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Abstract: Maternal metabolic dysfunction adversely influences embryonic muscle oxidative
capacity and mitochondrial biogenesis, increasing the child’s long-term risks of developing
obesity and metabolic syndrome in later life. This pilot study explored the mechanistic
basis of embryonic muscle metabolic programming, employing non-invasive magnetic
field exposures. Brief (10 min) exposure to low-energy (1.5 milliTesla at 50 Hertz) pulsing
electromagnetic fields (PEMFs) has been shown in mammals to promote oxidative muscle
development, associated with enhanced muscular mitochondriogenesis, augmented lipid
metabolism, and attenuated inflammatory status. In this study, quail eggs were used
as a model system to investigate the potential of analogous PEMF therapy to modulate
embryonic muscle oxidative capacity independently of maternal influence. Quail eggs were
administered five 10-min PEMF exposures to either upward-directed or downward-directed
magnetic fields over 13 days. Embryos receiving magnetic treatment exhibited increased
embryo weight, size, and survival compared to non-exposed controls. Upward exposure
was associated with larger embryos, redder breast musculature, and upregulated levels of
PPAR-α and PGC-1α, transcriptional regulators promoting oxidative muscle development,
mitochondriogenesis, and angiogenesis, whereas downward exposure augmented collagen
levels and reduced angiogenesis. Exposure to upward PEMFs may hence serve as a
method to promote embryonic growth and oxidative muscle development and improve
embryonic mortality.

Keywords: PGC-1α; PPAR-α; mitochondria; oxidative muscle; magnetic mitohormesis;
mitochondriogenesis; SIRT1; myogenesis; metabolic dysfunction

1. Introduction
Skeletal muscle is the largest tissue mass in humans and is intimately linked to sys-

temic metabolism and overall health. Muscle establishes systemic metabolism via a system
of muscle–adipose paracrine crosstalk that is instigated by muscle mitochondrial activation.
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Muscle contraction stimulates the secretion of a host of anti-inflammatory, regenerative,
metabolic, and adipose thermogenic factors (myokines or exerkines) and extracellular
vesicles, collectively known as the muscle secretome, into the circulation for systemic ac-
tion [1,2]. In this regard, weight bearing under the constant force of the Earth’s gravitational
field establishes the basal metabolic rate but may be insufficient to offset caloric intake.
Sedentary lifestyles, when accompanied by excessive caloric intake, are hence characterized
by increased adiposity (caloric excess), metabolic disturbances, and systemic inflammation.
In response to dynamic mechanical loading under the force of gravity, muscle mitochon-
drial respiration is further stimulated during exercise, and muscle–adipose crosstalk is
activated to improve systemic metabolism. Moreover, muscles exhibit remarkable pheno-
typic plasticity, adapting to metabolic demands, such as dynamic changes in ATP/AMP
ratio, lactate concentration, and oxygen availability. To fulfill the diverse physiological
demands of the organism, skeletal muscle has evolved to exhibit appreciable metabolic
plasticity [3]. Whereas glycolytic muscles are capable of generating large forces but fatigue
rapidly [4], oxidative muscles generate less power that can be sustained for much longer.
Oxidative muscles are hence predominantly responsible for maintaining posture under
gravity and for establishing basal metabolism [5,6]. Muscle metabolic plasticity has been
described down to the level of maternal–fetal interactions. Maternal obesity has been
shown to reduce the oxidative capacity of fetal skeletal muscle, associated with reductions
in mitochondrial content and efficiency [7]. Oxidative muscles are characterized by a higher
abundance of mitochondria, greater myoglobin content, and denser microvasculature net-
works, giving them a distinct red appearance [8,9]. Oxidative muscles also preferentially
rely on calorie-rich, yet slowly oxidized fatty acids as energy substrates for mitochondrial
respiration, which establishes a favorable physiological environment for improved systemic
insulin sensitivity and overall metabolic health [10].

Exercise-induced increases in muscle mitochondrial respiration activate transcrip-
tional cascades governing oxidative metabolic adaptations, survival, and regeneration. The
transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1
(PGC-1α) is largely responsible for the establishment of the oxidative muscle phenotype.
On the one hand, the depletion of ATP during exercise increases the AMP/ATP ratio,
which triggers AMP-activated protein kinase (AMPK) pathways to replenish the ATP
stores [11]. On the other hand, the heightened NAD+ levels resulting from increased mito-
chondrial respiration during exercise activate deacetylase, Sirtuin 1 (SIRT1), to stimulate
mitochondriogenesis [12,13]. Concomitantly, these two pathways converge on PGC-1α
to drive the expression of oxidative metabolism genes [5,6]. Conversely, high-intensity
anaerobic exercise promotes the glycolytic muscle phenotype through lactate-mediated
signaling separately from aerobic mitochondrial respiration. The accumulated levels of
lactate stabilize hypoxia-inducible factor 1α (HIF-1α) under low oxygen availability [14],
leading to the transcriptional activation of glycolytic genes and angiogenesis [15,16], which
enhances the anaerobic glycolytic capacity of muscles.

Pulsed electromagnetic fields (PEMFs) have been shown to promote myogenesis via
the establishment of metabolic adaptations that include PGC-1α and SIRT1 activation, in-
creased mitochondrial biogenesis, enhanced antioxidant defenses, a switch in mitochondrial
energy substrate utilization towards fatty acids [17,18], and the promotion of muscle–organ
paracrine crosstalk [19,20]. Notably, magnetic field directionality was shown to be a deci-
sive factor in determining the mitohormetic efficacy of PEMF treatment [19]. This is not an
unexpected finding, given that, when explicitly examined, magnetic field directionality is a
common determinant of bioelectromagnetic field efficacy [21]. In healthy muscle cells, brief
(10 min) exposure to low energy (1.5 mT (milliTesla)) PEMFs was shown to stimulate the
proliferation and differentiation of muscle cells towards an oxidative phenotype, reduce
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basal apoptosis, and increase telomere length [17]. Moreover, weekly PEMF exposure was
also shown to preferentially promote oxidative muscle development and enhance systemic
fatty acid oxidation in mice [18]. Additionally, a human study demonstrated that 8 weeks
of PEMF exposure improved body composition by increasing skeletal muscle mass while
decreasing visceral and total body fat [22]. Given the parallels between PEMF exposure
and aerobic exercise, magnetic field exposure may represent a feasible approach to promote
oxidative muscle development and achieve metabolic balance.

This study investigated whether brief (10 min) PEMF exposures of quail eggs, amount-
ing to five sessions over 13 days, could promote muscle oxidative development, embryo
growth, and survival. This study provided initial proof-of-concept that PEMF paradigms
may be used to promote avian embryonic oxidative muscle development aside from mater-
nal influence.

2. Results
2.1. Upward-Directed PEMFs Yield the Greatest Response in Quail Embryo Development

Evidence for PEMFs promoting myogenesis has previously been demonstrated [17,23–27].
Moreover, electromagnetic field directionality has been shown to be of critical consider-
ation [19]. In this study, we investigated the effect of brief electromagnetic stimulation
on the development of quail embryos. To this end, fertilized quail eggs were exposed
to either downward- or upward-directed PEMFs (1.5 mT, 10 min) on five separate days
evenly distributed over a period of 13 days (Figure 1A) in two different arrangements of
the eggs (Figure 1B). Exposure to either 1.5 mT downward- (blue dots) or 1.5 mT upward-
(green dots) directed PEMFs significantly increased the wet weight of the embryo (~+20%)
compared to control (red dots) in the “apex-up” arrangement (Figure 1C). On the other
hand, there was no significant effect on embryo weight when the eggs were exposed in
the “stacked” arrangement. Similarly, the body length of the embryos was significantly
increased (~+15%) after either 1.5 mT downward- or upward-directed PEMFs in the “apex-
up” arranged configuration of the eggs (Figure 1D). Notably, 1.5 mT upward-directed
fields yielded slightly greater increases in body weight and length. We also investigated
whether PEMF treatment could improve the viability of the quail embryos pre-hatching
(Figure 1E). Both downward- and upward-directed PEMF exposure of eggs in an “apex-up”
arrangement increased embryo viability compared to unexposed control eggs, albeit not
significantly. Egg weight reduction was also measured over the intervention period. The
weight of the quail eggs exposed to PEMF showed a smaller decrease compared to unex-
posed eggs, hypothetically resulting from more efficient substrate utilization of the embryo
for purposes of tissue biosynthesis in a closed system (the egg). These results suggest that
PEMFs can accelerate egg development and improve embryo viability, given appropriate
magnetic field orientation and egg arrangement.

2.2. PEMF Exposure Promotes Oxidative Red Muscle

Oxidative muscle is “redder” than glycolytic muscle due to greater mitochondrial
density, elevated levels of myoglobin, and being more enriched in microvasculature [8]. A
muscle color analysis was next performed. PEMF-treated quail embryos were noticeably
larger than the control embryos (Figure 2A). The breast regions of the embryos were
photographed under controlled lighting conditions (Figure 2B), followed by the images
being converted into grayscale for final quantification of color (Figure 2C). The pixel
intensity was plotted into a heatmap (Figure 2D), and an average histogram was generated
for all three conditions (Figure 2E). Embryos exposed to 1.5 mT upward-directed fields had
a significantly redder breast musculature compared to 0 mT controls.
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Figure 1. Effect of PEMF treatment on quail embryo development in ovo. (A) Fertilized quail eggs
were exposed to either downward- or upward-directed PEMFs at an amplitude of 1.5 mT on five
separate occasions, days 3, 5, 7, 10, and 12. Quail embryos were sacrificed for analyses on day 13. Egg
weights were recorded daily. (B) Egg arrangements during exposure: “apex-up” vertically spread
in a single layer or horizontally “stacked” in two layers. (C) Embryo wet weight after 13 days for
quail eggs that were unexposed (control; red), exposed to 1.5 mT downward-directed magnetic fields
(blue), or exposed to 1.5 mT upward-directed magnetic fields (green). PEMF exposure only elicited a
significant effect on the wet weight of the embryos in the “apex-up” arrangement. (D) Embryo body
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length in the “apex-up” arrangement. (E) Embryo survival in percentage in the vertical “apex-up”
arrangement. The absolute egg survival-to-dead ratios were 20:5 (0 mT), 22:1 (1.5 mT down), and 22:3
(1.5 mT up). (F) Egg weight throughout the entire incubation period is shown as fold change. Data
represent mean ± SEM of embryo survival rates from two independent studies, with sample sizes
(n = 16–22 eggs per condition) indicated within histogram bars. Statistical analysis was performed
using the Kruskal–Wallis test, followed by Dunn’s multiple comparisons post hoc test. Significance is
indicated by *** p < 0.0005 and **** p < 0.00005.

Figure 2. Effect of PEMF exposure on quail embryo chest musculature redness and modulation of
gene and protein expression. (A) Representative embryo images for each experimental condition. the
pixel frequency and intensity distribution of an ROI in the red channel. (D) Heatmap showing the mean



Int. J. Mol. Sci. 2025, 26, 5423 6 of 13

(consolidated) peak pixel frequencies and intensities of the red channel. The heatmap is organized
according to intensity values (y-axis) with lower values representing less intense red pixels (top) and
higher values representing more intense red pixels (bottom). (E) Line graph showing the peak means
for intensities (y-axis) between 60 and 230. The error bars denote the standard error of the mean
(SEM). Two-way ANOVA with Dunnett’s multiple comparisons post hoc test was used to compare
the peak mean differences between the experimental groups within each intensity. (F–I) Fold changes
in transcript levels of PPAR-α, SIRT1, COL1A1, and COL3A1 detected by qPCR in quail breast tissue.
Quail eggs were either unexposed (control; red), exposed to 1.5 mT downward-directed magnetic
fields (blue), or 1.5 mT upward-directed magnetic fields (green); n = 5–8. (J,K) Fold changes in
PGC-1α and VEGFA protein expressions. Data represent mean ± standard error of the mean (SEM).
All statistical analysis was performed using one-way ANOVA, followed by a Bonferroni’s multiple
comparisons post hoc test. Significance is indicated by * p < 0.05 and ** p < 0.005.

Oxidative muscle development was also ascertained at the level of gene expres-
sion. Transcript levels of the oxidative muscle-associated genes, peroxisome proliferator-
activated receptor alpha (PPAR-α), and Sirtuin 1 (SIRT1) were measured in response to
directional PEMF exposure from the musculature of embryos harvested from eggs in the
“apex-up” arrangement. PPAR-α is a transcriptional regulator for mitochondrial adapta-
tions involving lipid oxidation and energy homeostasis in skeletal muscle [28]. Endurance
training in humans induces an increase in PPAR-α, enhancing the expression of mitochon-
dria and myoglobin-enriched, and thus redder, oxidative muscle [29]. Upward-directed
PEMFs resulted in a significant upregulation of PPAR-α gene expression compared to
control (Figure 2F). The PPAR-α expression of the quail embryos exposed to downward-
directed PEMFs, although showing a similar trend, failed to achieve statistical significance.

SIRT1 is a NAD+-dependent protein deacetylase that is involved in metabolism and
aging [30,31]. Downward-directed PEMFs resulted in a significant increase in SIRT1
transcripts compared to control, whereas upward-directed fields produced a modestly
smaller increase that did not achieve statistical significance (Figure 2G). Transcripts for the
collagen subtypes, COL1A1 and COL3A1, were significantly upregulated in response to
downward-directed magnetic fields but not upward-directed magnetic fields (Figure 2H,I).
The PGC-1α-coactivated transcriptional cascade governs mitochondriogenesis, which is
imperative for oxidative muscle development [8,32]. PGC-1α transcript levels were most
elevated by downward PEMF exposure (Figure 2J). Vascular endothelial growth factor
(VEGF) is necessary for the establishment of a microcirculatory network [33]. VEGFA
protein levels were significantly downregulated upon exposure to downward-directed
PEMFs (Figure 2K). The sum of the data thus suggests that upward-directed fields produce
an overall more beneficial effect by promoting oxidative muscle development without
inducing collagen or impeding angiogenesis.

3. Discussion
This study examined the capacity of PEMF treatment to promote embryonic develop-

ment, particularly of oxidative muscle. An analogous PEMF stimulation paradigm was
previously demonstrated to favor oxidative muscle development in isolated skeletal muscle
cells [17,19], mice [18], and humans [19,34]. Brief (10 min) exposure of muscle to low-energy
PEMFs was previously shown to stimulate muscle regeneration, associated with increases
in mitochondrial biogenesis and antioxidative defenses, improved muscle inflammatory
status, and cytokine (myokine) release [20]. This magnetic mitohormetic paradigm essen-
tially recapitulates the effects of endurance training that exploits the adaptive benefits of
exercise-induced oxidative stress over mitochondrial function to foster oxidative muscle
development [6,8].
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PPAR-α and PGC-1α are also involved in the fatty acid oxidation of skeletal mus-
cle [35]. Due to the elevated respiratory capacity of oxidative muscle, fatty acids are the
preferential energy substrate to support mitochondrial respiration, translating to improved
systemic insulin sensitivity and reduced adipose-associated inflammation [10,36]. The
present study showed that upward PEMF stimulation increased PPAR-α gene expres-
sion, which is imperative for oxidative muscle development [8,28]. Accordingly, expo-
sure to upward-directed PEMFs significantly increased the redness of the quail embryo
breast musculature.

Defining features of oxidative muscle are augmented mitochondrial respiration and
elevated PGC-1α transcriptional activity [6,8]. Oxidative muscle development is modulated
by calcium regulatory pathways governed by the canonical transient receptor potential
channel 1 (TRPC1) [37–39]. TRPC1 serves as an integrator of diverse forms of biophys-
ical stimuli of developmental consequence [40]. A TRPC1–mitochondrial signaling axis
has been identified in skeletal muscle that can be activated by magnetic fields [17] and
sustained mechanical loading [6,8,41] to promote oxidative muscle development [6,8].
Specifically, PEMF exposure and interaction with gravity stimulate TRPC1-mediated Ca2+

entry, which, in turn, trigger a PGC-1α-coactivated transcriptional cascade, governing
mitochondriogenesis, angiogenesis, and oxidative muscle development [8,32]. PGC-1α
transcriptional coactivation results in phenotypic commonalities between exercise and
PEMF treatment [18].

PGC-1α is activated by its deacetylation by SIRT1, which, in turn, activates VEGF
signaling [42,43]. Surprisingly, downward-directed PEMFs enhanced PGC-1α expression
but reduced VEGF expression. This seemingly contradictory result might be due to the
described interaction between SIRT1 and HIF-1α, a transcription factor that is activated
by hypoxic conditions [30]. Previous studies have shown that the upregulation of SIRT1
leads to the deacetylation and inactivation of HIF-1α, which consequently attenuates VEGF
expression, a downstream target of HIF-1α [30]. An increase in SIRT1 may thus serve to
inhibit both HIF-1α and VEGF activity. Accordingly, acute exercise has been shown to
induce the expression of both HIF-1α and VEGF, whereas their basal expression levels may
become attenuated as a form of training adaptation [44,45]. As PEMF treatment recapitu-
lates some aspects of endurance training [6], it is plausible that extended PEMF exposure
diminished HIF-1α and VEGF expressions accordingly. Although both up- and down-field
directionalities increased PGC-1α expression, downward-directed fields preferentially in-
creased collagen expression. Increased muscle collagen may represent a predisposition
for muscular fibrosis [46]. With relevance to the food industry, PGC-1α transcriptional
activation is associated with better meat quality across species [47–51].

An interplay between egg orientation and field directionality was also demonstrated.
The importance of field directionality was previously demonstrated in in vitro studies,
where downward-directed PEMFs elicited the greatest myogenic and secretome responses
compared to upward-directed PEMFs [19,52]. Sensitivity to magnetic field orientation is
conferred by an interaction of TRPC1 with a cryptochrome (CRY2), a class of flavoprotein
implicated in bird navigation to geomagnetic fields and circadian rhythm regulation of
the cell cycle [19,52,53]. Notably, selectivity for downward magnetic fields is lost with the
silencing of CRY2 expression and depletion of flavonoids [19,52]. Here, we demonstrated
that when a monolayer of eggs was arranged vertically with their apex pointed upward,
upward-directed PEMF exposure elicited the best developmental response with regard to
embryo growth and the oxidative character of the breast musculature. Downward field
exposure also promoted growth and embryo viability, but deficits in angiogenesis and
enhanced collagen accretion were observed. The eggshell does not pose an impediment to
magnetic field penetrance as determined by measurements of the magnetic field intensity
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above and below a layer stack of eggs. The loss of response to magnetic fields observed
upon the stacking of the eggs most likely arose from the random orientation of the embryos
during their exposure to vertically aligned magnetic field lines. In contrast, the quail
embryos would assume a more standard alignment with reference to field line directionality
in the more uniform planar apex up orientation. Based on the first principles, orthogonal
alignment of the long axis of the embryo to the magnetic field lines would produce the
greatest current induction [54]. Magnetic field directionality will hence influence muscle
development and downstream systemic metabolism.

4. Materials and Methods
4.1. Quail Eggs and the Incubation Conditions

Japanese coturnix quail eggs were purchased from Uncle William Pte Ltd. (Bukit
Timah, Singapore). The eggs were incubated at 38.5 ◦C with 70% humidity for two weeks
using a Rcom MX-50 egg incubator (AUTOELEX Co., Ltd., Gyeongsangnam-do, Republic
of Korea). The weights of the eggs were recorded daily. After two weeks, the embryos were
harvested, and final weight measurements were taken. Photographs of the embryos’ chest
area were captured under controlled illumination conditions before a small breast tissue
was excised and snap-frozen with liquid nitrogen.

4.2. Pulsed Electromagnetic Fields (PEMF) Exposure

The use and characteristics of the PEMF device utilized in the present study were
previously described [17]. Briefly, the PEMF device produces spatially homogenous, time-
varying magnetic fields, consisting of barrages of 20 × 150 µs on and off pulses for 6 ms at a
repetition frequency of 15 Hz. The magnetic flux density rose to a predetermined maximal
level within ~50 µs (~17 T/s) when the driving field amplitude was 1.5 mT. The quail
eggs were oriented with their apex pointing upwards in a single layer or laid horizontally
and stacked into two layers. Both arrangements received either 0 mT or 1.5 mT with a
downward- or upward-directed magnetic stimulation as previously described [19]. A total
of 5 stimulations spanning across two weeks were given to the eggs, with at least one day
gap in between the magnetic stimulations.

4.3. Breast Tissue Musculature and Color Analysis

Images of the quail embryos were analyzed using ImageJ (Version 1.54p, National
Institute of Health, Bethesda, MD, USA). Red intensity within the pectoralis muscle region
of interest (ROI) was quantified using the histogram function on ImageJ, which divides the
red intensity spectrum into 256 intensity values. The frequency of pixels at each intensity
level was determined, and peak counts were normalized to the ROI area to account for
variations. The normalized data from individual samples were pooled to generate a
consolidated table of peak frequencies and intensities for the red channel. The pooled
data were visualized as a heatmap and a line graph to facilitate analysis of the data. To
ensure objective analysis, the quantification of redness was performed on condition-blinded
images using ImageJ.

4.4. Quantitative RT-PCR

Quantitative real-time polymerase chain reaction (RT-PCR) was carried out using
the SYBR green-based detection workflow. Briefly, the frozen pectoralis major tissues
were pulverized into a fine powder using a mortar and pestle under liquid nitrogen,
followed by lysis using Buffer RLT Plus provided in the RNeasy Plus Mini Kit (Qiagen,
Hilden, Germany). Total RNA was extracted according to the protocol provided in the
RNeasy Plus Mini Kit (Qiagen, Hilden, Germany). RNA samples were quantified by
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NanoDrop One (Thermo Fisher Scientific, Waltham, MA, USA), and 1 µg of RNA was
reverse transcribed to cDNA using the iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA,
USA). The quantification of gene transcript expression was performed using SsoAdvanced
Universal SYBR (Bio-Rad, Hercules, CA, USA) on the CFX Touch Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA). Relative transcript expression was determined using
the 2−∆∆Ct method, with β-actin as the reference gene. The primers used were as follows:
PPAR-α, F: GCT TGT GAA GGC TGT AAG GG, R: ACT TGG CCT TCT CAG ACC TC;
SIRT1, F: TGA CAG AGC TTC ACA TGC AAG, R: ACA GCG TCA TAT CGT CCA GT;
COL1A1, F: GCG ACT GTA CTA CTC ACC CG, R: TAT CGT TGT ACG TCA GCC CG;
COL3A1, F: ATC CTC CCC AGC CCA TTA GT, R: GGC CTA TCA TTC CAG CAG GG;
β-ACTIN, F: TGA CAG GAT GCA GAA GGA GA, R: ATG GTC CGG CTT CAT CAT AC.

4.5. Western Blot

Briefly, the frozen pectoralis major tissues were pulverized into a fine powder using
a mortar and pestle under liquid nitrogen and then homogenized with a Dounce Ho-
mogenizer in ice-cold radioimmunoprecipitation assay (RIPA) buffer containing 150 mM
NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM
Tris (pH 8.0), and protease (Nacalai Tesque, Kyoto, Japan) and phosphatase (Roche, Basel,
Switzerland) inhibitors. The protein concentration of the soluble fractions was determined
using the Pierce BCA Protein Assay kit (Thermo Fisher Scientific, Waltham, MA, USA). A
total protein of 20 µg was resolved using 10% denaturing polyacrylamide gel electrophore-
sis and transferred to an Immun-Blot PVDF membrane (Bio-Rad, Hercules, CA, USA).
Proteins on PVDF membranes were blocked using 5% low-fat milk in TBST containing 0.1%
Tween-20, followed by overnight incubation with primary antibodies in SuperBlock TBS
(Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C. The antibodies used are listed in
Table 1.

Table 1. List of primary antibodies used for Western blot analysis.

Antibody Name Dilution Factor Cat. No. Manufacturer

PGC-1α 1:1000 66369-1-lg Proteintech (Rosemont, IL, USA)

VEGFA 1:1000 PA1-16948 Thermo Fisher Scientific
(Waltham, MA, USA)

GAPDH 1:10,000 60004-1-lg Proteintech (Rosemont, IL, USA)
α-Tubulin 1:10,000 66031-1-lg Proteintech (Rosemont, IL, USA)

HRP secondary anti-mouse or anti-rabbit antibodies were diluted (1:3000, Bio-Rad,
Hercules, CA, USA) in 5% milk. The membranes were visualized using the Odyssey Fc
Imaging System (LI-COR Biosciences, Lincoln, NE, USA) after incubation with the Clarity
Western ECL Substrate (Bio-Rad, Hercules, CA, USA) or SuperSignal West Atto Ultimate
Sensitivity Substrate (Thermo Fisher Scientific, Waltham, MA, USA).

4.6. Statistical Analysis

All statistics were carried out using GraphPad Prism (Version 10, Dotmatics, Boston,
MA, USA) software. Unless otherwise stated, statistical analyses were performed using
one-way analysis of variance (ANOVA) to compare the values between two or more groups,
followed by Bonferroni’s multiple comparisons test.

5. Conclusions
The presented Magnetic Mitohormesis paradigm is a natural biophysical stimulus

that has been proven to be safe and developmentally relevant for diverse cell types, tissue
classes, animals, and humans, particularly with reference to skeletal muscle development.
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This study presents initial evidence that analogous low-energy pulsed electromagnetic
fields can serve to metabolically program fetal muscle development independently of
maternal influence. Given the non-invasive, drug-free, and brief nature of this biophysical
stimulation paradigm, further investigations in mammals are warranted. The metabolic
benefits of PEMF will likely extend beyond embryonic muscle development. Enhancing
embryonic oxidative muscle development may have far-reaching implications, such as
improving metabolic health to bolster disease resistance and reducing the reliance on
prophylactic antibiotics, aligning with the accelerated demands for antibiotic-free farm-
ing. Additionally, optimized muscle energy metabolism could improve thermoregulatory
resilience, addressing a critical growing concern in most poultry operations. Future re-
search should evaluate the long-term effects on hatchability, immune function, and growth
performance to validate PEMF’s potential as a sustainable agricultural intervention.
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