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Abstract: The quantum ergotropy quantifies the maximal amount of work that can be extracted
from a quantum state without changing its entropy. Given that the ergotropy can be expressed as
the difference of quantum and classical relative entropies of the quantum state with respect to the
thermal state, we define the classical ergotropy, which quantifies how much work can be extracted
from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both
quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we
define the geometric relative entropy. The analysis is concluded with an application of the conceptual
insight to conditional thermal states, and the correspondingly tightened maximum work theorem.

Keywords: ergotropy; geometric quantum mechanics; conditional thermal state

1. Introduction

According to its definition, the adjective ergotropic refers to the physiological mech-
anisms of a nervous system to favor an organism’s capacity to expend energy [1]. Gen-
eralizing this notion to physical systems, quantum ergotropy was then coined to denote
the maximal amount of work that can be extracted by isentropic transformations [2]. In
particular, the quantum ergotropy quantifies the amount of energy that is stored in active
quantum states, and which can be extracted by making the state passive [3–6]. In simple
terms, a passive state is diagonal in the energy basis, and its eigenstates are ordered in
descending magnitude of its eigenvalues. Gibbs states are then called completely passive [3].

The quantum ergotropy plays a prominent role in quantum thermodynamics [7]. In
particular, when assessing the thermodynamic value of genuine quantum properties [8–11],
such as squeezed and nonequilibrium reservoirs [12,13], coherence [14,15], or quantum
correlations [16,17], it has proven powerful. However, if the quantum system is not in
contact with a heat reservoir, computing the quantum ergotropy is far from trivial. This
is due to the fact that the ergotropy is determined by a maximum over all unitaries that
can act upon the system [2]. Note that not all passive states can be reached by unitary
operations, in particular, including the completely passive state.

In this paper, given that the quantum ergotropy can be written as the difference of
quantum and classical relative entropies (the Kullback–Leibler divergence of the eigenvalue
distributions), we define a classical ergotropy, which quantifies the maximal amount of work
that can be extracted from inhomogeneities on the energy surfaces, which have been shown
to be analogous to quantum coherences [18,19].

In a second part of the analysis, we turn to a unified framework, namely geometric
quantum mechanics. Exploiting this approach [20–22], we define the geometric relative
entropy. With this, it becomes particularly transparent to characterize the one-time mea-
surement approach to quantum work [23–27]. In this paradigm, work is determined by
first measuring the energy of the system, and then letting it evolve under time-dependent
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dynamics. In contrast to the two-time measurement approach [28–46], no projective mea-
surement is taken at the end of the process. Hence, the work probability distribution is
entirely determined by the statistics conditioned on the initial energy. Here, we identify
the distinct contributions to the thermodynamic cost of projective measurements by sepa-
rating out the coherent and incoherent ergotropies, and the population mismatch in the
conditional statistics.

Hence, by expressing the quantum ergotropy as a difference of relative entropies,
we are able to (i) generalize the notion to classical scenarios, and to (ii) elucidate the
thermodynamics of projective measurements. This analysis further cements ergotropy as
one of the salient pillars of quantum thermodynamics.

The paper is organized as follow. In Section 2, we review quantum ergotropy in terms
of relative entropies and its relation to the quantum coherence in Section 3. Then, we
introduce the formulation of classical ergotropy in Section 4, and discuss the geometric
quantum mechanics approach to ergotropies in Section 5. Finally, we discuss the physical
meaning of the conditional thermal states in the second law of thermodynamics based on
its ergotropy in Section 6 before our conclusions in Section 7.

2. Quantum Ergotropy

We begin by deriving a simple expression for the quantum ergotropy, which does not
explicitly depend on the optimization over unitary maps. To this end, consider a quantum
system with Hamiltonian H and quantum state ρ. Then, the ergotropy is defined as [2]

E(ρ) ≡ tr{ρ H} −min
U∈U

[
tr
{

UρU† H
}]

, (1)

where U is the unitary group.
Our goal is now to express Equation (1) as a difference of relative entropies. To this

end, we write the quantum state ρ in its “ordered” eigenbasis

ρ = ∑
∫
i

pi|pi〉〈pi| with pi ≥ pi+1 . (2)

Let σ be a second quantum state, which we write

σ = ∑
∫
i

si|si〉〈si| with si ≥ si+1 . (3)

In principle, ρ and σ can be vastly different quantum states. To better compare ρ and
σ, it is then interesting to identify the unitary operation that takes ρ as close as possible to
σ. Hence, considering the quantum relative entropy

S(UρU†||σ) ≡ tr{ρ ln (ρ)} − tr
{

UρU† ln (σ)
}

, (4)

it is known that the minimization of the quantum relative entropy over all the unitary
operations is the classical relative entropy [47] (see Appendix A for the proof)

min
U∈U

[
S(UρU†||σ)

]
= ∑
∫
i

pi ln
(

pi
si

)
≡ D(ρ||σ) . (5)

To this end, we choose σ as the Gibbs state

ρeq ≡ exp (−βH)

Z
with Z ≡ tr{exp (−βH)} . (6)
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For the sake of simplicity, we further assume that the eigenenergies are ordered in
ascending magnitude, Ei ≤ Ei+1. As an alternative expression, the quantum ergotropy can
be expressed as the difference of relative entropies [14,48] (see Appendix B for the proof)

β E(ρ) = S(ρ||ρeq)− D(ρ||ρeq) . (7)

Note that the quantum ergotropy does not depend on the specific value of the tem-
perature, but rather Equation (7) holds for any β. In conclusion, the quantum ergotropy is
written as the difference of the quantum and classical relative entropies of the quantum
state ρ with respect to ρeq. Note that Equation (7) is entirely determined by ρ and ρeq, and
independent of any optimization.

3. Ergotropy from Quantum Coherence

It was recently recognized [14,15,17] that the quantum ergotropy (1) can be separated
into two fundamentally different contributions

E(ρ) = Ei(ρ) + Ec(ρ) . (8)

The incoherent ergotropy Ei(ρ) denotes the maximal work that can be extracted from ρ
without changing its coherence, which is defined as [14]

Ei(ρ) ≡ tr{(ρ− τ)H} . (9)

Here, we call τ the coherence-invariant state of ρ, which is defined as [14]

tr{τH} = min
U∈U (i)

tr
{

UρU† H
}

, (10)

where U (i) is the set of unitary operations without changing the coherence of ρ. Refer to
ref. [14] for more details about U (i).

The coherent ergotropy Ec(ρ) is the work that is exclusively stored in the coherences.
This can be quantified by the relative entropy of coherence [49]

C(ρ) = H(L(ρ))−H(ρ) , (11)

whereH(ρ) ≡ −tr{ρ ln (ρ)} is the von Neumann entropy of ρ, and L is the purely dephas-
ing map, i.e., the map that removes all coherences but leaves the diagonal elements in the
energy basis invariant. From the expression of the coherent ergotropy derived in ref. [14]
and Equation (5), the coherent ergotropy can be rewritten in terms of classical relative
entropy

β Ec(ρ) = C(ρ) + S(L(τ)||ρeq)− D(ρ||ρeq) . (12)

Hence, we conclude that there are three distinct contributions to the coherent ergotropy.
Namely, work can be extracted not only from the coherences directly, but also from the
population mismatch between the completely decohered state and the corresponding
thermal state. However, the total extractable work is lowered by the fact that generally ρ is
not diagonal in energy; hence, the classical relative entropy is different from the quantum
relative entropy of the completely decohered state.

4. Classical Ergotropy from Inhomogeneity

Remarkably, the above discussion of the quantum treatment can be generalized to
purely classical scenarios. It was recently recognized that distributions that are inhomoge-
neous on the energy surfaces can be considered the classical equivalent of quantum states
with coherences [18,19]. Therefore, we proceed by defining the classical ergotropy, which
quantifies the maximal work that can be extracted from inhomogeneous distributions
under Hamiltonian dynamics, i.e., under the classical equivalent of unitary maps.
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We start with the classical distribution, p(Γ), which measures how likely it is to find
a system at a point in phase space Γ. Now consider a situation in which Γ is sampled
microcanonically from an (initial) energy surface A; we then let pA(Γ) evolve under
Liouville’s equation. We are interested in assessing how close to equilibrium the system is
driven. To this end, consider the joint distribution of finding Γ′ on energy surface B, given
that Γ was sampled from energy surface A

pB|A(Γ, Γ′) = p(Γ′|Γ) pA(Γ) , (13)

where p(Γ′|Γ) is the classical transition probability distribution, which satisfies∫
dΓ p(Γ′|Γ) =

∫
dΓ′ p(Γ′|Γ) = 1 , (14)

which follows from Liouville’s theorem and normalization. In the following, we formulate
the classical ergotropy by focusing on the joint distribution pB|A(Γ, Γ′) in general classical
systems.

In complete analogy to the quantum case, we now consider the relative entropy of
pB|A(Γ, Γ′) with respect to the thermal distribution on energy surface B

peq
B (Γ′) =

exp (−βEB(Γ′))
Z

with Z ≡
∫

dΓ′ exp
(
−βEB(Γ′)

)
. (15)

We can write

D(pB|A||p
eq
B ) =

∫
dΓ
∫

dΓ′ pB|A(Γ, Γ′) ln

(
pB|A(Γ, Γ′)

peq
B (Γ′)

)
. (16)

Equation (16) is a divergence-like quantity, which becomes non-negative only for the
thermodynamic scenario (See Appendix C). Note that the normalization of the transition
probabilities (14) is essential to guarantee that the classical distributions, pB|A and peq

B , have
the same support.

As before, we then seek a “transformed” joint distribution QB|A for which the relative

entropy D
(
QB|A||p

eq
B

)
becomes minimal. This QB|A can be written as

QB|A(Γ
′′, Γ) ≡

∫
dΓ′ q(Γ′′|Γ′)p(Γ′|Γ)pA(Γ) , (17)

and we need to minimize D
(
QB|A||p

eq
B

)
as a function of the transition probability distribu-

tion q(Γ′′|Γ′). We start by recognizing that the convolution of two transition probability
distributions is also a transition probability distribution

ξ(Γ′′|Γ) ≡
∫

dΓ′ q(Γ′′|Γ′)p(Γ′|Γ) . (18)

Then, we have QB|A(Γ′′, Γ) = ξ(Γ′′|Γ) pA(Γ), thus we need to minimize D
(
QB|A||p

eq
B

)
as a function ξ. In a complete analogy to the quantum case, we can choose ξ(Γ′|Γ) =
δ(Γ′ − Γ) and obtain the following result (see Appendix D for the proof)

min
ξ

[
D
(
QB|A||p

eq
B

)]
= D

(
pA||p

eq
B

)
. (19)

Accordingly, we define the classical ergotropy as

β Eclass(pB|A) ≡ D
(

pB|A||p
eq
B

)
− D

(
pA||p

eq
B

)
, (20)
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which quantifies the maximal amount of work that can be extracted from the joint dis-
tribution pB|A under Liouvillian maps. Remarkably, both the quantum (7) as well as
the classical (20) ergotropy comprise the classical relative entropy with respect to a ther-
mal state.

Equation (20) can also be re-written to resemble more closely the established expres-
sion of the quantum ergotropy (1). We have

Eclass(pB|A) =
∫

dΓ′ ϕB(Γ′)EB(Γ′) (21)

where we introduced
ϕB(Γ′) =

∫
dΓ pB|A(Γ

′, Γ)− pA(Γ′) . (22)

In this form, it becomes apparent that the classical ergotropy quantifies the maximal
amount of work stored in the inhomogeneities. Notice that ϕB is not an explicit function
of the Hamiltonian of the system, which was shown to be a classical equivalent of the
quantum coherences [18,19]. This is the analogy of how the quantum ergotropy quantifies
the maximal work extractable from quantum coherences.

5. Ergotropy in Geometric Quantum Mechanics

Thus far, we have seen that in quantum as well as in classical systems, work can
be extracted by “reshaping” the states in phase space without changing their entropy.
Remarkably, in either case, the ergotropy is given by a difference of relative entropies
(see Equations (7) and (20)). The natural question arises as to whether the quantum-to-
classical limit can be taken systematically, or rather the seemingly independent results can
be derived within a unifying framework.

Only very recently, Anza and Crutchfield [20–22] recognized that for such thermo-
dynamic considerations, so-called geometric quantum mechanics [50–52] are a uniquely
suited paradigm. In standard quantum theory, a quantum state is described by a density op-
erator ρ, which can be expanded in many different decompositions of pure states. However,
an often overlooked consequence is that, thus, the probabilistic interpretation of quantum
states is not unique. To remedy this issue, geometric quantum states [50–52] were introduced,
which are probability distributions on the manifold spanned by the quantum states. In
this sense, classical and quantum mechanics only differ in the geometric properties of the
underlying manifold.

We proceed by briefly outlining the main notions of geometric quantum mechanics,
which is well developed (cf. refs. [20–22,50–52] for a more complete exposition). In the
geometric approach, a pure quantum state |ψ〉 is described as a point in a complex projective
space Vd ≡ CPd−1 [51], where d is the dimension of the Hilbert space. Note that d can also
be infinite [50]. Here, z is the set of complex homogeneous coordinates in Vd, and z∗ is the
complex conjugate.

Hence, any pure state |ψ〉 can be written as

|ψ(z)〉 =
d−1

∑
α=0

zα|eα〉 , (23)

where {eα}d−1
α=0 is an arbitrary basis. The geometry of the manifold is determined by the

Fubini–Study metric [51]

ds2 = 2 ∑
α,γ

gαγ∗dzαdz∗γ ≡
1
2 ∑

α,γ
∂zα ∂z∗γ ln (z · z∗)dzαdz∗γ , (24)

where we define gαγ∗ ≡ 1
4 ∂zα ∂zγ ln(z · z∗) and which allows to define a unique, unitarily

invariant volume element, dV ≡
√

det(g) dzdz∗.
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It is easy to recognize that pure states are represented as generalized delta functions
on the projective space. In particular, for |ψ0〉 ≡ |ψ(z0)〉, the corresponding geometric
quantum state becomes

P(z) = δ̃(z− z0) ≡
δ(z− z0)√

det(g)
, (25)

where we introduce the coordinate-covariant Dirac delta. Any (mixed) quantum state can
then be written as

ρ =
∫
Vd

dV P(z) |ψ(z)〉〈ψ(z)| , (26)

where the geometric quantum states are given by

P(z) =
d

∑
j=1

pj δ̃
(

z− zp
j

)
, (27)

and pj is again the eigenvalues of ρ and zp
j ≡ z(

∣∣pj
〉
).

We are now equipped to return to the expressions for the quantum and classical
ergotropies, Equations (7) and (20), respectively. We immediately recognize that to proceed,
we have to consider a generalization of the relative entropy to geometric quantum states.
In complete analogy to the classical case, we need to guarantee that the geometric quantum
states have the same support [53]. Hence, we introduce a geometric quantum generalization
of the conditional distribution to include a generalized transition probability distribution.
To this end, consider

P̃(z) ≡
d

∑
j=1

pj δ̃
(

z− zs
j

)
, (28)

where now zs
j ≡ z(

∣∣sj
〉
), and

∣∣sj
〉

is an eigenstate of a density operator σ. The density

operator, ρ̃, corresponding to P̃(z) reads

ρ̃ = Ũ ρ Ũ† = ∑
j

pj
∣∣sj
〉〈

sj
∣∣ , (29)

where Ũ is the “optimal” unitary maps.
The geometric relative entropy is then defined as

D
(
P̃ ||S

)
≡
∫
Vd

dV P̃(z) ln

(
P̃(z)
S(z)

)
, (30)

where S is the geometric quantum state corresponding to σ (same as before). Moreover, we
have by construction D

(
P̃ ||S

)
= S(ρ̃||σ) = D(ρ||σ), and we conclude that the geometric

relative entropy is identical in value to the classical relative entropy (5). Therefore, we can
write the quantum ergotropy (7) as

β E(ρ) = S(ρ||ρeq)−D
(
P̃ ||Peq

)
, (31)

where Peq is the geometric quantum state corresponding to ρeq. In other words, the
quantum ergotropy is the difference of the relative entropies of the density operator and
the geometric quantum state with respect to ρeq.

Remarkably, also the classical case can be fully treated within the geometric approach.
To this end, note that for any classical distribution, we can construct the corresponding
geometric quantum state. Therefore, it now becomes a fair comparison to consider the
difference of quantum and classical ergotropy, ∆E ≡ E(ρ)− Eclass(ρ). It is not far-fetched
to realize that ∆E is the genuinely quantum contribution to the extractable work. A more
careful analysis of this contribution may be related to quantum correlations (see also
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ref. [17]), yet a thorough analysis is beyond the scope of the present discussion. Rather, the
remainder of this analysis is dedicated to an application of the gained insight to quantum
work relations.

6. Ergotropy from Conditional Thermal States

To this end, imagine a closed system that is driven by the variation of some external
control parameter. We denote the initial Hamiltonian by HA and the final Hamiltonian by
HB, and the average work is simply given by 〈W〉 = 〈HB〉− 〈HA〉. The maximum work the-
orem predicts that 〈W〉 is always larger than the work performed for quasistastic driving [7].
If the system was initially prepared in a thermal state, the quasistatic work is nothing but
the difference in Helmholtz free energy ∆F [54]. The difference of total work and free energy
difference is called irreversible work, and we have 〈Wirr〉 = 〈W〉 − ∆F ≥ 0 [54]. Only rather
recently, it was recognized that a sharper inequality can be derived, for both quantum [23]
as well as classical [26] systems if the quantum work statistics are conditioned on the initial
state. Note that this corresponds to the one-time measurement approach, where only one
projective measurement is taken at the beginning of the process.

In particular, the following was shown [23,26]

β〈Wirr〉 ≥ S
(

$B||ρ
eq
B

)
, (32)

where ρ
eq
B = exp (−βHB)/ZB, and $B is called the conditional thermal state [26]. It

reads [23]

$B ≡∑
j

exp (−β hB(jA))

Z(B|A)
Uτ |jA〉〈jA|U†

τ , (33)

where |jA〉 is an eigenstate of the initial Hamiltonian HA. Further, Uτ is the unitary
evolution operator corresponding to driving the system from HA to HB, and

hB(jA) ≡ 〈jA|U†
τ HBUτ |jA〉 . (34)

Finally, Z(B|A) is the conditional partition function of $B. Since the discovery of
Equation (32), the significance of the conditional thermal state has been somewhat obscure.
In ref. [23,25], the lower bound in Equation (32) was understood as some contribution to the
usable work that would have been destroyed by a second projective measurement. Yet, a
transparent interpretation is lacking.

Remarkably, it is not hard to see that $B is a representation of the geometric canonical
ensemble as proposed by Anza and Crutchfield [20,22]. The geometric canonical ensemble
is defined as the geometric state that maximizes the corresponding Shannon entropy under
the usual boundary conditions [55]. Specifically, we have [20,22]

P(z) ≡ exp (−β h(z))
Z , (35)

where h(z) ≡ 〈ψ(z)|H|ψ(z)〉 and the geometric partition function is

Z ≡
∫
Vd

dV exp (−β h(z)) . (36)

Thus, to maintain the consistency of the presentation, we continue to employ the
geometric formulation of quantum states. Now, consider the geometric representation
of $B

$B =
∫
Vd

dVPB (z) |ψ(z)〉〈ψ(z)| (37)

and we have

PB(z) = ∑
j

exp (−β hB(z))
Z(B|A)

δ̃
(
z− zj

)
, (38)
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where, as before, hB(z) ≡ 〈ψ(z)|HB|ψ(z)〉 and the covariant Dirac delta is evaluated at∣∣ψ(zj)
〉
≡ Uτ |jA〉. Comparing Equations (35) and (38), we immediately recognize that the

PB(z) is nothing but the geometric canonical state evaluated on the quantum manifold.
The natural question arises as to whether any work can be extracted from the geometric

ensemble. To this end, consider the corresponding ergotropy (31)

β E($B) = S
(

$B||ρ
eq
B

)
−D

(
P̃B||P

eq
B

)
, (39)

where, in complete analogy to the above, P̃B is given by

P̃B(z) ≡∑
j

exp (−βhB(jA))

Z(B|A)
δ̃
(

z− zeq
j

)
, (40)

and now zeq
j ≡ z(|jB〉), where |jB〉 is the eigenstate of the final Hamiltonian HB. Thus,

exploiting Equation (12), we can write the sharpened maximum work theorem (32) as

β〈Wirr〉 ≥ βEi($B) + C($B) + S
(
L(τB)||ρ

eq
B

)
, (41)

where τB is the coherence-invariant state of $B. In conclusion, realizing that the conditional
thermal state (33) is nothing but a representation of the geometric canonical ensemble, the
physical interpretation of the sharpened maximum work theorem (32) becomes apparent.
The lower bound on the irreversible work has three contributions, namely the incoherent
ergotropy and the quantum coherences stored in the conditional thermal state, and the
population mismatch between $B and ρ

eq
B . Therefore, we conclude that the conditional

thermal state provides an informational contribution from its coherence to the second law.
From the fact that the classical and quantum ergotropy share the same geometric relative
entropy, we emphasize that thermodynamics based on geometric quantum mechanics is a
unified approach to the quantum-to-classical limit.

7. Conclusions

In conclusion, motivated by the desire to express the maximally extractable work
in a form independent of the optimization over unitary operations, we have obtained
several results. Given that the quantum ergotropy can be expressed as the difference of the
quantum and classical relative entropies, we identified three distinct contributions to the
coherent ergotropy, of which the relative entropy of coherence and the population mismatch
between thermal state and fully decohered state are the most important. This insight was
extended to classical systems, in which inhomogeneities in the energy distribution play
the role of quantum coherences. To quantify how much work can be extracted from
classical states, we introduced the classical ergotropy, and we postulated that the genuine
quantum contribution to the ergotropy is given by the difference of the quantum and
classical expressions. Our analysis provides a consistent approach to maximum work
extraction in both quantum and classical systems. In particular, we have not only shown
that classical inhomogeneities play the role of “classical coherence", but also that work can
be extracted that is quantified by the classical ergotropy. This was solidified by exploiting
the geometric approach to quantum mechanics, in which quantum and classical states
can be treated in a unified framework. As an application, we demonstrated that the
recently introduced notion of “conditional thermal state” actually belongs to the family of
geometric canonical ensembles and that, hence, the corresponding sharpened maximum
work theorem becomes easy to interpret. This demonstrates that understanding quantum as
well as classical ergotropies is an essential pillar of modern thermodynamics with a myriad
of potential applications. Finally, these results demonstrate that the geometric approach
can be regarded as a methodology of unifying the quantum and classical approaches to the
second law of thermodynamics.
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Appendix A. Proof of Equation (5)

Proof of Equation (5). In this section, we provide an alternative proof of Equation (5)
different from the method in ref. [47]. Actually, the procedure of the proof is similar to that
of quantum ergotropy, which was introduced in ref. [2].

Let us consider the quantum relative entropy

S(UρU†||σ) ≡ tr{ρ ln (ρ)} − tr
{

UρU† ln (σ)
}

. (A1)

In order to identify the specific U such that S(UρU†||σ) is minimized, we now
parametrize a variation as δU = (δX)U, where δX is an arbitrary infinitesimal, anti-
Hermitian operator, i.e., (δX)† = −δX. Hence, we may write

δS(UρU†||σ) = −tr
{

δX
[
UρU†, ln (σ)

]}
= 0 (A2)

Then, a solution to Equation (A2) is given by

Ũ ≡∑
∫
i

|si〉〈pi| , (A3)

for which we immediately obtain

S(ŨρŨ†||σ) = ∑
∫
i

pi ln (pi/si) ≡ D(ρ||σ) . (A4)

Therefore, we conclude that the minimum of the quantum relative entropy under all
unitary transformations of ρ is nothing but the classical relative entropy of its distribution
of eigenvalues.

Appendix B. Proof of Equation (7)

Proof of Equation (7). In this section, we prove Equation (7). Let E(ρ) be the quantum
ergotropy of a quantum state

ρ = ∑
∫
i

pi|pi〉〈pi| with pi ≥ pi+1 , (A5)
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and ρeq be the Gibbs state

ρeq =
e−βH

Z
= ∑
∫
j

e−βEj

Z
∣∣Ej
〉〈

Ej
∣∣ with Ej ≤ Ej+1 (A6)

with an arbitrary inverse temperature β. Then, quantum ergotropy is given by

E(ρ) = ∑
∫
i,j

piEj|
〈

Ej|pi
〉
|2 −∑

∫
i

piEi . (A7)

The quantum relative entropy S(ρ||ρeq) is explicitly written as

S(ρ||ρeq) = tr{ρ ln (ρ)}+ βtr{ρH}+ ln (Z)

= ∑
∫
i

pi ln (pi) + β ∑
∫
i,j

piEj|
〈

Ej|pi
〉
|2 + ln (Z) , (A8)

and the classical relative entropy with respect to the eigenvalue distributions is

D(ρ||ρeq) = ∑
∫
i

pi ln (pi) + β ∑
∫
i

piEi + ln (Z) . (A9)

Therefore, we can obtain Equation (7)

βE(ρ) = S(ρ||ρeq)− D(ρ||ρeq) . (A10)

Note that β−1(S(ρ||ρeq)− D(ρ||ρeq)) makes E(ρ) independent of β.

Appendix C. Non-Negativity of Divergence-like Quantity in Thermodynamic Scenario

In this section, let us explain why the divergence-like quantity introduced in Equation (16)
takes only non-negative values in the thermodynamic scenario, while in general, i could take
negative values.

Consider the relative entropy of the probability distribution

pB|A(Γ
′, Γ) = p(Γ′|Γ)pA(Γ) (A11)

with respect to a certain probability distribution rB(Γ′). Let us write

pB(Γ′) ≡
∫

dΓpB|A(Γ
′, Γ) =

∫
dΓp(Γ′|Γ)pA(Γ) . (A12)

Then, we have

D
(

pB|A||rB

)
=
∫

dΓ′dΓpB|A(Γ
′, Γ) ln

(
pB|A(Γ′, Γ)

rB(Γ′)

)
=
∫

dΓ′dΓpB|A(Γ
′, Γ) ln

(
pB|A(Γ

′, Γ)
)
−
∫

dΓ′pB(Γ′) ln
(
rB(Γ′)

)
.

(A13)

Because of the vanishing conditional entropy due to the Liouville’s equation,

H(B|A) ≡ −
∫

dΓ′dΓpB|A(Γ
′, Γ) ln

(
p(Γ′|Γ)

)
= 0 , (A14)

and the normalization of the conditional probability distribution in Equation (14), we have∫
dΓ′dΓpB|A(Γ

′, Γ) ln
(

pB|A(Γ
′, Γ)

)
=
∫

dΓpA(Γ) ln (pA(Γ)) . (A15)
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Therefore, we have

D
(

pB|A||rB

)
=
∫

dΓpA(Γ) ln (pA(Γ))−
∫

dΓ′pB(Γ′) ln
(
rB(Γ′)

)
. (A16)

This could be negative. However, in the thermodynamic scenario, from the second
law of thermodynamics, the final entropyH(B) has to be greater than or equal to the initial
entropyH(A)

H(A) ≤ H(B)⇐⇒
∫

dΓ pA(Γ) ln (pA(Γ)) ≥
∫

dΓ′ pB(Γ′) ln
(

pB(Γ′)
)

. (A17)

Hence, we have

D
(

pB|A||rB

)
≥
∫

dΓ′ pB(Γ′) ln
(

pB(Γ′)
rB(Γ′)

)
= D(pB||rB) ≥ 0 . (A18)

Therefore, the divergence-like quantity in Equation (A13) becomes non-negative

D
(

pB|A||rB

)
≥ 0 . (A19)

Appendix D. Proof of Equation (19)

Proof of Equation (19). In this section, we provide a proof for Equation (19). A variation
in ξ can be written as

δξ ≡ δΓ′ · ∇Γ′ξ + δΓ · ∇Γξ , (A20)

where we replace Γ′′ with Γ′ without loss of generality. From the expression of peq
B and the

vanishing conditional entropy due to the Liouvillian evolution, we obtain

δD
(
QB|A||p

eq
B

)
=β

∫
dΓ
∫

dΓ′pA(Γ)EB(Γ′) δξ , (A21)

where we use the explicit expression for peq
B . We can find that the variation of the relative

entropy vanishes, δD
(
QB|A||p

eq
B

)
= 0, for ξ(Γ′|Γ) = δ(Γ′ − Γ); therefore, we obtain

min
ξ

[
D
(
QB|A||p

eq
B

)]
= D

(
pA||p

eq
B

)
. (A22)
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