projects

aiming at sequencing all known species in the genus

(Touchon et al., 2014), and recent efforts to identify novel

species (Krizova et al., 2015; Maixnerova et al., 2015;

Nemec et al., 2015; Sedo et al., 2016). Importantly, these

potentially novel lineages were generally found in metage-

nomic datasets from environments similar to those of their

close relatives. Nevertheless, we observed some disagree-

ments between previous literature and our results on the

distribution of Acinetobacter species in environments.

Some of these may result from the coarse-grained classifi-

cation of metagenomic samples into environmental

categories, which is essential to attain sufficient statistical

power to test our hypotheses, but may have resulted in

some over-simplifications. However, a careful analysis of

the most striking discrepancies suggests different reasons.

For example, A. baumannii has often been described as

present in human-associated environments and in biofilms

in dry inert surfaces (Peleg et al., 2012; McConnell et al.,

2013). This makes it particularly well-adapted to clinical

settings and may explain its success as a nosocomial

pathogen. We consistently found A. baumannii in house-

hold surfaces and other environments classified as

biofilms. However, this species was not systematically

found in all biofilm-associated datasets, probably due to

the characteristics of the sampled environments. We have

also identified it in soil samples. While previous association

between the A. baumannii and the soil has been reported

using cultivation-based approaches (Houang et al., 2001;

Hrenovic et al., 2014), the difficulty in reproducing these

studies by others has led to suggestions that they resulted

from methodological artifacts (Peleg et al., 2008). In our

work, most A. baumannii were identified in the samples

from humans and soil. Different metagenomic datasets

consistently showed small abundances of A. baumannii in

soil samples of different geographic locations, such as

USA, UK or France (Delmont et al., 2012; Fierer et al.,

2013). These discrepancies between cultivation-based

methods and metagenomics are not new. For instance,

Benitez-Paez and colleagues described a completely

different bacterial composition in oral samples when they

compared classical isolation methods to a metagenomic

approach (Benı́tez-P�aez et al., 2013). These results

highlight the interest of complementing classical isolation

methods (Browne et al., 2016) with cultivation-free meta-

genomics to study microbial ecology. Indeed, the use of

metagenomic approaches should be considered as the

preliminary step to characterize the diversity of communi-

ties and to identify novel lineages. These approaches will

then require comparative genomics analyses to under-

stand the process of diversification of the novel lineages.

When these taxa are highly abundant in the sample,

genome-resolved metagenomics may allow to recover

their genomic content (Alneberg et al., 2014; Nielsen et al.,

2014; Cleary et al., 2015; Lu et al., 2017). Other alterna-

tives, when the genome assembly cannot be obtained

from metagenomes, might include targeted bacteria and

targeted cultivation based on initial metabolic

characterization.

The diversification of the genus and the emergence of
nosocomial lineages

We consistently found Acinetobacter in four major types of

environments. Several taxa were frequently found in more

than one environment, and sporadically in others, sugges-

ting they have the ability to colonize multiple environments

transiently or permanently. This may have facilitated their

environmental diversification. Closely related taxa tend to

inhabit closely related environments. This not only applies

to the lineages present in the original dataset used to build

the phylogenetic tree, but also the new lineages predicted

by EPA. However, there were exceptions to this trend,

including some sharp transitions that led to the rapid diver-

sification of clades I and II. In fact, branches close to the

origin of clades I and II are among those showing larger

differences in their environmental distribution, compared to

their close relatives.

We identified the major environmental shifts in the evolu-

tionary history of the genus by comparing the differences

Interplay between environment and diversification 5017

VC 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 19, 5010–5024



of environmental-associated peptides in immediately

ancestral and descendant branches at each node. These

differences measure the change in the capacity to inhabit

a specific environment by the immediate descendants of

that node, probably by the acquisition/loss of a genetic rep-

ertoire that allows them to occupy those niches. The

transition to clade I is especially interesting because the

latter is the most frequently found in the human micro-

biome. The extensive use of antibiotics by humans started

long time after this transition. Yet, the existence of a clade

that is often associated with hosts, with an appropriate rep-

ertoire of specific host-associated genes, and the selection

of more resistant lineages through the last decades, might

have facilitated the recent emergence of nosocomial Aci-

netobacter species. Two observations seem to agree with

this hypothesis: First, the identification of non-pathogenic

lineages from the ACB complex (including A. calcoaceti-

cus) in human samples and the rapid diversification

between A. baumannii and the other members of clade I.

Second, the differences observed in the microbiome of

bovines exposed to antibiotics (relative to the others),

showing a shift towards the Acinetobacter spp. typically

found in humans.

Clade II and III are markedly different between them but

show similar correlations between the environmental dis-

similarity and the phylogenetic distance of its members. In

contrast, clade I shows a strikingly more rapid ecological

diversification. This is reflected in the relative abundances

of each species of clade I in the different environments.

The difference between the abundances of A. baumannii

in soil and host-associated environments suggests that

this species might be rapidly specializing towards

human-associated environments (including humans,

human-associated hosts and house-holds), while the other

members of the clade remained abundant in soil. Further

research might shed light in the association between mem-

bers of clade I and the human-associated environments

and the effect of the recent massive antibiotic usage in

humans and other human-associated environments. Our

observations about the transitions observed in the

branches at the origin of the major clades, together with

the sharp diversification observed in clade I support the

hypothesis that such environmental disturbance will be

accompanied by an important diversification of the lineage.

Experimental procedures

Genome data

We analysed the 133 complete genomes of 29 validly named

species and 8 genomic species of Acinetobacter analysed in

(Touchon et al., 2014) (Supporting Information Table S1).

The places of isolation of the bacteria were retrieved from the

same reference or from the literature. We also analysed the

2644 complete genomes available in GenBank RefSeq

(Supporting Information Table S2, last accessed November

2013). At the end of the study, we retrieved from RefSeq 29

novel genomes of Acinetobacter (not identified as A. bauman-

nii), that were published after the work of (Touchon et al.,

2014) (last accessed October 2015). We only used genomes

that mentioned the isolation site of the strain (Supporting Infor-

mation Table S3). The 16 genomes that lacked annotation

were annotated using prodigal v.2.6.2 (Hyatt et al., 2010)

(default parameters).

Definition of core-genomes and pan-genomes

Core-genomes were defined as the families of orthologous

genes ubiquitous in a given clade. The pan-genome of a clade

was defined as the repertoire of gene families present in that

clade. Both core-genome and pan-genome reconstructions

were performed following the approach from (Touchon et al.,

2014). The list of core-genome profiles and a Supporting Infor-

mation Table S7 listing the gene families are included in

Supporting Information. For more information, see Supporting

Information.

Identification of protein families over-represented in
clades I to III

We used hmmsearch from HMMer v.3.1.2 (Eddy, 2011) to

search for the best hit (e-value<1025) of each protein profile

in the eggNOG database v.4.0 (Powell et al., 2013). Protein

profiles were annotated using the functional information of the

best eggNOG hit. Of them, 40% of the proteins were not

assigned to any eggnog category and were discarded from

further analyses. We then compared the abundances of the

different eggNOG categories in each clade relative to the

whole genus’ pan-genome. The over-representation of protein

families was assessed statistically using the Pearson Chi

square test with Benjamini–Hochberg correction for multiple

tests (Benjamini and Hochberg, 1995).

Two pan-genome protein families were considered to be in

a relation of gene order conservation when the respective

genes co-localized (less than 5 CDS apart) in all the genomes

where the two families were present.

Metagenomics data

We analysed 2568 metagenomic datasets from 126 indepen-

dent locations with relevant meta-data retrieved from MG-

RAST (Meyer et al., 2008). These sets represent a broad

diversity of host-associated and environmental ecosystems.

They contain � 6 3 1011 metagenomic fragments (6 Tera-

bytes of data). We only retrieved the datasets with multiple

samples (to be able to assess the diversity within a sequenc-

ing project). We ignored datasets obtained by procedures

involving amplification, because they may generate genomic

and metagenomic coverage biases, produce chimeric contam-

inant sequences and over or under-estimate the abundance of

certain taxa (D�zunkov�a et al., 2014; Marine et al., 2014). We

grouped the datasets in 8 major environmental categories and

39 sub-categories (Supporting Information Table S4). We

searched for ORFs in the metagenomic data using FragGe-

neScan v.1.17 using the options to operate with fragmented
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data (Rho et al., 2010). We only kept fragments of size higher
than 35 amino acids, based on the distribution of false posi-

tives and negatives observed during the methodological
validation (see Simulated metagenomic fragments). Frag-

ments were queried against the core-genome HMM profiles

using hmmsearch. Significant hits were kept for the EPA anal-
ysis. For more details, see Supporting Information.

Simulated metagenomic fragments

We sampled random fragments from translated genomic data.

As the distribution of read sizes usually fits a gamma distribu-
tion (Richter et al., 2008), we selected fragments with lengths

following this distribution with parameters: j 5 X and k 5 1,
where X is the average fragment size. We made separate

analyses for fragments with X 5 {35, 50, 75, 85, 100, 115}
amino acids (see Supporting Information Fig. S3).

Linear discriminant analysis

We queried the simulated metagenomes of Acinetobacter and

both outgroups with the three sets of protein profiles (one per
clade core-genome). The distributions of the nine sets of nor-

malized scores were analysed with LDA. This analysis was
performed in R, using an estimation based on a T distribution

and assuming equal prior assignation probabilities for all three
groups. Based on these results, we calculated for each Acine-

tobacter fragment i the ratio (Ri) between the best normalized
score obtained with the profiles of Acinetobacter profiles

(SA,A,i) and the best normalized score obtained with the pro-
files of the close and distant outgroups (SCO,A,i; SDO,A,i).

We used SA,A,i and Ri to define a metagenomic peptide as

Acinetobacter, based on the results of LDA. The conditions for

a peptide to be classed as Acinetobacter were thus:
SA,A,I�Max(SCO,A,i; SDO,A,i), SA,A,i >1.45 and Ri> 1.09.

Phylogenetic reconstruction

The original Acinetobacter phylogenetic tree had some short

branches (Touchon et al., 2014). EPA cannot assign short
reads to these branches accurately. To reduce this problem, we

selected a lineage representative at species level, and removed
the other strains from that already represented lineage. The

pruned protein alignments of the core-genome were back-
translated to DNA (each amino acid was replaced by the origi-

nal codon), as is the best practice in evolutionary analyses [see
(Touchon et al., 2014)]. Poorly aligned regions were trimmed

with trimAL v.1.4 using the automated1 algorithm (Capella-
Guti�errez et al., 2009). The final phylogenetic tree was inferred

using RAxML v.8.1.2 with the model GTR 1 I 1 G (Stamatakis,
2014). We assessed the robustness of the topology with 1000

bootstrap experiments. We used another alignment of 630
orthologous genes common to Acinetobacter and the close

outgroup to root the tree (using the same method).

Evolutionary placement analysis

We used maximum likelihood to place on the phylogenetic
tree the metagenomic peptides preselected with the SOM. To

reduce computational time (and inaccurate placement of

outgroups), we removed the few remaining very divergent

peptides. For this, we computed the minimal pairwise

sequence distances (XFi,Aj) between each peptide (Fi) and the

reference Acinetobacter sequences (Aj) of the k genomes cor-

responding to the protein profile that best hits Fi:

XFi ;Aj
5 min

k2 1133f g
DFi ;Aj ;k

� �

We also computed the maximal pairwise sequence distances

YAi ;j

� �
between all the Acinetobacter sequences of the core-

gene family j on the exact region where the peptide Fi matched.

YAi ;j
5 max

k ;l2 1133f g; k 6¼l
DAi ;j ;k ;Ai ;j ;l

� �

If XFi ;Aj
> YAi ;j

then the maximum pairwise distance between

the core-genes is smaller than all the matches of the queried

fragment with each of the core-genes. These peptides were

thus considered to be outgroups and were removed from fur-

ther analysis. The others were incorporated in the multiple

alignments using the addfragments algorithm of MAFFT v.

7.153b (Katoh et al., 2002). They were then placed on the

phylogenetic tree using the EPA included in RAxML v.8.1.2

(Berger et al., 2011), with the ‘-f v’ option and the same evolu-

tionary model used in the phylogenetic reconstruction. For

more information about the validation of EPA, see Supporting

Information. The pipeline scripts are available at https://gitlab.

pasteur.fr/gem/Core-Genome-EPA.

The number of assignations per metagenome sample was

correlated with the size of the metagenomic dataset

(Spearman’s q 5 0.68, P< 0.0001). Hence, we divided the

abundance of the hits from a specific dataset by the total num-

ber of peptides in the metagenomic dataset.

Community analysis of the Acinetobacter selected

peptides

We determined the distribution of the peptides placed by the

EPA for each environment in each phylogenetic branch of the

reference tree of the Acinetobacter genus. We then assessed

similarities and differences between these environmental dis-

tributions across the branches of the tree. For this, we

computed Bray–Curtis (BC) and KL dissimilarity matrices

using the vegan R-package and the functions defined in Faust

and colleagues (Oksanen et al., 2008; Faust et al., 2012).

These two measurements are often used to quantify the differ-

ences between datasets, either by comparing the

compositional dissimilarity between sites (BC, in this case

environmental composition between branches) or by compar-

ing the probability distributions derived from the observed

frequencies in each dataset (KL) (Gorelick and Bertram,

2010). These two matrices were then independently analysed

with NMDS analyses. This method finds a non-parametric

monotonic relationship between dissimilarities and ranks them

in a smaller set of dimensions that can be represented in a N-

dimensional space (Kruskal, 1964). We performed a k-means

clustering on the KL dissimilarity matrix, using the Calinski–

Harabasz index to define the optimal number of clusters

(Calinski and Harabasz, 2007). The statistical robustness of

clustering was assessed using 100 bootstrap analyses.
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We analysed the environmental shifts along the phyloge-

netic tree. To do so, we computed the KL dissimilarity
between the distribution of environmental sources of peptides

placed at every ancestral branch and at the two immediately
descendent branches. This resulted in two values per node.

The distribution of dissimilarities was analysed to highlight the

nodes with the most distinct differences between ancestral
and descendant branches. When these values were in the top

95% of the distribution, they were marked in red in Fig. 5 in
the place of the corresponding descendant branch.
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Fig. S1. Overview of the analysis. Metagenomic data was

collected, processed and annotated (red). Genomic data

was used to build the core and pan-genomes of Acineto-

bacter and two close outgroups (blue). The core-genome

was used to build a phylogenetic tree of the Acinetobacter

genus. Metagenomic and genomic data were integrated to

place the metagenomics fragments on the Acinetobacter

genus tree using EPA (purple). The latter were then used to

analyse the distribution of Acinetobacter fragments in the

light of their position in the phylogenetic tree and the envi-

ronment where they were sampled.
Fig. S2. Scatterplot of the scores of fragments matching

the protein profiles of the core-genomes of Acinetobacter

(X-axis) and the close outgroup (Y-axis). The fragments

were sampled from the complete genomes of Acinetobacter

(blue) and the close outgroup (red). Fragments from genes

that were in none of the core-genomes were coloured in

grey.
Fig. S3. Scatterplots of the scores of peptides matching the

protein profiles of the core genomes of Acinetobacter (X-

axis) and the close outgroup (Y-axis). The fragments were

sampled from the complete genomes of Acinetobacter (in

blues) and the close outgroup (reds). Each plot is associ-

ated to a different average fragment size.
Fig. S4. Receiver Operating characteristic (ROC) curve

illustrating the performance of our binary classifier. The X

axis shows the false positive rate (FP) and the Y axis shows

the rate of True Positives (TP). The colour gradient shows

the maximum SA,A,i value found at a specific TP/TN rate

point.
Fig. S5. Phylogenetic reconstruction of the Acinetobacter

spp. core genome, including the six new isolates. The new

isolates highlighted in red are those used in the validation

of the EPA. ANI values for those isolates are included in

the figure.
Fig. S6. Distribution of the phylogenetic distances between

the placement of a simulated fragment by the EPA, and the

true correct position according to the core-genome phyloge-

netic reconstruction. The distances were divided by the
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maximal tip-to-root distance in the tree and are presented

as percentages. The different colours represent the geno-

mic origin of the simulated fragments.
Fig. S7. Acinetobacter sp. MN12. Distribution of the phylo-

genetic distances between the placement of a simulated

fragment by the EPA, and the true correct position accord-

ing to the core-genome phylogenetic reconstruction. The

distances were divided by the maximal tip-to-root distance

in the tree and are presented as percentages. The different

colours represent the two methodologies used: Our

approach (in red) and Phylosift (in blue). Phylosift consis-

tently displays two separated groups of placements, sepa-

rated by a small gap. This gap relates to the use of highly

conserved markers, which distinguishes perfect matches to

sequences originally included in the profile construction and

distantly related matches (and therefore internal branches),

leading to the granularity observed in the different figures.
Fig. S8. Acinetobacter sp. Ver3. Distribution of the phyloge-

netic distances between the placement of a simulated frag-

ment by the EPA, and the true correct position according to

the core-genome phylogenetic reconstruction. The distan-

ces were divided by the maximal tip-to-root distance in the

tree and are presented as percentages. The different col-

ours represent the two methodologies used: Our approach

(in red) and Phylosift (in blue). Phylosift consistently dis-

plays two separated groups of placements, separated by a

small gap. This gap relates to the use of highly conserved

markers, which distinguishes perfect matches to sequences

originally included in the profile construction and distantly

related matches (and therefore internal branches), leading

to the granularity observed in the different figures.
Fig. S9. Acinetobacter sp. MDS7A. Distribution of the phy-

logenetic distances between the placement of a simulated

fragment by the EPA, and the true correct position accord-

ing to the core-genome phylogenetic reconstruction. The

distances were divided by the maximal tip-to-root distance

in the tree and are presented as percentages. The different

colours represent the two methodologies used: Our

approach (in red) and Phylosift (in blue). Phylosift consis-

tently displays two separated groups of placements, sepa-

rated by a small gap. This gap relates to the use of highly

conserved markers, which distinguishes perfect matches to

sequences originally included in the profile construction and

distantly related matches (and therefore internal branches),

leading to the granularity observed in the different figures.
Fig. S10. Acinetobacter sp. TTH0-4. Distribution of the phy-

logenetic distances between the placement of a simulated

fragment by the EPA, and the true correct position accord-

ing to the core-genome phylogenetic reconstruction. The

distances were divided by the maximal tip-to-root distance

in the tree and are presented as percentages. The different

colours represent the two methodologies used: Our

approach (in red) and Phylosift (in blue). Phylosift consis-

tently displays two separated groups of placements, sepa-

rated by a small gap. This gap relates to the use of highly

conserved markers, which distinguishes perfect matches to

sequences originally included in the profile construction and

distantly related matches (and therefore internal branches),

leading to the granularity observed in the different figures.

Fig. S11. Acinetobacter sp. HR7. Distribution of the phylo-

genetic distances between the placement of a simulated

fragment by the EPA, and the true correct position accord-

ing to the core-genome phylogenetic reconstruction. The

distances were divided by the maximal tip-to-root distance

in the tree and are presented as percentages. The different

colours represent the two methodologies used: Our

approach (in red) and Phylosift (in blue). Phylosift consis-

tently displays two separated groups of placements, sepa-

rated by a small gap. This gap relates to the use of highly

conserved markers, which distinguishes perfect matches to

sequences originally included in the profile construction and

distantly related matches (and therefore internal branches),

leading to the granularity observed in the different figures.
Fig. S12. Acinetobacter sp. A47. Distribution of the phylo-

genetic distances between the placement of a simulated

fragment by the EPA, and the true correct position accord-

ing to the core-genome phylogenetic reconstruction. The

distances were divided by the maximal tip-to-root distance

in the tree and are presented as percentages. The different

colours represent the two methodologies used: Our

approach (in red) and Phylosift (in blue). Phylosift consis-

tently displays two separated groups of placements, sepa-

rated by a small gap. This gap relates to the use of highly

conserved markers, which distinguishes perfect matches to

sequences originally included in the profile construction and

distantly related matches (and therefore internal branches),

leading to the granularity observed in the different figures.
Fig. S13. Relative abundance of fragments assigned to Aci-

netobacter by EPA (Y axis). Each bar represents an envi-

ronmental category. Distribution of fragments was

normalized by the sum of all normalized frequencies. Col-

ours were selected according to the ones assigned in Fig.

1. A new version with the figure with the Y-axis recalculated

to show the total number of sequence per environment,

divided by total number of sequences per environment has

been included (Supporting Information Figure S17).
Fig. S14. Scatterplot of the Bray–Curtis dissimilarity (Y

axis) between the different terminal branches and their phy-

logenetic distance (X-axis) between all clades.
Fig. S15. Scatterplot of the relative abundance of Acineto-

bacter fragments from skin samples (Y-axis) and

household-associated samples (X-axis) from the Home

Microbiome Project. Samples were paired according to the

origin of isolation and relationship between each house and

their tenants. Given the large distance between the two

highest points in the scatterplot and the rest, we have re-

analysed the correlation after removing those two points,

resulting in a still significant correlation (adjusted

rho 5 0.973, P-value 5 1e-08) and no significant difference

between the two slopes in the linear regression.
Fig. S16. Phylogenetic reconstruction of the Acinetobacter

spp. Core genome. The large monophyletic clades highlighted

by the three colours correspond to the three environmentally

coherent clades represented in Fig. 1. The scale of the tree

is given in substitutions per site. Only Bootstraps supports

below 90% are represented in the corresponding node.
Fig. S17. Relative abundance of fragments assigned to Aci-

netobacter by EPA (Y axis). Each bar represents an envi-

ronmental category. Distribution of fragments was

normalized by the sum of all normalized frequencies and

the total number of reads per environment. Colours were

selected according to the ones assigned in Fig. 1.
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Fig. S18. Results of the evolutionary placement analysis.

We computed for each branch the distribution of the envi-
ronmental categories associated with the fragments placed
in the branch. The colour boxes indicate the branches in
which the representation of fragments from certain environ-
ments was significantly higher than the average abundance

for each environment across the tree (one-way Kruskal–
Wallis test, P-value<0.001). White boxes represent
branches without any significant overrepresentation.
Table S1. List of Acinetobacter strains and genomes used
in this study

Table S2. List of complete genomes used in the analysis.
Table S3. List of new Acinetobacter isolates used to vali-
date our approach.
Table S4. Metagenomic metadata recruited from MG-

RAST. All the meta information from each sample was proc-

essed and catalogued. The environmental classification

was built using a hierarchical classification, from broader to

more specific environment type.

Table S5. Percentage of True Positives, False negatives,

False positives and True negatives resulted by SOM analy-

sis, in the core and pan genome from Acinetobacter, close

and distant outgroups. All values have been divided by the

total number of events.
Table S6. EggNOG Functional annotation of the differen-

tially enriched protein families in the three environmentally

independent clades.
Table S7. List of Core Genome profiles, their presence in

both the focal group and the close outgroup and whether

they were finally used or not.
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