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A B S T R A C T   

Hyperspectral imaging analysis combined with machine learning was applied to identify eight edible vegetable 
oils, and its classification performance was compared with the chemical method based on fatty acid composi-
tions. Furthermore, the degree of adulteration in vegetable oils was quantitatively investigated using machine 
learning-enabled hyperspectral approaches. The hyperspectral absorbance spectra of palm oil with a high degree 
of saturation were distinctly different from those of the other liquid oils. The flaxseed and olive oils exhibited the 
dominant hyperspectral intensities at 1170/1671 and 1212/1415 nm, respectively. Linear discriminant analysis 
demonstrated that two linear discriminants could explain a significant portion of the total variability, accounting 
for 96.0% (fatty acid compositions) and 98.9% (hyperspectral images). When the hyperspectral results were used 
as datasets for three machine learning models (decision tree, random forest, and k-nearest neighbor), several 
instances to incorrectly classify grapeseed and sunflower oils were detected, while olive, palm, and flaxseed oils 
were successfully identified. The machine learning models showed a great classification performance that 
exceeded 98.9% from the hyperspectral images of the vegetable oils, which was comparable to the fatty acid 
composition-based chemical method in identifying edible vegetable oils. In addition, the random forest model 
was the most effective in ascertaining adulteration levels in binary oil blends (R2 > 0.992 and RMSE < 2.75).   

1. Introduction 

Edible vegetable oils from various botanical sources have been 
extensively used in a variety of food products, depending on their unique 
physicochemical features such as the fatty acid composition and the de-
gree of saturation. For example, palm oil has been commonly utilized as a 
frying medium for fried foods such as snacks and ramen, since it has 
oxidative stability derived from its high saturated fatty acid content. On 
the other hand, olive oil with a high level of unsaturated fatty acids, is a 
primary ingredient in salad dressings (Kim et al., 2010). It is therefore 
crucial to identify vegetable oils in the food industry for determining their 
appropriate applications in addition to preventing adulteration. A 
chemical method with gas chromatography (GC), has been dominantly 
used to identify vegetable oils by analyzing their fatty acid compositions. 
However, this GC method may be time-consuming, labor-intensive, and 

environmentally unsustainable, so a new methodology is needed to 
analyze vegetable oils in more efficient and non-destructive ways. 

Vegetable oils consist of organic molecules containing carbon, 
hydrogen, oxygen, and other elements whose vibrational frequencies are 
located in the near-infrared region of the electromagnetic spectrum (Wu 
et al., 2009; Yang et al., 2005). As a result, a chemometric method with 
near-infrared spectroscopy has been recently used to characterize edible 
oils by investigating the characteristic absorption and intensity of 
near-infrared radiation. Moh et al. (1999) developed a near-infrared 
spectroscopic technique to measure the peroxide values of refined 
palm oils, showing a high correlation coefficient between the spectral 
values and the peroxide values (R2 = 0.994). He et al. (2020) and Jiang 
et al. (2021) successfully verified the feasibility of near-infrared spec-
troscopy to detect the storage periods of 4 different edible oils and their 
acid values during storage, respectively. Near-infrared spectroscopic 
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techniques were also used to detect the adulteration of edible oils such as 
extra-virgin olive (Vanstone et al., 2018), coriander (Kaufmann et al., 
2022), and Sacha inchi (Plukenetia volubilis) (Cruz-Tirado et al., 2023) 
oils. Furthermore, near-infrared spectroscopic analysis has been com-
bined with other techniques such as hyperspectral imaging in order to 
enhance the capabilities and versatility of analytical techniques (Li 
et al., 2020b). As a cutting-edge technology, hyperspectral imaging al-
lows for the non-destructive and rapid analysis of the chemical prop-
erties of materials and their spatial distribution (Aviara et al., 2022). 
This technique has been employed in the analysis of diverse agricultural 
and food commodities, encompassing oils. There are several preceding 
studies on the use of hyperspectral imaging analysis in characterizing 
the qualities of oil seeds. Using hyperspectral imaging, Jin et al. (2016) 
determined the oil content in peanuts and Da Silva Medeiros et al. 
(2022) quantified the level of oil and fatty acids in Brassicas seeds. As the 
demand for premium vegetable oils rises, hyperspectral imaging anal-
ysis started to gain scientific attention as an analytical tool to detect the 
adulteration of vegetable oils. Thus, different varieties of sesame oil 
(Kim et al., 2010; Xie et al., 2014) and extra virgin olive oil with cheaper 
edible oils (Malavi et al., 2023) were identified from their hyperspectral 
images. The primary emphasis in hyperspectral analysis, nonetheless, 
has centered on the detection of adulteration in high-value vegetable 
oils, despite the widespread utilization of various vegetable oils within 
the food industry. 

Machine learning, which is an area of artificial intelligence, focuses 
on creating algorithms that enable computers to analyze data, identify 
patterns, and make predictions (Deng et al., 2021). It is recognized that 
there are three main types of machine learning algorithms: supervised 
learning, unsupervised learning, and reinforcement learning (Jin, 
2020). Supervised learning uses labeled input data to learn from and 
make predictions. On the other hand, unsupervised learning discovers 
patterns and structures with unlabeled input data mainly for clustering 
and dimensionality reduction. In the case of reinforcement learning, it 
involves an agent interacting with an environment to learn through 
rewards and punishments. More recently, machine learning started to be 
combined with the hyperspectral imaging analysis. Lu et al. (2017) have 
successfully applied machine learning techniques to hyperspectral im-
ages for predicting rice starch content with an accuracy of over 86.9%. A 
hyperspectral technique coupled with machine learning was also 
applied to rapidly discriminate the adulteration of sesame and rapeseed 
oils, showing an accuracy of 100% with random forest (Weng et al., 
2019). Also, Mishra et al. (2022) associated the content of aflatoxin B1 
in single-kernel almonds with the hyperspectral data using partial least 
squares regression. More recently, two machine learning algorithms 
including support vector machine and linear discriminant analysis were 
employed to qualitative discriminate the authenticity of the camellia 
seed oil, reaching 100% accuracy (Rady and Adedeji, 2020). However, 
research that integrates hyperspectral imaging with a wider variety of 
machine learning models for categorizing edible vegetable oils from 
diverse botanical sources is still limited. Moreover, from a machine 
learning perspective, hyperspectral imaging techniques have not yet 
been systematically compared with chemical methods such as gas 
chromatography which have been still dominantly used in the food in-
dustry, to our best knowledge. 

In this study, eight edible vegetable oils were subjected to hyper-
spectral imaging analysis, which was coupled to machine learning al-
gorithms for identifying the edible vegetable oils. The classification 
performance of the three machine learning models (decision tree, 
random forest, and k-nearest neighbor) was compared with that of the 
fatty acid composition-based chemical methods, based on accuracy and 
f1-score values. Furthermore, the degree of adulteration in vegetable oil 
blends was investigated using hyperspectral imaging analysis combined 
with machine learning. 

2. Materials and methods 

2.1. Materials 

Eight edible vegetable oils – canola (Sajo Haepyo Co., Ltd., Seoul, 
Korea), corn (Sajo Haepyo Co., Ltd., Seoul, Korea), grapeseed (Sajo 
Haepyo Co., Ltd., Seoul, Korea), olive (Sajo Haepyo Co., Ltd., Seoul, 
Korea), soybean (CJ Beksul Co., Ltd, Seoul, Korea), palm (Lotte Foods 
Co., Ltd., Seoul, Korea), flaxseed (Goccia d’oro, Baldissero d’Alba, Italy), 
and sunflower (Sajo Haepyo Co., Ltd., Seoul, Korea) oils were purchased 
from a commercial source. All chemicals used in this study were of 
analytical grade. 

2.2. Determination of fatty acid composition 

The fatty acid compositions of the vegetable oils were analyzed using a 
gas chromatograph coupled with an Agilent 5975 series mass selective 
detector (Santa Clara, CA, USA). For saponification and derivatization of 
fatty acids, oil (4 mg) was dissolved in 2 mL of 0.5 M KOH in methanol in 
a 20 mL glass vial and incubated at 80 ◦C for 60 min, followed by a re-
action with 2 mL of 10% BF3-methanol solution (Sigma-Aldrich, St. Louis, 
MO, USA) at 100 ◦C for 20 min. The reaction was terminated by adding 
deionized water (4 mL) and hexane (2 mL). The reaction mixture was then 
vigorously vortexed and centrifuged. The organic phase was separated, 
and the residual aqueous phase was further washed with fresh hexane (2 
mL) twice. The collected organic phases were combined and evaporated 
under a vacuum. The fatty acid methyl esters (FAMEs) were dissolved in 
1 mL of hexane and filtered using a 0.45 μm PVDF syringe filter. The 
filtrate was suitably diluted with hexane and subjected to GC/MS (6890N, 
Agilent Technologies, Santa Clara, CA, USA). An HP-INOWAX capillary 
column (30 m × 0.32 mm × 0.25 μm, Agilent Technologies) was used to 
separate FAMEs, and purified helium was used as a carrier gas at a flow 
rate of 2 mL/min. The injector was operated in a split mode at 250 ◦C. The 
GC oven temperature was programmed to initially hold at 100 ◦C for 5 
min, rise to 250 ◦C at a rate of 3 ◦C/min, and finally hold for 5 min. The 
mass detector was operated in a scan mode in the range of 50–700 m/z 
with an ionization energy of 70 eV. The peak deconvolution and identi-
fication of the FAMEs were performed using AMDIS software with NIST 
11 mass spectral and retention index libraries (Ver 2.71, National Institute 
of Standards and Technology). The concentrations of FAMEs were esti-
mated using their corresponding FAME calibration curves constructed 
using FAME Mix C8 – C24 reference standards (Supelco Analytical, Bel-
lefonte, PA, USA) in hexane. 

2.3. Hyperspectral measurement 

The hyperspectral images of the oil samples were acquired with a 
Specim FX17 camera (Spectral Imaging Ltd, Oulu, Finland), which 
provided 224 spectral bands over a wavelength range of 900–1700 nm. 
Each oil sample (45 g) in a Petri dish was presented on a mobile platform 
illuminated using two 170 W halogen lamps. The moving speed of the 
mobile platform was 40 mm/s, the exposure time was 4 ms, and the 
objective distance was 315 cm. The hyperspectral system was located in 
a dark room to prevent interference from external light sources. The 
corrected images (R) were obtained by calibrating the original images 
(OI) of the samples, the black image (B) was acquired by covering the 
camera lens with its cap, and the white image (W) was obtained with a 
standard white bar. 

R=
OI − B
W − B

× 100% 

The imaging processing of the hyperspectral images was conducted 
by ENVI software (L3Harris Geospatial Solutions, Broomfield, CO, USA) 
and Python interface (3.8.13 version) with the spectral module (Spy, 
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0.21 version). A region of interest (ROI) with a size of 25 × 25 pixels was 
obtained from the center of the calibrated hyperspectral images and 
smoothed by employing the Savitzky-Golay filter (Yang et al., 2015). 

The hyperspectral signals were then transformed into an absorbance 
profile as follows.  

A (absorbance) = -log10R                                                                        

2.4. Machine learning analysis 

Machine learning models for oil classification were constructed in a 
Python programming environment with a Jupyter Notebook. The fatty 
acid compositions and hyperspectral images obtained were used as the 
machine learning datasets. In the fatty acid composition dataset (117 ×
9 matrix), the fatty acid compositions and the oil types were assigned to 
X and Y vectors, respectively. In addition, 224 hyperspectral bands were 
assigned to X vectors in the hyperspectral dataset (75,000 × 225 ma-
trix). The min-max normalization library was applied to convert the X 
data into a fixed range of 0–1. The fatty acid composition and hyper-
spectral results were subjected to linear discriminant analysis (LDA) 
which is a linear model for classification and dimensionality reduction 
(Bandos et al., 2009; Giansante et al., 2003). The LDA was directly 
applied to the pixels from the hyperspectral cube (25 × 25 x 224) where 
the number of samples was greater than the number of features in the 
hyperspectral datasets (Setser and Smith, 2018). The Python scikit-learn 
and matplot libraries were utilized for conducting LDA and visualizing 
the corresponding results. 

Three different machine learning classification models (decision 
tree, random forest, and k-nearest neighbor) were furthermore utilized 
to classify the oil samples based on their fatty acid composition and 
hyperspectral imaging results. The models of the decision tree, random 
forest, and k-nearest neighbor were trained with the optimal hyper-

parameters selected using a bayesian optimization process - (max_depth 
= None, min_samples_leaf = 1, and min_samples_split = 2), (max_depth 
= None, min_samples_leaf = 1, and min_samples_split = 2), and (the 
number of neighbors = 10, metric = ‘minkowski’, leaf_size = 100, p = 1, 
and weights = ‘distance’), respectively. The classification performance 
of the proposed models was assessed in terms of accuracy and F1-score, 
which were determined from the confusion matrix as follows (Tharwat, 
2021). 

Accuracy =
TP + TN

TP + TN + FP + FN  

Recall =
TP

TP + FN  

Precision =
TP

TP + FP  

F1 − score =
2 × Recall × Precision

Recall + Precision  

where TP is true positive, FP is false positive, TN is true negative, and FN 
is false negative. 

The three machine learning algorithms were furthermore applied in 
order to predict the adulteration levels in two paired edible oils (olive/ 
canola oils and sunflower/grapeseed oils). For each pair, 11 mixtures 
were prepared by blending the two oil samples at a mass ratio of 0:100, 
10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 0:100 
(w/w), which were expressed as concentration of olive oil in canola oil 
and sunflower oil in grapeseed oil (0%, 10%, 20%, …, 90%, and 100%). 
The model hyperparameters were optimally determined using a 
bayesian algorithm (decision tree: max_depth = 96, min_samples_leaf =
5, and min_samples_split = 2), (random forest: max_depth = 5, min_-
samples_leaf = 1, and min_samples_split = 2), and (k-nearest neighbor: 
the number of neighbors = 5, metric = ‘minkowski’, leaf_size = 30, p =
2, and weights = ‘uniform’). The coefficient of determination (R2) and 
the root mean squared error (RMSE) were applied to evaluate the pre-
diction performance of the models. 

R2 = 1 −

∑n

i=1
(ai − pi)

2

∑n

i=1
(ai − m)

2  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(pi − ai)

2

√

2.5. Statistical analysis 

The fatty acid composition and hyperspectral experiments of the oil 
samples were carried out twelve and fifteen times, respectively, and the 
values were reported as mean ± standard deviation. 

Table 1 
Fatty acid compositions of various vegetable oils.  

Fatty acid Grapeseed Canola Olive Sunflowerseed Soybean Palm Corn Flaxseed 

Myristic acid (14:0) – – – – – 1.49 ± 0.14 – – 
Palmitic acid (16:0) 5.12 ± 0.47 3.81 ± 0.11 9.11 ± 1.55 5.59 ± 0.99 8.08 ± 0.69 39.14 ± 3.28 7.41 ± 1.09 3.97 ± 0.69 
Palmitoleic acid (16:1) – 0.22 ± 0.14 0.95 ± 0.19 – – – – – 
Stearic acid (18:0) 3.28 ± 0.29 2.21 ± 0.52 4.09 ± 0.22 3.97 ± 0.52 3.88 ± 0.85 5.80 ± 0.39 1.93 ± 0.12 3.87 ± 0.64 
Oleic acid (18:1) 22.46 ± 0.96 52.69 ± 0.48 74.32 ± 1.42 31.37 ± 2.31 21.41 ± 1.52 42.10 ± 3.34 28.02 ± 0.63 13.82 ± 0.44 
Linoleic acid (18:2) 69.13 ± 1.04 27.75 ± 0.34 8.41 ± 1.94 59.07 ± 2.29 59.17 ± 2.04 11.48 ± 0.49 60.64 ± 0.46 21.85 ± 0.35 
Linolenic acid (18:3) – 13.06 ± 0.22 1.76 ± 0.75 – 7.46 ± 0.74 – 1.99 ± 0.23 56.48 ± 0.74 
Arachidic acid (20:0) – 0.26 ± 0.20 1.37 ± 0.60 – – – – – 
Saturated fatty acid 8.40 6.28 14.57 9.56 11.96 46.43 9.34 7.84 
Unsaturated fatty acid 91.59 93.72 85.44 90.44 88.04 53.58 90.65 92.15 
Saturated/Unsaturated fatty acid 0.09 0.07 0.17 0.11 0.13 0.87 0.10 0.09  

Fig. 1. Hyperspectral absorbance curves of various vegetable oils.  
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3. Results and discussion 

The fatty acid compositions of eight vegetable oils were analyzed as 
shown in Table 1. Oleic acid was the primary fatty acid in the canola, 
olive, and palm oils, whereas the grapeseed, sunflowerseed, soybean, 
and corn oils had the highest level of linoleic acid. Also, linolenic acid 
was predominantly detected in the flaxseed oil. The palm oil contained a 
high level of palmitic acid. These results were in a great agreement with 
several preceding studies that analyzed the fatty acid compositions of 
various vegetable oils (Giakoumis, 2018; Kim et al., 2010; Mancini et al., 
2015). All vegetable oils except for palm oil mostly consisted of unsat-
urated fatty acids. Especially, the canola, flaxseed, and grapeseed oils 
showed the lowest ratio of saturated to unsaturated fatty acids, whereas 
the highest ratio was observed in the palm oil, which behaves like a 

semi-solid material at room temperature (Norhaizan et al., 2013). 
The quality attributes of various edible vegetable oils have been 

widely characterized using near-infrared spectroscopy. A hyperspectral 
imaging technique that operates in the near-infrared region, was thus 
utilized to identify the oil samples that show distinct absorption peaks 
derived from specific molecular vibrations such as C–H functional 
groups (Li et al., 2020a). Fig. 1 exhibits the average hyperspectral 
absorbance spectra of the vegetable oils. The liquid oils seemed to have 
similar absorbance spectra, while those of the palm oil were distinctly 
different. The spectra of the vegetable oils were mainly characterized by 
three absorption bands at 1212, 1415, and 1671 nm (Dong et al., 2022). 
These spectral patterns were similar to those reported by Chu et al. 
(2018) and Troshchynska et al. (2019) who determined the 
near-infrared spectra of camellia and flaxseed oils, respectively. 

Fig. 2. Linear discriminant analysis of oil features ((a) fatty acid compositions and (b) hyperspectral images).  
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Similarly, significant peaks at 1200 and 1450 nm were found in palm 
and sea buckthorn seed oils whose near-infrared spectra were investi-
gated in the wavelength of 950–1650 nm (Basri et al., 2017) and 
1000–2500 nm (Li et al., 2016), respectively. In addition, Borghi et al. 
(2020) reported that vegetable oils high in unsaturated fatty acids 
showed an intense peak at around 1170 nm. Therefore, small peaks that 
were observed at nearly 1170 nm might be associated with –HC––CH- 
and their intensity seemed to be more dominant in the vegetable oils 
with a high degree of unsaturation, compared to the palm oil. (Caporaso 
et al., 2018). Among the edible vegetable oils tested, the signal in-
tensities at 1170 and 1671 nm were the highest in the flaxseed oil, while 
those at 1212 and 1415 nm were the most dominant in the olive oil. 

Fig. 2 demonstrates the 2-dimensional plots from the linear 
discriminant analysis (LDA) of the fatty acid composition and the 
hyperspectral imaging datasets. In Fig. 2, the x- and y-axis display the 
total variance explained by the first and second linear discriminants, 
respectively. Thus, 96.0% and 98.9% of the total variation in the fatty 

acid composition and hyperspectral datasets, respectively, could be 
explained by the two linear discriminants. When the oil samples were 
described by different symbols in Fig. 2, the clusters of the samples were 
visually observed based on their similarity. Fig. 2(a) shows that the two 
linear discriminants from the fatty acid compositions clearly separated 
the flaxseed oil high in linolenic acid and low in oleic acid, compared to 
the other oil samples. In addition, the canola, olive, palm, and soybean 
oils seemed to be separable while there seemed to be overlapping among 
the grapeseed, corn, and sunflowerseed oil samples with similar fatty 
acid compositions (Table 1). Fig. 2(b) exhibits the LDA score plot from 
the hyperspectral imaging dataset. It was very interesting to note that 
the flaxseed, olive, and palm oils were distinctly separable in the 
hyperspectral LDA plot, like the fatty acid composition dataset (Fig. 2 
(a)). About 98.9 % of the total variance of the data was displayed in this 
LDA plot, showing that the first and second linear discriminant 
accounted for 90.7% and 8.2% of the variance, respectively. Unlike the 
fatty acid composition dataset, the palm oils in the LDA score plot were 

Fig. 3. Schematic diagram of machine learning classification of vegetable oils.  
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Fig. 4. Confusion matrix of machine learning classifiers based on (a) fatty acid composition dataset and (b) hyperspectral image dataset.  
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Fig. 4. (continued). 
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positively positioned on the first linear discriminant, while the other oil 
samples were negatively positioned. A fairly distinct separation 
appeared to be achieved in the palm, flaxseed, and olive oils. Especially, 
the flaxseed and olive oils were located in the positive and negative 
region of y-axis, respectively, whereas the others were positioned in the 

middle. This distinct separation of the flaxseed and olive oils might be 
related to the signal intensities differences in their hyperspectral spectra 
as mentioned in Fig. 1. However, it appeared that the oil samples other 
than palm, flaxseed, and olive oils were not visually separable. As a 
supervised method, LDA seemed to be effective in visualizing the 

Fig. 4. (continued). 
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clusters of the oil samples, since it maximizes the variability between the 
classes and reduces the variability within the classes (Xing et al., 2019). 

Fig. 3 exhibits the experimental procedure to utilize machine 

learning analysis in classifying edible vegetable oils. As shown in Fig. 3, 
the fatty acid composition and the hyperspectral results were divided 
into training and testing datasets, which were used for training the 

Table 2 
Classification performance of machine learning classifiers.  

Accuracy (%) Decision tree Random forest K-nearest neighbor 

Fatty acid composition 0.975 ± 0.023 0.992 ± 0.019 0.992 ± 0.019 
Hyperspectral images 0.989 ± 0.006 0.999 ± 0.000 0.990 ± 0.001 
F1-score Decision tree Random forest K-nearest neighbor 

Fatty acid composition 0.979 ± 0.022 0.992 ± 0.017 0.992 ± 0.017 
Hyperspectral images 0.989 ± 0.006 0.999 ± 0.000 0.990 ± 0.001  

Fig. 5. Hyperspectral absorbance curves of vegetable oil blends (a) and their linear discriminant analysis plots (b).  
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models and for evaluating the model performance, respectively. The 
datasets were then subjected to three different machine learning algo-
rithms (decision tree, random forest, and k-nearest neighbor). The 
classification performances of the models were evaluated in terms of 
confusion matrix, accuracy, and F1-score. 

A confusion matrix is a tabular way of visualizing the performance of 
a classification model (Krstinić et al., 2020; Ortega et al., 2020; Valer-
o-Carreras et al., 2023). Fig. 4 presents the confusion matrices of the 
three different models developed, based on the fatty acid composition 
and hyperspectral results. The rows in the confusion matrix represent 
the true values, the columns represent the predicted values, and the 
diagonals indicate the correct predictions. As can be seen in Fig. 4(a), the 
classification performance of the decision tree became slightly lower for 

sunflower, soybean, and flaxseed oils. In the case of random forest and 
k-nearest neighbor algorithms, several instances to incorrectly classify 
sunflower oils were detected. However, all three classifiers showed a 
fairly decent classification ratio higher than 0.92, demonstrating that 
they were effective in correctly identifying the oil samples based on their 
fatty acid compositions. Fig. 4(b) presents the confusion matrices of the 
machine learning models based on the hyperspectral images. More in-
stances of incorrectly classifying the oil samples were detected in the 
decision tree and k-nearest neighbor models, while most of the oil 
samples were successfully classified by the random forest. In the deci-
sion tree and k-nearest neighbor models, the grapeseed and sunflower 
oils were frequently confused with each other. While the soybean oils 
were misclassified as grapeseed and sunflower oils, the corn oils were 

Fig. 5. (continued). 
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mispredicted as sunflower oils. However, there were few cases to 
misclassify olive, palm, and flaxseed oils, regardless of the classification 
models. These trends were in a good agreement with the score plot of the 
LDA (Fig. 2) where these three oil samples (olive, palm, and flaxseed 
oils) were distinctly isolated from the other oil samples. 

The classification performances of the machine learning algorithms 
were furthermore compared in terms of their accuracy and F1-score 
(Table 2). When the fatty acid compositions were used as a dataset, 
the accuracies were found to be more than 97.5% regardless of the 
machine learning models. The use of the hyperspectral imaging results 
as a machine learning dataset seemed to slightly improve the perfor-
mance of the classification models by showing great classification suc-
cess of more than 98.9%. The decision tree algorithm showed relatively 
low accuracies for the two experimental datasets, whereas both the 
random forest and k-nearest neighbor exhibited a higher classification 
performance. As also presented in Table 2, f1-scores were used as a 
measure to evaluate the performance of the classification models. In the 
case of the fatty acid composition dataset, the f1-score values of the 
decision tree, random forest, and k-nearest neighborhood were deter-
mined to be 0.98, 0.99, and 0.99, respectively. Like the fatty acid 
composition dataset, the f1-score values were high in the random forest 
and k-nearest neighbor, followed by decision tree, however the f1-score 
values were almost close to 1.0 for all the classification models with the 
hyperspectral datasets. A decision tree algorithm has a flowchart-like 
tree structure for both classification and regression problems (Patel 
and Prajapati, 2018). Random forest is an ensemble classifier that is 
composed of multiple decision trees that are independently trained on a 
random subset of data, making predictions based on majority voting 
(Schonlau and Zou, 2020). K-nearest neighbor is a non-parametric su-
pervised learning classifier for estimating the likelihood that a data 
point belongs to one group or another based on how its neighbors are 
classified (Cunningham and Delany, 2021). Compared to the decision 
tree, the superb classification of random forest and k-nearest neighbor 
could be attributed to their ability to classify the samples by taking a 
majority of votes in the form of ensemble learning (Sinta et al., 2014; 
Zhang and Suganthan, 2014). Several preceding studies reported the 

better classification performance of k-nearest neighbor and random 
forest in classifying breast cancer and in identifying associated risk 
factors for type 2 diabetes, respectively (Esmaily et al., 2018; Rajaguru 
and SR, 2019). As a result, the machine learning models based on the 
hyperspectral results showed the performance of oil classification 
comparable to the fatty acid composition-based chemical method. 

The hyperspectral images of two binary oil blends (olive/canola oils 
and sunflower/grapeseed oils) were measured to ascertain adulteration 
levels by quantifying the concentration of an oil sample within the oil 
blends. Olive and canola oils were selected based on their fatty acid 
compositions (distinct saturated/unsaturated fatty acid ratios), as evi-
denced in Table 1. Also, given the propensity for confusion between 
sunflower and grapeseed oils by machine learning models, as illustrated 
in Fig. 4, both oils also underwent hyperspectral imaging analysis for the 
detection of adulteration. Fig. 5(a) shows the average hyperspectral 
absorbance spectra of the two oil blends. When their hyperspectral re-
sults were subjected to LDA (Fig. 5(b)), 97.4% and 98.4% of the total 
variability was explained by the first and second components for olive/ 
canola oils and sunflower/grapeseed oils, respectively. The first linear 
discriminant appeared to separate the oil samples according to adul-
teration levels. Thus, the samples with a higher proportion of canola and 
grapeseed oils were located in the positive zone of the first linear dis-
criminants, while those containing a higher proportion of olive and 
sunflower oils were located in the negative region. 

Hyperspectral imaging technology has been applied to determine the 
adulteration levels of food ingredients. Malavi et al. (2023) successfully 
utilized hyperspectral imaging for quantifying adulteration in extra 
virgin olive oils blended with various oils at different concentrations up 
to 20% (R2 = 0.97), and Zhao et al. (2018) quantitatively detected 
peanut and walnut powders in whole wheat flour using hyperspectral 
imaging (with a determination coefficient of prediction (R2 = 0.987). 
Thus, the hyperspectral results experimentally measured were applied 
to the three machine learning models that provide both regression and 
classification tasks as also shown in Fig. 3. Fig. 6 exhibits the scatter 
plots comparing the actual concentrations of olive/canola oils and 
sunflower/grapeseed oils with the predicted ones. Overall, it seemed 

Fig. 6. Actual versus predicted concentration scatter plots of vegetable oils.  
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that they provided decent prediction performance, as evidenced by 
higher R2 (0.974–0.997) and lower RMSE (1.81–4.90) values. In 
particular, the random forest model gave rise to high prediction per-
formance for both oil blends, compared to decision tree and k-nearest 
neighbor models. 

Although hyperspectral imaging is particularly useful for heteroge-
neous samples with distinct regions, its application to homogeneous 
samples such as edible oils can still be justified for quality control, 
adulteration detection, and scientific research. Its ability to reveal hid-
den variations and provide valuable spatial information in a non- 
destructive and rapid way, makes it a versatile analytical tool, even in 
cases where samples appear uniform. 

4. Conclusion 

Hyperspectral analysis coupled with machine learning was applied 
as a non-destructive method for classifying eight edible vegetable oils 
from different plant sources, and its classification performance was 
compared with that of the fatty acid composition-based chemical results. 
The linear discriminant analysis showed that two linear discriminants 
were appropriate to explain 96.0% and 98.9% of the total variation in 
the fatty acid composition and hyperspectral imaging datasets, respec-
tively. The random forest offered performance advantages in the clas-
sification tasks of vegetable oils with the best accuracy and F1-score 
values, compared to the decision tree and k-nearest neighbor models. In 
addition, the quantitative investigation of adulteration levels in vege-
table oils was successfully conducted utilizing hyperspectral methodol-
ogies facilitated by machine learning techniques. Thus, this study 
showed promising results of utilizing hyperspectral imaging combined 
with machine learning as an alternative to the conventional chemical 
method for oil classification and adulteration detection. This can pro-
vide a highly accurate method for predicting the type and level of un-
known oil samples, consequently helping food manufacturers to identify 
and control the potential quality issues of vegetable oils. 

CRediT authorship contribution statement 

Jeongin Hwang: Conceptualization, Methodology, Formal analysis, 
Investigation, Writing – original draft, Project administration. Kyeong- 
Ok Choi: Formal analysis, Investigation, Writing – review & editing. 
Sungmin Jeong: Conceptualization, Methodology, Formal analysis, 
Investigation, Writing – original draft, Writing – review & editing, Su-
pervision, Validation. Suyong Lee: Conceptualization, Methodology, 
Writing – original draft, Supervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgment 

This work was supported by the National Research Foundation of 
Korea (NRF) grant funded by the Ministry of Science and ICT 
(2022R1A2C1002813) and the Ministry of Education 
(2022R1A6A1A03055869). 

References 

Aviara, N.A., Liberty, J.T., Olatunbosun, O.S., Shoyombo, H.A., Oyeniyi, S.K., 2022. 
Potential application of hyperspectral imaging in food grain quality inspection, 

evaluation and control during bulk storage. J Agric Food Res 8, 100288. https://doi. 
org/10.1016/j.jafr.2022.100288. 

Bandos, T.V., Bruzzone, L., Camps-Valls, G., 2009. Classification of hyperspectral images 
with regularized linear discriminant analysis. IEEE Geosci Remote Sens 47 (3), 
862–873. https://doi.org/10.1109/TGRS.2008.2005729. 

Basri, K.N., Hussain, M.N., Bakar, J., Sharif, Z., Khir, M.F.A., Zoolfakar, A.S., 2017. 
Classification and quantification of palm oil adulteration via portable NIR 
spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 173, 335–342. https://doi. 
org/10.1016/j.saa.2016.09.028. 

Borghi, F.T., Santos, P.C., Santos, F.D., Nascimento, M.H., Correa, T., Cesconetto, M., 
Pires, A.A., Ribeiro, A.V., Lacerda Jr, V., Romao, W., 2020. Quantification and 
classification of vegetable oils in extra virgin olive oil samples using a portable near- 
infrared spectrometer associated with chemometrics. Microchem. J. 159, 105544 
https://doi.org/10.1016/j.microc.2020.105544. 

Caporaso, N., Whitworth, M.B., Grebby, S., Fisk, I.D., 2018. Rapid prediction of single 
green coffee bean moisture and lipid content by hyperspectral imaging. J. Food Eng. 
227, 18–29. https://doi.org/10.1016/j.jfoodeng.2018.01.009. 

Chu, X., Wang, W., Li, C., Zhao, X., Jiang, H., 2018. Identifying camellia oil adulteration 
with selected vegetable oils by characteristic near-infrared spectral regions. J Innov 
Opt Health Sci 11 (2), 1850006. https://doi.org/10.1142/S1793545818500062. 
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