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Autosomal recessive primary microcephaly (MCPH; “small head syndrome”) is a rare,

heterogeneous disease arising from the decreased production of neurons during brain

development. As of August 2020, the Online Mendelian Inheritance in Man (OMIM)

database lists 25 genes (involved in molecular processes such as centriole biogenesis,

microtubule dynamics, spindle positioning, DNA repair, transcriptional regulation, Wnt

signaling, and cell cycle checkpoints) that are implicated in causingMCPH. Many of these

25 genes were only discovered in the last 10 years following advances in exome and

genome sequencing that have improved our ability to identify disease-causing variants.

Despite these advances, many patients still lack a genetic diagnosis. This demonstrates a

need to understand in greater detail the molecular mechanisms and genetics underlying

MCPH. Here, we briefly review the molecular functions of each MCPH gene and how

their loss disrupts the neurogenesis program, ultimately demonstrating that microcephaly

arises from cell cycle dysregulation. We also explore the current issues in the genetic

basis and clinical presentation of MCPH as additional avenues of improving gene/variant

prioritization. Ultimately, we illustrate that the detailed exploration of the etiology and

inheritance of MCPH improves the predictive power in identifying previously unknown

MCPH candidates and diagnosing microcephalic patients.

Keywords: microcephaly, neurogenesis, genetics, cell cycle, rare disease (RD)

INTRODUCTION

Autosomal recessive primary microcephaly (MCPH) is a rare, heterogeneous disorder
characterized by an occipitofrontal diameter >2 or 3 standard deviations below the mean at birth,
after accounting for sex and ethnicity. MCPH patients typically have a simplified cerebral cortical
gyral pattern (lissencephaly) although overall brain architecture is generally normal. MCPH is also
frequently associated with other clinical features such as intellectual impairment, short stature, and
mild seizures—since these features frequently overlap with other syndromes, it is likely that MCPH
is part of a disease spectrum. The rate of incidence varies between 1 in 10,000, in populations where
consanguineous marriages are common, and 1 in 250,000 in non-consanguineous populations
(1, 2). Although there are some examples of dominantly inherited primary microcephaly, it is
typically inherited in an autosomal recessive manner.

There are currently 25 MCPH-associated genes listed in the Online Mendelian Inheritance
in Man (OMIM) database (accessed as of April 2020): MCPH1, WDR62, CDK5RAP2, KNL1,
ASPM,CENPJ, STIL,CEP135,CEP152, ZNF335, PHC1,CDK6,CENPE, SASS6,MFSD2A,ANKLE2,
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CIT, WDFY3, COPB2, KIF14, NCAPD2, NCAPD3, NCAPH,
NUP37, and MAP11 (MCPH1–25, respectively) (Table 1). Some
of these genes cause microcephaly in combination with other
disease features (syndromic microcephaly), however, we will
focus on their involvement in primary microcephaly in this
review. Because of its heterogeneous nature, diagnosing patients
can be a challenging endeavor. Gene panel testing is effective at
identifying the more common genetic variants that cause MCPH
but becomes impractical with the continual updates required as
new genes and variants are discovered. For instance, a recent
case report describes a patient with primary microcephaly in
which several gene panels were unable to find the disease-causing
variant, including the autosomal recessive primary microcephaly
Tier 2 sequencing and deletion/duplication panel that screens for
several MCPH genes (67). Once whole exome sequencing (WES)
was performed on this individual, a homozygous variant in the
DNA damage response gene, TTI2, was found, representing a
novel MCPH locus. Accordingly, it then makes sense to turn
to exome or whole genome sequencing (WGS) in order to
diagnose patients; however, although these techniques give us
a more complete picture of the genome, they do not always
immediately provide answers. Exome sequencing of MCPH
patients has been shown to have a diagnostic yield of only 29%,
with a particular bias for identifying ASPM mutations (68).
Although that number does increase to about 50% with WGS,
this still leaves half of MCPH patients and their families without
answers (69). One issue is that WES or WGS typically results in
thousands of variants, making the variant prioritization process
a daunting endeavor. Therefore, while there is an obvious need
to improve our analysis of WES and WGS in order to identify
disease-causing variants, it is also necessary to improve our
understanding of the causes of MCPH to be able to make new
gene–disease associations.

The overall goal of this review is to describe different
aspects of MCPH that impact our ability to discover new genes
associated with MCPH and, consequently, to diagnose patients.
To achieve this goal, we first demonstrate that MCPH arises
from perturbations in cell cycle regulation by briefly highlighting
the cellular role of microcephaly-associated proteins. Then, we
discuss the genetics and evolution of these genes as further
considerations in variant prioritization in patients. Throughout
this, we provide examples that exemplify how a thorough
understanding of the etiology and genetics of disease allows
us to identify new disease-causing candidates. Finally, we will
comment on a major question in the field—based on what
we know about the etiology and genetics of MCPH, why
do mutations result in a brain-specific phenotype? Altogether,
we illustrate that multidisciplinary approaches facilitate the
prioritization of MCPH variants in patients with unknown
genetic causes.

DISSECTING THE ETIOLOGY OF PRIMARY
MICROCEPHALY

MCPH is typically caused by a reduction in the number of
neurons in the developing neocortex. Neurons are derived from

apical progenitor cells (APs) in the ventricular zone (VZ) of the
neocortex (70). In a brief overview, APs divide symmetrically
to produce two progenitor cells in the proliferative phase. At
the onset of neurogenesis, symmetric cell divisions are favored
in order to generate a large pool of progenitor cells; the size of
this pool is a good indicator of eventual brain size (Figure 1A)
(71). In early neurogenesis phases, APs begin to express glial
markers and adopt a radial glial cell (RG) fate; these cells have a
highly polarized architecture and are able to divide symmetrically
to generate more RGs or young neurons (Figure 1B) (70, 72).
As neurogenesis continues, RGs begin to favor asymmetric cell
divisions in order to generate more neurons and a secondary
progenitor cell, termed basal progenitors (BPs) that localize to
the subventricular zone (Figure 1C) (70). BPs serve to amplify
the number of neurons that are formed per AP division.

Based on this developmental model, there are a number of
reasons why fewer neurons are produced in MCPH patients.
There can be increased cell death of these neurons, an imbalance
in the ratio of progenitor to differentiating cells (i.e., changes
in asymmetric vs. symmetric cell divisions), changes in the
timing of the cell divisions, or abnormal differentiation. However,
although each of the MCPH-associated genes affects neuronal
population size given their involvement in microcephaly,
these genes are involved in a number of different cellular
processes that seem rather unconnected. For instance, MCPH
genes are involved in centriole biogenesis and regulation,
DNA replication and division, cell division, signaling, mitotic
spindle orientation, chromosomal condensation, DNA damage
responses, microtubule dynamics, and transcriptional control
(Figure 2). Despite these seemingly diverse cellular functions,
there appears to be a common disease mechanism linking each of
these processes—mutations inMCPH genes disrupt the timing of
the neurogenic program. This can be modeled using the cell cycle
exit fraction, which is the ratio of cells that take on a differentiated
fate (i.e., become neurons) vs. those that remain in a proliferative
state (73).

To give context to readers that may not be familiar with
the cellular function of MCPH genes, this review will begin by
demonstrating that mutations in the highlighted genes affect cell
cycle timing in some way, effectively increasing the cell cycle
exit fraction, indicating that MCPH is a disease arising from cell
cycle dysregulation (Figure 2). The cell cycle checkpoints ensure
that the cell is appropriately prepared for cell division; they
are activated by events such as DNA damage (G2 checkpoint),
unattached kinetochores (M checkpoint), limited resources (G1
checkpoint), and/or signaling cues (G1 checkpoint) [reviewed
in Pucci et al. (74)]. These checkpoints delay the onset of the
next phase to permit the cell to correct any errors that arise. If
errors can be repaired, the cell continues to progress through the
cell cycle, but if errors are incapable of being fixed, often due to
mutations, the cell will often undergo apoptosis to prevent errors
from being transmitted (74). Accordingly, not only do ongoing
cell cycle delays produce fewer neurons, it is compounded by
apoptosis, which further reduces the number of progenitors and
neurons within the neocortex. Therefore, a disruption in cell
cycle timing appears to be the common mode of pathogenesis
underlyingMCPH. Althoughwe primarily focus on the described
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TABLE 1 | Overview of OMIM-listed MCPH genes (as of April 2020).

Gene name Description Cell process Disease ID Inheritance Mode of inactivation Other clinical features Other associated

conditions

Orthologs

CENTRIOLE BIOGENESIS

CENPJ Centromere protein J Centriole biogenesis

PCM tethering

MCPH6 AR Non-sense, frameshift,

missense

(non-conservative),

splicing (3–7)

Facial dysmorphism,

developmental delay, joint stiffness,

seizures, intellectual disability,

cortical malformations, motor

problems (3–5)

Seckel syndrome (8) sas-4 (C. elegans), Dsas-4

(Drosophila), cenpj (mouse,

zebrafish)

STIL SCL/TAL-interrupting

locus

Centriole biogenesis MCPH7 AR Non-sense, frameshift,

missense

(non-conservative),

splicing (4, 9–11)

Short stature, seizures, intellectual

disability, cortical malformations,

visual impairment, motor problems,

pre-mature death (3, 4, 11, 12)

sas-5 (C. elegans), ana2

(Drosophila), stil (mouse,

zebrafish)

CEP135 Centrosomal protein

135

Centriole biogenesis MCPH8 AR Non-sense, frameshift,

splicing (4, 13, 14)

Facial dysmorphism, intellectual

disability, cortical malformations,

short stature, motor problems,

hearing loss (4, 13, 14)

cep135 (Drosophila, mouse,

zebrafish), bld10

(Chlamydomonas)

CEP152 Centrosomal protein

152

Centriole biogenesis MCPH9 AR Missense

(non-conservative),

non-sense, frameshift,

splicing (4, 6, 15, 16)

Cortical malformations, facial

dysmorphism, intellectual disability,

motor problems (4, 11, 16)

Seckel syndrome (15) asterless (Drosophila), cep152

(mouse, zebrafish)

SASS6 Spindle assembly

abnormal 6

Centriole biogenesis MCPH14 AR Missense

(non-conservative) (17)

Intellectual disability, cortical

malformations (17)

sas-6 (C. elegans, Drosophila),

bld12p (Chlamydomonas), sass6

(mouse, zebrafish)

MICROTUBULE DYNAMICS

WDR62 WD repeat domain 62 Centriole biogenesis

PCM scaffold

Microtubule nucleation

Spindle orientation

MCPH2 AR Non-sense, frameshift,

missense

(non-conservative),

splicing (4, 6, 18–23)

Intellectual disability, seizures,

motor problems, facial

dysmorphism, cortical

malformations, developmental

delay (3, 18, 19, 22, 23)

Polymicrogyria (18, 22) H24G06.1 (C. elegans), wdr62

(Drosophila, mouse, zebrafish)

CDK5RAP2 CDK5 regulatory

subunit-associated

protein 2

PCM scaffold

Microtubule nucleation

Centriolar engagement

Cytokinesis

Spindle orientation

MCPH3 AR Non-sense, frameshift,

splicing, missense

(non-conservative)

(7, 24–29)

Hearing loss, leukemia, intellectual

disability, short stature,

pigmentation abnormalities, facial

dysmorphism, cortical

malformations (4, 24–31)

Seckel syndrome (24) spd-5 (C. elegans), cnn

(Drosophila), cdk5rap2 (mouse,

zebrafish)

KNL1 Kinetochore scaffold 1 Kinetochore attachment

Mitotic checkpoint

complex regulator

MCPH4 AR Splicing, frameshift,

missense

(non-conservative) (32, 33)

Intellectual disability, cortical

malformations, facial

dysmorphism, short stature

(32, 34, 35)

knl-1 (C. elegans), knl1 (mouse,

zebrafish)

(Continued)
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TABLE 1 | Continued

Gene name Description Cell process Disease ID Inheritance Mode of inactivation Other clinical features Other associated

conditions

Orthologs

ASPM Abnormal spindle

microtubule assembly

Wnt signaling

Centriole biogenesis

Spindle orientation

Cytokinesis

MCPH5 AR Non-sense, deletion,

frameshift, missense

(non-conservative),

splicing, structural variant

(3, 4, 6, 10, 36–40)

Short stature, cortical

malformations, heart defects, facial

dysmorphism, intellectual disability,

pigmentation abnormalities, motor

problems, seizures (3, 4, 38–40)

aspm-1 (C. elegans), asp

(Drosophila), aspm (mouse,

zebrafish)

CENPE Centromere protein E Kinetochore attachment

Mitotic checkpoint

complex regulator

MCPH13 AR Missense

(non-conservative) (41)

Facial dysmorphism, seizures,

heart defects, intellectual disability,

pre-mature death, cortical

malformations, motor problems

(41)

Microcephalic

primordial dwarfism

(41)

cana/cmet (Drosophila), cenpe

(mouse, zebrafish)

CIT Citron rho-interacting

serine/threonine

kinase

Microtubule nucleation

Cytokinesis

Spindle orientation

MCPH17 AR Missense

(non-conservative),

splicing, frameshift,

non-sense (4, 42–44)

Short stature, intellectual disability,

cortical malformations, pre-mature

death (42–45)

W02B8.2 (C. elegans), sticky

(Drosophila), cit (mouse),

cita/citb (zebrafish)

KIF14 Kinesin 14 Cytokinesis

Microtubule

network stabilizer

MCPH20 AR Non-sense, splicing,

missense

(non-conservative),

frameshift (46, 47)

Intellectual disability, speech

impairment, developmental delay,

motor problems, spasticity, facial

dysmorphism, blindness, ADHD,

hypotonia (46, 47)

Meckel syndrome (48) klp-6 (C. elegans), nebbish

(Drosophila), kif14 (mouse,

zebrafish)

MAP11 Microtubule-

associated protein

11

Cytokinesis

Microtubule

network stabilizer

MCPH25 AR Non-sense (49) Developmental delay, intellectual

disability, ADHD, tethered spinal

cord (49)

map11 (mouse, zebrafish)

DNA DYNAMICS

MCPH1 Microcephalin Chromosome condensation

Cell cycle checkpoint

regulator

DNA damage response

MCHP1 AR Non-sense, deletion,

frameshift, missense

(non-conservative),

splicing (3, 4, 6, 50–53)

Intellectual disability, growth

retardation, cortical malformations

(50, 54)

Pre-mature

chromosome

condensation

syndrome (50, 54)

W04A8.1 (C. elegans), mcph1

(Drosophila, mouse, zebrafish)

ZNF335 Zinc finger protein 335 Transcriptional regulator MCPH10 AR Splicing, missense

(non-conservative),

frameshift (55–57)

Cortical malformations, facial

malformations, seizures, hearing

loss, motor problems, short

stature, pre-mature death (55–57)

CG8388 (Drosophila), zfp335

(mouse), znf335 (zebrafish)

PHC1 Polyhomeotic

homolog 1

Chromatin remodeler MCPH11 AR Missense

(non-conservative) (58)

Intellectual disability, short stature

(58)

phc1 (mouse, zebrafish)

ANKLE2 Ankyrin repeat and

lem domain containing

2

Nuclear envelope

disassembly

MCPH16 AR Non-sense, missense

(non-conservative) (4, 59)

Cortical malformations, facial

dysmorphism, pigmentation

abnormalities, motor problems,

seizures, vision problems, anemia

(4, 59)

lem-4 (C. elegans), ankle2

(Drosophila, mouse, zebrafish)

(Continued)
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TABLE 1 | Continued

Gene name Description Cell process Disease ID Inheritance Mode of inactivation Other clinical features Other associated

conditions

Orthologs

NCAPD2 Non-SMC condensin I

complex subunit D2

Chromosome condensation

Sister

chromatid disentanglement

MCPH21 AR Splicing, missense

(60, 61)

Intellectual disability, growth

retardation, short stature (61)

dpy-28 (C. elegans), cap-d2

(Drosophila), ncapd2 (mouse,

zebrafish)

NCAPD3 Non-SMC condensin II

complex subunit D3

Chromosome condensation

Sister

chromatid disentanglement

MCPH22 AR Frameshift, splicing,

missense

(non-conservative) (61)

Short stature, limb hypertonia,

seizures (61)

hcp-6 (C. elegans), cap-d3

(Drosophila), ncapd3 (mouse,

zebrafish)

NCAPH Non-SMC condensin I

complex subunit H

Chromosome condensation

Sister

chromatid disentanglement

MCPH23 AR Missense

(non-conservative) (61)

Intellectual disability (61) barren (Drosophila), ncaph

(mouse, zebrafish)

NUP37 Nucleoporin 37 Nuclear pore complex

Kinetochore attachment

MCPH24 AR Non-sense (61) Intellectual disability, cortical

malformations, clinodactyly (61)

nup37 (Drosophila, mouse,

zebrafish)

SIGNALING

CDK6 Cyclin-dependent

kinase 6

Cell cycle checkpoint

regulator

MCPH12 AR Missense

(non-conservative) (62)

Facial dysmorphism, intellectual

disability, cortical malformations

(62)

cdk-4 (C. elegans), cdk6 (mouse,

zebrafish)

MFSD2A Major facilitator

superfamily

domain-containing

protein 2A

BBB lipid transporter

Cell cycle

checkpoint regulator

MCPH15 AR Missense

(non-conservative)

(4, 63, 64)

Intellectual disability, motor

problems, pre-mature death,

seizures, cortical malformations

(4, 63, 64)

mfsd2a (mouse),

mfsd2aa/mfsd2ab (zebrafish)

WDFY3 WD repeat and FYVE

domain containing 3

Wnt signaling MCPH18 AD Missense

(non-conservative) (65)

Intellectual disability (65) wdfy-3 (C. elegans), blue cheese

(Drosophila), wdfy3 (mouse,

zebrafish)

COPB2 Coatamer protein

complex subunit beta

2

Cellular trafficking

Cell cycle

checkpoint regulator

MCPH19 AR Missense

(non-conservative) (66)

Developmental delay, low body

weight, blindness, spasticity (66)

E03H4.8/copb-2 (C. elegans),

β’COP (Drosophila), copb2

(mouse, zebrafish)

AR, autosomal recessive; AD, autosomal dominant.
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FIGURE 1 | Neurogenesis in the developing neocortex. (A) Apical progenitor cells in the ventricular zone undergo symmetrical proliferative divisions, generating a pool

of progenitor cells. (B) Expression of glial markers causes progenitor cells to differentiate into radial glial cells, which can subsequently undergo symmentrical divisions

to generate more radial glial cells or immature neurons. Distinct cortical layers begin to form: ventricular zone, subventricular zone, intermediate zone, cortical plate,

and the marginal zone. (C) Radial glial cells favor asymmetric division to generate more diverse neuron types and basal progenitors, a secondary progenitor. Radial

glial cells continue to differentiate into mature neurons and basal radial glia. AP, apical progenitors; BP, basal progenitors; BRG, basal radial glia; CP, cortical plate; IN,

immature neurons; IZ, intermediate zone; MN, mature neurons; MZ, marginal zone; RG, radial glia; SVZ, subventricular zone; VZ, ventricular zone.

FIGURE 2 | MCPH-associated proteins have overlapping cellular functions

that affect cell cycle progression. Aberrant activity in any of these cellular

functions would create delays in the timing of the cell cycle and overall

proliferation through development. Several proteins act across more than one

functional pathway (i.e., centriole biogenesis and mitotic spindle orientation),

further delaying the cell cycle at each functionally relevant timepoint.

role of each protein encoded by the human MCPH genes to
illustrate this model, we also draw from studies of orthologous
genes in the murine, nematode, and fly models, as required.

Centrosomes and the Cell Cycle
For many years, MCPH was considered a “centriolopathy”
because most of the first genes implicated in causing the

disease were involved in centriole biogenesis. Centrosomes
are essential for establishing the mitotic spindle during cell
division and nucleating the ciliary axoneme during quiescence.
Centrosomes are composed of a pair of centrioles (termed
mother and daughter centrioles) and associated pericentriolar
material (PCM). Centriole biogenesis is tightly linked to the
cell cycle (Figure 3). In G1, just after cell division, the two
centrioles from one centrosome are loosely linked together. In
S phase, this link weakens further and is proceeded by pro-
centriole formation (i.e., new daughter centriole biogenesis). In
G2, centrosome separation occurs and each new centrosome
begins maturation. Finally, in mitosis, each centrosome travels to
opposite sides of the cell during spindle formation in preparation
for cell division. Therefore, there are four key processes essential
in the centrosome cycle that are critical in terms of microcephaly:
centriole biogenesis, centriole maturation, centriole tethering,
and spindle formation. Variants in genes that are involved in
these four key processes have recently been connected with
MCPH (Table 1).

Centriole Biogenesis
To initiate the formation of daughter centrioles in G1–S phase,
the original daughter centriole must first become duplication
competent (i.e., must mature into a so-called “mother” centriole).
Subsequently, a number of proteins are recruited to the proximal
ends of the “grandmother” and “mother” centrioles (Figure 3).
The scaffold protein WDR62 recruits CEP63 and CEP152, which
form a ring-like structure at the mother centriole’s proximal end,
and triggers the recruitment of PLK4, a polo-like kinase known
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FIGURE 3 | Centrosome biogenesis is linked to the cell cycle. (G1 phase) Centrioles disengage through both separase activity and pericentriolar material (PCM)

degradation. The disengaged centriole pair becomes the cilium basal body and acts as the template for ciliogenesis. (S phase) The daughter centriole becomes

replication competent and centriole biogenesis is initiated by the recruitment of PLK4 which phosphorylates STIL to begin SAS6 recruitment to generate the central

hub. Daughter centrioles elongate and remain attached to the mother centriole via cohesion. (G2 phase) Mother centrioles unlink and centrosome maturation begins

with the development of the pericentriolar material and formation of distal appendages. (M phase) Centrosomes travel to opposite poles of the cell for spindle

formation and attachment and cell division; each daughter cell contains one centrosome to repeat the cycle.

as the master regulator of centriole duplication, to the site of
daughter centriole formation (75–79).

Following the recruitment of proteins to the mother
centriole, PLK4 autophosphorylates itself concurrently with
phosphorylating and recruiting STIL (80). PLK4 and STIL
subsequently recruit SAS6 to form the template for the nascent
daughter centriole (Figure 3). STIL and SAS6 oligomerize
into a 9-fold symmetrical ring structure to form the unstable
“cartwheel” central hub (80–82). Following central hub
formation, proteins such as CENPJ and CEP135 are finally
recruited, which aid in regulating and stabilizing central tube
elongation and initiating singlet microtubules to assemble
around the central hub (80, 83–87).

Centriole Maturation
The centrosome-associated pericentriolar material (PCM) is
composed of a protein matrix and is responsible for anchoring
and nucleating microtubules; just prior to mitosis, this matrix
undergoes expansion. Master regulators of PCM maturation

recruit coiled-coil proteins as well as the attachment of γ-
tubulin to the centrosome by CDK5RAP2; these activities ensure
the formation of a PCM scaffold that permits centrosomal
microtubule nucleation, which is an essential step in astral
microtubule formation (Figure 3) (88–93).

Similar to the centrioles themselves, PCM assembly and
disassembly is tightly linked to the cell cycle. During mitotic exit,
the dense PCM must disassociate in order to drive centriolar
separation (disengagement); daughter centriole biogenesis
cannot occur if the so-called “grand-mother” and “mother”
centrioles fail to separate because they are entrapped within the
PCM (94, 95). Several centrosomal effector molecules therefore
become dephosphorylated to promote their destabilization and
result in a fragmented PCM, which allows centriole biogenesis to
occur (96, 97).

Centriole Tethering
Following mitosis, the mother and daughter centriole become
disengaged such that the tight cohesin fiber connections between
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them loosen (95, 98). This requires PCM disintegration and
separase protease activity. In G1, disengagement allows the
mother centriole to become the basal body in order to nucleate
the cilium but also licenses centriole biogenesis in S phase. The
newly formed daughter centrioles are tightly bound (engaged)
to the mother centriole via cohesin, which is maintained by
CDK5RAP2 and functions to limit centriole biogenesis to once
per cell cycle (99, 100). Finally, during mitosis, the two engaged
centriole pairs (i.e., the centrosomes) lose their loose connection,
become separated, and move to opposite sides of the cell where
they begin mitotic spindle formation (Figure 3).

Spindle Formation
The mitotic spindle is responsible for the accurate segregation
of chromosomes during cell division. The spindle depends
heavily on dynamic microtubule activity for its function:
astral microtubules connect the centrosome to the cell cortex,
kinetochore microtubules connect the condensed chromosomes
to the centrosome, and polar microtubules overlap at the
central spindle to connect the two spindle poles (Figure 4).
Each microtubule subtype performs specific tasks. Polar
microtubules drive the separation of the two centrosomes,
direct the positioning of the cleavage furrow, and promote
abscission (Figure 4A). Astral microtubules serve to position
the mitotic spindle and direct cleavage orientation (Figure 4B),
while kinetochore microtubules are responsible for accurately
segregating DNA to the opposite poles (Figure 4C). Predictably,
many MCPH genes have roles in regulating spindle dynamics,
including many of the genes that are involved in centriole
biogenesis and PCMmaturation (Figure 4D).

During anaphase, the highly abundant polar microtubules
emanating from each of the spindle poles overlap centrally in
order to form the stable central spindle (Figure 4). This structure
is necessary to recruit proteins that position the cleavage furrow
and trigger its contraction to form the midbody. Many of the
centrosomal proteins that influencemicrotubule nucleation, such
as ASPM, CDK5RAP2, and CIT, are recruited to the midbody
during cytokinesis, highlighting the multifunctional roles of
these proteins (101). In addition to these proteins, microtubule-
associated proteins and their regulators also affect central spindle
dynamics. CIT, which is a component of the contractile ring,
recruits the microtubule-associated protein KIF14 to the central
spindle, where it functions to stabilize the central spindle
microtubule network and promote cytokinesis (Figure 4A) (102–
105). MAP11 is similarly required at the midbody to promote
abscission (49).

The astral microtubules in particular are essential for the
orientation of the mitotic spindle (and thus cell division
orientation). Rotation of the mitotic spindle depends on forces
generated between the cell cortex and the astral microtubules.
Minus-end-directed activity of a dynein–dynactin complex,
coupled with the cortical anchoring of the astral microtubules,
generates a pulling force which allows for rotation and
positioning of the spindle (106–108). ASPM seems to be a major
player in this process since it binds to nuclear mitotic apparatus
(NuMA), which localizes to the spindle poles and the cortex,
and subsequently recruits the dynein–dynactin complex to the

spindle poles, where it acts as the force generator in spindle
positioning (Figure 4B) (109–112).

The kinetochore microtubules are required for the faithful
segregation of the chromosomes during cell division; aberrant
segregation can lead to chromosomal instabilities or aneuploidy,
which can be toxic to the cell. Under the “search and capture
model,” microtubules emanating from the spindle poles seek
out and attach to the heavily scaffolded kinetochore. The
multilayered kinetochore is largely responsible for ensuring
this correct attachment and for triggering cellular alarms
when microtubules are not appropriately attached (Figure 4D).
One of the outermost microtubule-capturing kinetochore
components is the centromere-associated protein E (CENPE),
which is a large, kinesin-like motor protein that binds to
microtubules through its motor domain (113, 114). KNL1,
which is located in a complex more interiorly in the
kinetochore, is similarly required for microtubule binding (115).
If microtubules are incorrectly attached to the kinetochore,
then the spindle assembly checkpoint (SAC) will be activated,
delaying mitosis until attachment has been corrected. For
instance, microtubule-unbound CENPE binds to BUB1B and
triggers its phosphorylation which leads to a “delay anaphase”
signaling cascade that culminates on the anaphase-promoting
complex/cyclosome (APC/C) (114, 116). Similarly, the KNL1
complex functions redundantly with CENPE to delay the cell
cycle (117).

DNA Dynamics During the Cell Cycle
Similar to centrosomes, DNA dynamics are tightly linked to the
cell cycle. At the onset of mitosis, one of the cell cycle checkpoints
ensures that chromosomes have been accurately condensed and
that breakdown of the nuclear envelope occurs; together, these
permit the proper pairing of homologous chromosomes at
the metaphase plate and the subsequent segregation of sister
chromatids into the presumptive daughter cells during anaphase.
Following mitosis, cells in G1 become transcriptionally active.
Throughout the cell cycle, DNA is continually monitored for
damage, which must be repaired in order for the cell to continue
to progress through the cycle. Dysregulation of DNA dynamics is
thus capable of creating delays in the cell cycle and affecting the
overall trajectory of a cell within a developing system, such as the
brain. Specifically, delays in the cell cycle of neural progenitors
will reduce the proliferative pool and the subsequent number of
differentiated neurons within the developing brain. Therefore,
because of the tight link between DNA dynamics and cell cycle
timing, variants in genes that affect chromosomal condensation,
transcriptional regulation, DNA damage responses, and nuclear
envelope breakdown are increasingly being implicated in causing
MCPH (Table 1).

Condensation and Transcriptional Regulation
Chromosomal condensation is one mode by which transcription
is regulated across cell types and throughout the cell cycle.
The shift between heterochromatin and euchromatin regulates
the genes that are accessible to transcriptional machinery,
shifting the transcript profile of each cell. One MCPH
gene, ZNF335, is an H3K4 methyltransferase that binds to
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FIGURE 4 | Microtubule dynamics orient the mitotic spindle and drive cell division. (A) Contractile ring component CIT at the midbody recruits KIF14 to the central

spindle to stabilize the microtubule network. MAP11 promotes cell abscission at the midbody. (B) ASPM and NuMA at spindle poles recruit dynein–dynactin to astral

microtubules to position spindles in the dividing cell. (C) The kinetochore, composed of three distinct layers (inner, outer, and corona), contains several proteins to

securely attach microtubules. CENPE in the coronal layer binds microtubules through the motor domain; unbound CENPE signals through BUB1B to the APC/C to

delay anaphase. The outer layer complex similarly binds the microtubule positive end; one of the components, KNL1, signals the APC/C to delay cycle if there is

improper attachment at this layer. In the inner layer, the CENP complex binds the kinetochore to the condensed chromosome ensuring proper attachment for

segregation. (D) Pericentriolar material scaffold is formed by CDK5RAP2 for microtubule nucleation by γ-tubulin at the centrosome. APC/C, anaphase promoting

complex/cyclosome; MT, microtubules.

heterochromatin upstream of the neuron-restrictive silencer
factor (NRSF) locus in neural stem cells to prevent differentiation
pathways; this brain-specific expression pattern is turned
off during the dynamic remodeling in the transition to
differentiation (Figure 5) (55). PHC1 also represses transcription

through chromatin remodeling by ubiquitinating histone H2A
to maintain condensation of specific genomic regions (58).
Since the switch from proliferation to differentiation requires
changes in gene regulation and expression, dynamic chromatin
remodeling permits transcriptional machinery binding to

Frontiers in Neurology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 570830

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jean et al. Genetic Causes of Primary Microcephaly

FIGURE 5 | DNA dynamics are linked to the cell cycle. (G1 phase) The nuclear envelope reforms after mitosis, then chromatin is positioned in the nucleus and

remodeled for transcription by ZNF335 and PHC1. In preparation for synthesis and the G1 cell cycle checkpoint, DNA repair proteins correct any damage present in

the genome. (S phase) Chromosomes undergo replication and repair proteins correct any errors or DNA breaks that occurred during the synthesis process. (G2

phase) Sister chromatids are brought together and bound by cohesin complexes. Prior to mitotic entry, condensin II begins the condensation of the chromatids as the

negative regulator MCPH1 is broken down. (M phase) Nuclear envelope is broken down by ANKLE2 and homologous chromosomes align at the metaphase plate.

Separase disintegrates the cohesin bonds between sister chromatids so they can be segregated to opposite poles before cytokinesis divides the daughter cells.

various genomic regions related to cell cycle progression
and differentiation.

There are many nuclear proteins involved in reducing the
length of the chromosomes, some of which are causative in
primary microcephaly (118, 119). The primary complexes acting
to further condense the chromosomes both laterally and axially
are condensin I and condensin II, which share the same structural
maintenance core (SMC) subunits but differ in their associated
NCAP family subunits (Figure 5). In preparation for entry
into mitosis, the SMC associates with NCAPH2, NCAPD3, and
NCAPG2 to form condensin II in the nucleus, which localizes
to the chromosomes and creates an axially rigid structure of
interacting chromosome regions, shortening the overall length
of the chromosomes (119, 120). Condensin II localization to
the chromosomes is restricted to this phase, as throughout the
rest of the cell cycle, it is negatively regulated by MCPH1 until
condensation can be coupled with centriole duplication, ensuring

that all necessary mitotic structures are formed by the end of
G2 (50, 121). Lateral compaction occurs after nuclear envelope
breakdown when the condensin I complex—including NCAPH
and NCAPD2—can associate with the chromosomes to loop the
chromatin around the established axial patterning created by
condensin II (Figure 5) (122).

Beginning in S phase, the newly replicated sister chromatids
must be connected through to the early mitotic stages, until
finally at anaphase, sister chromatids are separated. Sister
chromatid cohesion is mediated by the cohesin complexes, which
also contain SMC molecules but differ in their accessory protein
subunits (Figure 5). This ring-like complex encircles each of the
sister chromatid pairs to ensure they are tethered together. At
anaphase, the complex is degraded by the protease separase,
which is the enzyme that facilitates centriolar disengagement,
linking DNA dynamics and centrosome function through the
cell cycle (123). This ensures that the sister chromatids are
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faithfully segregated, and each daughter cell contains identical
DNA content. In the event that the cohesin complex pre-
maturely dissociates, kinetochore-centromeric attachments fail
to occur and genomic instability can result.

DNA Damage Response
Prior to synthesis andmitosis, the DNA damage response ensures
the accurate passage of genomic information to both daughter
cells; if the genome is damaged beyond a reparable threshold,
the cell is instead sent into the apoptotic pathway to prevent
aberrant cell function or growth and to maintain a healthy
cell population. MCPH1 localizes to chromatin that has been
damaged by ionizing radiation and prevents compaction of the
chromatin at that locus by inhibiting the condensin II complex
and, thus, mitotic onset until the repair machinery is able to
correct the sequence (Figure 5) (124–126).

Nuclear Envelope
In interphase, the nuclear envelope is critical for the movement
of proteins into and out of the nucleus, regulating transcription
factor access to the genome and the proteins required for
the transition to differentiation. NUP37 is a microcephaly-
associated nucleoporin that encodes an essential component of
the nuclear pore complex (NPC) (Figure 5). It is a component
of the ring-shaped Y-complex on the surface of the nuclear
envelope, creating much of the structure for the nuclear pore
(127). The presence of the Y-complex is necessary for nuclear
pore stability and continued proliferation (61). However, during
mitosis, the nuclear envelopemust disintegrate in order to permit
the segregation of the condensed chromosomes. While cells are
in interphase, chromatin is bound to the nuclear envelope to
maintain each chromosome in its defined region of the nucleus.
In preparation for the breakdown of the nuclear envelope
during mitosis, ANKLE2 phosphorylates envelope components
to reduce the binding affinity between chromatin and the
nuclear envelope (128). Once this interaction is broken, the
nuclear envelope can begin to disassemble; upon mitotic exit,
ANKLE2 dephosphorylates components so the nuclear envelope
can reform and reestablish its interaction with the chromatin
within the nucleus (128).

Signaling
The decision for a cell to progress through the cell cycle
and divide relies upon numerous signals. For a cell to enter
S phase, the cell must assess DNA integrity, metabolic state,
and developmental cues—providing these all satisfy certain
thresholds, the cell may progress through the cell cycle, which is
itself regulated by a series of checkpoints that require the cyclic
activity of positive regulators [cyclins and cyclin-dependent
kinases (CDKs)] and negative regulators (examples include p53,
p21, and retinoblastoma protein). Here, we discuss MCPH genes
that influence signaling pathways, such as those involved in cell
cycle checkpoints, metabolism, and Wnt signaling.

Cell Cycle Regulators
One MCPH gene, CDK6, directly regulates the cell cycle; it is
responsible for the progression of the cell through G1 phase

and the G1/S phase transition (62, 129). In addition, there are
two MCPH genes, COPB2 and MFSD2A, that more indirectly
affect the cell cycle (66, 130, 131). The first, COPB2, is typically
associated with trafficking between the Golgi apparatus and the
endoplasmic reticulum, but it has recently been shown to regulate
several cell cycle proteins (132). Knockdown of COPB2 increases
the expression of CDK inhibitors (P16 and P21) and decreases
the expression of cyclin A1 and A2, which are responsible for
progression through S phase. MFSD2A encodes a fatty acid
transporter that acts at the blood–brain barrier (133, 134).
It is responsible for the uptake of lysophosphatidylcholines
(LPCs), such as those derived from docosahexanoic acid (DHA),
which are not synthesized within the brain but are essential
for neurogenesis. Specifically, in the early stages of neural
stem cell differentiation, DHA promotes cell cycle exit and
subsequent differentiation by decreasing the expression of several
key cyclins, thus preventing the transition from G1 to S
phase (130, 131).

Metabolism
MFSDA2 also performs a metabolic role. DHA is a major
component of the brain lipid profile as it comprises many of the
phospholipids within the brain. Mutations in MFSD2A result in
increased plasma levels of LPCs and a corresponding decrease
in LPC uptake into the brain; this reduced uptake is associated
with both lethal and non-lethal microcephaly in humans and
animal models (63, 64, 133, 135). The presence of DHA in the
brain suppresses the activity of master transcriptional regulators
of sterol and fatty acid synthesis (133). Accordingly, reduced
uptake of DHA due to mutations in MFSD2A results in the
increased expression of the master transcriptional regulators and
their downstream targets. This indicates that the lipid metabolic
pathways must be tightly regulated during neurogenesis, and is
highlighted by the link between DHA levels within the brain and
proliferation (136).

Wnt Signaling
Canonical Wnt signaling activation, at its core, involves
the binding of a Wnt-protein ligand to a Frizzled family
receptor, which in turn activates the intracellular messenger
protein, Disheveled, to influence gene transcription via β-catenin
accumulation. Canonical Wnt signaling promotes proliferative
cell divisions (i.e., the production of progenitor cells), whereas its
loss leads to neuronal differentiation (137–140). ASPM appears
to act as a positive regulator of Wnt signaling by preventing
the proteasome-mediated degradation of Disheveled (141–143).
Conversely, WDFY3 attenuates Wnt signaling; it is responsible
for degrading Disheveled aggregates, thus reducing β-catenin
levels (65).

FACILITATING PRIMARY MICROCEPHALY
DIAGNOSIS

As summarized, MCPH genes are involved in a number of
cellular processes, such as centriole biogenesis, mitotic spindle
formation, transcription, DNA damage responses, and signaling.
Obviously, screening for the 25 known genes in MCPH patients
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via gene panels or directed sequencing is the simplest method of
diagnosing patients and is likely to be successful in about 50% of
patients, as previously found (144). However, with advances in
WGS, how do we address the remaining 50% of patients? In this
section of the review, we discuss a range of aspects to consider
when prioritizing variants in patients.

Linking Cell Biology to Disease
A thorough understanding of the etiology of a disease can guide
the diagnostic process. Thus far, we have outlined the molecular
roles of each of the MCPH genes known to date, and although
each of the thus far implicated genes appear to be involved in
distinct cellular processes, MCPH mutations commonly affect
the cell cycle exit fraction by pre-maturely increasing the ratio
of differentiating to proliferating cells or by triggering apoptosis.
For instance, incorrectly positioned mitotic spindles promote
asymmetric divisions, thereby increasing the cell cycle exit ratio
and cell division delays mimic differentiating cells which have
exited the cell cycle. We would therefore predict that mutations
in functionally related genes would be likely implicated in the
disease. In support of this, a FZR1 variant, which encodes
a component of the APC/C complex and is responsible for
driving the cell cycle, has recently been identified in a patient
with MCPH-like phenotypes (145). Similarly, a patient with a
mutation in TUBGCP5, which is a centrosomal component that
affects microtubule nucleation and spindle orientation, presents
with MCPH (146). Finally, a METTL5 variant has also recently
been identified in a patient with clinical features matching that of
MCPH, highlighting the role of epigenetics and transcriptional
regulation in the etiology of MCPH (147). Although these three
genes are not listed in OMIM as of August 2020 as MCPH
genes, we expect that these will be included following database
updates and identification of additional patients with mutations
in these genes.

Translation From Genetic Models
One issue when diagnosing patients is that many genes simply do
not have a recognized molecular or cellular function ascribed to
them. However, the study of these genes in model organisms may
reveal a function related to processes disrupted in microcephaly.
Not only do most of the MCPH genes have conserved functions
across the animal kingdom (Table 1), but mutations in these
genes also show a conserved set of phenotypes in model
organisms (phenologs); although these phenotypes do not always
perfectly mimic the human disease condition, they do reflect
perturbation of a common pathway, which gives us a better
understanding of whether a given gene is likely to be causal
in disease. For instance, modeling MCPH gene mutations in
zebrafish, mice, and Drosophila typically results in animals
with small heads, whereas in Caenorhabditis elegans, embryonic
lethality with abnormal cell division phenotypes is often observed
(49, 65, 69, 80, 83, 148–155). In this way, we can not only
validate potential candidates but also begin to screen for possible
new candidates that may subsequently be found in human
patients. Loss of cntrob in zebrafish or Hmgn2 in mice results in
microcephaly, although, as of yet, they are not associated with
microcephaly in humans (156, 157). Similarly, pioneering work

in C. elegans has revealed the importance of SPD-2 (CEP192
in humans) in centriole duplication and PCM maturation, but
despite the clear association of other core centriole biogenesis
components with microcephaly, CEP192 has not yet been
implicated (80, 158).While these genes are not yet associated with
MCPH, this may be due to the rarity of these variants in human
populations or highly deleterious effects resulting in lethality.
Additionally, the phenotypes seen in model organisms may be
more profound in the lab environment than they would present
in humans, decreasing their chances of being discovered.

Analyzing Inheritance Patterns
Another mechanism of prioritizing variants is to examine the
inheritance pattern. With the exception of WDFY3, all MCPH
variants are autosomal recessively inherited (Table 1). Many
microcephaly patients exhibit homozygous variants in the
disease-causing gene due to consanguinity, but increasingly,
compound heterozygous variants are being discovered.
Therefore, in non-consanguineous families, performing triad
sequencing and using filtering methods that include compound
heterozygous variants are essential. However, recent evidence
suggests that the inheritance of MCPHmay be more complicated
than originally thought and alternative forms of inheritance
should be considered in difficult-to-diagnose patients. For
instance, similar to WDFY3, mutations in DPP6, which encodes
a dipeptidyl peptidase protein, cause autosomal dominant
microcephaly in addition to intellectual disabilities, indicating
that it may also be necessary to screen through heterozygous
variants in patients (159). Furthermore, there is increasing
evidence that MCPH may occasionally follow an oligogenic
inheritance pattern; a recent study found that microcephaly
patients have a higher mutational burden in genes implicated
in causing MCPH (69). Additionally, the digenic inheritance of
CDK5RAP2 and CEP152 heterozygous mutations causes Seckel
syndrome, a disease which includes microcephaly as a clinical
feature (24). Again, turning to genetic models may validate
instances where digenic inheritance is predicted to be necessary
for phenotypic presentation or where modifying genes affect
phenotypic severity. In the fish model, for example, homozygous
mutations in both aspm and wdr62 are necessary to produce
the microcephaly phenotype (69). Considering that ciliopathies
are well-established digenic conditions, and like microcephalies,
depend upon proper cell cycle timing and centrosome function
(Figure 3), it is not challenging to envision a model in which
these diseases genetically parallel each other. Conversely, a
mutation in Ttc21b causes genetic background-dependent
microcephaly in mouse; quantitative trait locus analysis revealed
a missense mutation in one genetic background but not the other
that was able to enhance the Ttc21b neural phenotypes (160).
Therefore, clinicians may have to look past traditional autosomal
recessively inherited variants in a single gene in particularly
challenging to diagnose patients.

Determining Mode of Gene Inactivation
Intriguingly, most of the MCPH-causing mutations are non-
sense, frameshift, or splicing mutations, all of which typically
result in a complete loss-of-function of the protein product
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(Table 1). However, this also implies that other types of nullifying
mutations, such as structural variants, copy number variants
(CNVs), or non-coding regulatory variants, may be causative in
microcephaly. Already, larger deletion mutations inMCPH1 and
ASPM have been identified in MCPH patients, in addition to a
translocation break in ASPM that disrupts the coding sequence
(3, 36, 37, 51). However, these types of variations are likely
to be increasingly discovered as our methods of identifying
these variants improve. Similarly, the use of transcriptomics,
such as RNA-seq, may expedite our identification of non-coding
variants in patients; the use of transcriptomics in a patient
with microcephaly-micromelia syndrome found a non-coding
mutation in DONSON that caused aberrant splicing (161).
Multimethod approaches to identifying causal mutations may
therefore be necessary, in addition to using tools that are capable
of detecting a wide range of variants.

Evolution of Brain Size in Primates
One of the hallmarks of human evolution is an increase in
brain size and complexity, a change that was accompanied by
increased cognitive power. Interestingly, there is a correlation
between genes predicted to be responsible for driving the increase
in human brain size and those that are implicated in causing
MCPH. For instance, MCPH1, CDK5RAP2, CENPJ, and ASPM
have been shown to have undergone positive selection during
primate evolution (162–165). Researchers speculate that over
the course of evolution, MCPH genes may have accumulated
genetic changes that permitted the increase in hominid brain
size—specifically, these changes likely altered the rate of cell
division in proliferating neuronal stem cells. Conversely, the
disease state may be an example of atavism, in which nullifying
mutations recreate a more ancestral state. Another possibility is
the changes in copy number may underlie hominid brain size
changes; a recently discovered example is NOTCH2NL, in which
three copies are necessary for normal human development (166).
The duplication or deletion of the locus in which NOTCH2NL
is located results in macrocephaly or microcephaly, respectively.
Therefore, evolutionary analyses, such as those determining
whether a gene undergoes positive selection through the course
of hominid brain evolution, may be one more mechanism by
which microcephaly-causing variants are prioritized [reviewed in
Gilbert et al. (166)].

REMAINING QUESTIONS

Why do mutations in MCPH genes specifically affect neurogenesis?
While some MCPH genes have enriched expression in neural
progenitors or have a biological function limited to the brain
(e.g.,MFSD2A), many genes are ubiquitously expressed and have
biological functions that are necessary in many tissue types (18,
134). Therefore, a major question is why mutations in the MCPH
genes, which are typically nullifying mutations, specifically cause
microcephaly, with generally few abnormalities outside of the
head and brain. This is especially true when we consider that
in the C. elegans model, mutations in orthologous MCPH genes
result in lethality, which would be predicted based on the
essential function of these genes in cell division. One similarity
between neuroprogenitors and C. elegans development though

is that the cell cycle length is remarkably short; in humans, the
length is shorter in comparison to other cell types, and in C.
elegans, the first few cell divisions occur extremely rapidly and
are stereotypically oriented (167, 168). In fact, G1 length has
been shown to be an essential regulator of the switch between
proliferation and differentiation, which explains why mutations
in MCPH genes, which generally cause a lengthening in the cell
cycle and thus pre-maturely increase the cell cycle exit fraction,
have dramatic effects on the number of progenitors remaining
in a proliferative state (129, 169). The brain therefore appears to
be more sensitive to changes in cell cycle length relative to other
tissue types, an effect that may be appropriately modeled using
the C. elegans genetic system.

Another possibility may lie in alternative splicing. The brain
undergoes the most alternative splicing events than any other
tissue and expresses the largest number of splicing factor genes
(170). This means that the brain produces more diverse protein
isoforms than other tissue types. Accordingly, there are many
examples of splicing mutations in MCPH genes (Table 1); it is
possible that the disruption in splicing in these genes affects the
protein isoforms that are uniquely expressed in the brain. For
instance, a splicingmutation inKNL1 specifically affects neuronal
progenitor cells, but fibroblasts and neural crest cells expressing
the same mutation are unaffected (171). Although not every
MCPHmutation affects splicing, this may be onemechanism that
contributes to the brain-specific presentation.

Finally, the classical clinical definition of MCPH describes an
isolated disorder affecting the head and brain size, with typically
no other malformations. However, as more patients continue to
be discovered and diagnosed with MCPH, the clinical landscape
of primary microcephaly expands.We now know that in addition
to a small head, MCPH is frequently associated with cortical
and facial malformations, intellectual disabilities, and seizures,
in addition to short stature, heart problems, and in extreme
cases, pre-mature death (Table 1). Many of the genes are also
implicated in causing different but related diseases, such as Seckel
syndrome or microcephalic primordial dwarfism, indicating
that there is likely an overlapping pathophysiology between
these conditions, and they may represent a disease spectrum
rather than individual conditions. In support of this, many
genes that are implicated in causing syndromic microcephaly
affect the same pathways as MCPH genes, indicating that
cell cycle dysregulation underlies both isolated and syndromic
microcephalies. This reflects the prediction that mutations in
genes affecting cell cycle progression would present with more
pleiotropic effects.

CONCLUDING REMARKS

MCPH is a heterogeneous disorder that, like many rare
diseases, has been challenging to diagnose despite advances in
genomics. Therefore, there is a need to understand the genetics
and cell biology underlying the disease in order to expedite
discovery and genetic diagnosis. This review has shown that
microcephaly is caused by aberrant cell cycle regulation by
summarizing the molecular functions of each of the known
MCPH-causing genes and their associated cellular phenotypes,
as well as providing examples of novel MCPH candidates.
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In addition to furthering our understanding of the disease
pathogenesis, we have also provided insights on the genetics
and inheritance of MCPH with the hopes of facilitating the
variant prioritization process in patients with microcephaly.
Altogether, the incorporation of each of these disease facets
in the process of identifying the MCPH-causing gene(s) will
improve diagnosis rates in these patients and will guide
family planning and personalized treatments but also forms a
template for the inclusion of multidisciplinary approaches in the
diagnostic process.
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