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Abstract: Information about an approaching vehicle is helpful for pedestrians to avoid traffic
accidents while most of the past studies related to collision avoidance systems have focused on
alerting drivers and controlling vehicles. This paper proposes a technique to detect an approaching
vehicle aiming at alerting a pedestrian by observing the variation of the received signal strength
indicator (RSSI) of the repeatedly radiated beacons from a vehicle, called the alert beacons.
A linear regression algorithm is first applied to RSSI samples. The decision about whether
a vehicle is approaching or not is made by the Student’s t-test for the linear regression coefficient.
A passive method, where the pedestrian’s device behaves only as a receiver, is first described.
The neighbor-discovery-based (ND-based) method, in which the pedestrian’s device repeatedly
broadcasts advertising beacons and the moving vehicle in the vicinity returns the alert beacon when
it receives the advertising beacon, is then proposed to improve the detection performance as well as
reduce the device’s energy consumption. The theoretical detection error rate under Rayleigh fading
is derived. It is revealed that the proposed ND-based method achieves a lower detection error rate
when compared with the passive method under the same delay.

Keywords: edge computing; collision avoidance; traffic accident prevention; Student’s t-test; received
signal strength indicator (RSSI)

1. Introduction

Japan is facing an aging society, and it is important to respect senior citizens and to promote
the creation of a prosperous city for all people. Meanwhile, vehicles driven by elderly people are
considered to be risk factors, and traffic accidents caused by them have become a serious social problem
in Japan [1,2]. Although people over 70 years old should attach signs that indicate elderly drivers
to their cars in Japan, the detection of these signs is not necessarily easy. Moreover, vehicles cannot
be detected if they are in non-line-of-sight (NLoS) areas from pedestrians. Therefore, a system to
alert pedestrians should be desirable for pedestrians, especially for children, who tend to engage in
unpredictable behaviors, and their associated parents or teachers.

This paper proposes a technique to detect an approaching vehicle in order to alert a pedestrian,
especially at a residential area where the visibility of roads is very limited. Assuming a pedestrian
is carrying a beacon device, the detection technique is carried out by the received signal strength
indicator (RSSI) of the repeatedly radiated beacons, called alert beacons, from the vehicle’s device under
multipath environment. In the proposed system, the approach of the target is detected by the Student’s
t-test for a linear regression coefficient, i.e., the slope of the successive RSSI samples. Since the above
passive method, in which the pedestrian’s device behaves only as a receiver, consumes much battery
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energy by opening the receiver window all the time, we further propose the neighbor-discovery-based
(ND-based) method. In the ND-based method, the beacon called an advertising beacon, is first transmitted
from the pedestrian’s device. Then the vehicle’s device returns an alert beacon when it receives the
advertising beacon. Since the proposed technique does not require additional functions such as cloud
servers or infrastructural facilities, an alert system for pedestrians could be realized cost-effectively.

Also, the detection error rate of the proposed technique with given parameters is
theoretically analyzed.

Please note that this work is a substantial extension of our initial work [3], in which the approach
is detected only by the hard decision of the slope of RSSI samples with zero-thresholding in the
framework of the passive method. Moreover, the detection was carried out at the vehicle side for
a driver assistant system in the previous work. This paper employs a Student’s t-test to enhance
the reliability of the system. Moreover, the ND-based method is proposed to improve the detection
performance by doubling the number of RSSI samples and contributes to reducing the device’s energy
consumption, assuming that an approaching vehicle is detected at the pedestrian side.

The rest of this paper is organized as follows. In Section 2, we review related work on collision
avoidance systems and mobile speed estimation techniques. Section 3 gives an overview of the
proposed system based on the passive method. Section 4 describes the proposed approach detection
technique based on RSSI samples. Section 5 introduces the ND-based method to double the number of
RSSI samples employed for the detection. Numerical evaluations of the detection performance are
given in Section 6. Section 7 introduces our prototype devices, and Section 8 concludes this work.

2. Related Work

Vehicle-approach detection techniques based on radar scanner and visual imaging cameras are
well-matured solutions for collision avoidance systems. There are a variety of proposals in the past
literature, and they are well surveyed in [4–6]. Keller et al. [7] developed a vehicle control system that
is integrated with pedestrian recognition by stereo vision trending to self-driving cars. Jeong et al. [8]
proposed a method to detect a pedestrian during summer nights by a far-infrared (FIR) camera on
a vehicle. Such techniques are useful for alerting an emergency hazard to the drivers. However,
the application of the above systems is limited to situations where targets are directly visible from
the vehicle. Moreover, there is a lack of a system that can alert a pedestrian side, not a vehicle side,
in the literature.

TOYOTA has brought an intelligent transport system known as “ITS connect [9]” to avoid the
traffic accidents with pedestrians in blind spots or at poor-visibility intersections. In such a system,
pedestrians crossing roads are detected by specific devices deployed around the intersections, and that
information is notified to drivers. However, it would be difficult to build these comparatively
expensive infrastructural systems widely in residential streets. Considering that the situation where
pedestrians such as children or elderly people are keeping some beaconing devices for safe and secure
purposes becomes common, especially, in Japan, the proposed system is much more feasible in terms
of cost-effectiveness.

There are proposals to estimate the mobile speed and the direction based on the Doppler frequency
of received signals, e.g., in [10–13]. Still, they require the physical layer level implementations, and thus
they are difficult to be implemented in practical applications. Since obtaining RSSI in the upper layer is
relatively easy, the applications to localization systems have attracted much attention [14–17]. However,
they seem to be still challenging because they need to deploy more than one access point to estimate
the correct location of the targets as well as the exact channel propagation characteristics. Nevertheless,
if the goal is limited to detect the target approach assuming the target is carrying any beaconing
device, the system should be in more practical, and there is no need to estimate channel propagation
characteristics in the proposed system.To the best of our knowledge, our work is the first trial to
employ RSSI for the approach detection of vehicles and pedestrians.



Sensors 2020, 20, 118 3 of 14

Although the global positioning system (GPS) would be helpful to implement the functions
mentioned above, the devices would be more costly, and the obtained precision would get low under
building shadow. Moreover, the system employing a GPS tend to consume battery energy more
quickly; the current consumption by a typical GPS module is about 14.4 mA, and thus the battery life
of the device becomes only about 15 h if we employ a coin battery with the capacity of 220 mAh [18].
RSSI-based detection with the proposed ND-based method overcomes the issue of battery exhaustion,
which will be described in Section 7.

3. System Model

3.1. Vehicle-Approach Detection Based on a Passive Method

Figure 1 illustrates the overall system model. A vehicle carries a device that radiates specific
beacons, called alert beacons, repeatedly every ∆T seconds to notify its existence to the surroundings.
A pedestrian carries a device that can receive the alert beacons. When the pedestrian receives an alert
beacon, the detection of approaching begins.

Figure 1. A system model of the proposed vehicle-approach detection technique.

The initial time, where the first beacon is received at the pedestrian, is denoted as T = T1. It is
assumed that the pedestrian keeps receiving the alert beacons in every ∆T seconds without packet
loss, for simplicity. The timestamp of transmitting n-th advertising beacon is computed as

Tn = T1 + (n− 1)∆T (1)

for n = 1, 2, · · · . After receiving N alert beacons in total, the pedestrian’s device estimates the approach
of the vehicle at time T = TN . If the system detects the approach, the system alerts the pedestrian by,
e.g., voice navigation. In this approach, the pedestrian’s device behaves only as a receiver and keeps
the receiver window open all the time, and thus we call it the passive method. A sequence diagram of
the above process is shown in Figure 2.

Figure 2. A sequence diagram of the approach detection based on the passive method.
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3.2. Vehicle Motion Model

Let us denote the initial vehicle distance from the pedestrian at the time T = T1 by d = d1 m.
For simplicity of analysis, it is assumed that the vehicle keeps moving with a constant velocity v km/h
relatively to the pedestrian, where v < 0 and v > 0 represent receding and approaching, respectively.
The receiving time of n-th beacon is denoted by Tn for n = 1, 2, · · · according to (1). Therefore, the n-th
distance of the vehicle from the target is represented by

dn = d1 − v(Tn − T1) = d1 − (n− 1)v∆T. (2)

3.3. RF Propagation Model

It should be a rare situation when the beaconing device is in Line-of-Sight (LoS) from the vehicle,
and the propagation between them should be in NLoS in most cases. Then we need to consider
multipath propagation.

This paper assumes that the propagation model is specified by the simplified path loss model
with Rayleigh fading. With an attenuation factor κ and a path loss exponent λ, the average received
power at the distance d is computed by

Ω(d) = κd−λ, (3)

where the reference distance is assumed to be 1 m. Then the probability density function (PDF) of the
received instantaneous power ṗ conditioned by the distance d under the Rayleigh fading conforms to
the exponential distribution [19] in watts as

f ṗ( ṗ|d) = 1
Ω(d)

exp
(
− ṗ

Ω(d)

)
. (4)

We further transform the fading model in decibels by employing a variable p = 10 log10( ṗ) and
obtain the following Gumbel-wise distribution:

fp(p|d) = 10p/10

10Ω(d) log10 e
exp

(
−10p/10

Ω(d)

)
. (5)

In this paper, we assume that any two channels that beacons pass through are uncorrelated.

3.4. Problem Formulation

Let us define the following two events:

H0 : v ≤ 0

H1 : v > 0,
(6)

where in other words, in the case of H1, the vehicle and the pedestrian are approaching each other.
We now denote the sequence of RSSI samples by p = {p1, . . . , pN}, where N is the total number

of RSSI of beacons. Our goal is to estimate the event from p. However, since pn for 1, . . . , N is by
nature random variable conforming to the PDF (4), the detection of the event is not straightforward.

Let x and y denote the true event and the estimated event, respectively, where x, y ∈ {H0, H1}.
Considering the purpose of our application, the error probability p(y = H0|x = H1) should be as low
as possible, accepting some degree of the error probability p(y = H1|x = H0), in which we call the
former error a Type-I error and the latter a Type-II error. To this end, we employ a detection method
based on a Student’s t-test, which is described in the following section.
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The detection delay is another concern for the proposed system. Assuming that the computational
time for detection is negligible, the detection delay can be computed as

Tdelay = TN − T1 = (N − 1)∆T [s] (7)

where in the case of the passive technique. From (7), we can expect that the larger ∆T and N tend to
produce larger delay, which causes the severe approach of the vehicle and the pedestrian when x = H1.
We will analyze the trade-off between the detection performance and the detection delay, and derive
appropriate setups for practical use.

4. A Vehicle-Approach Detection Technique Based on a Student’s t-Test

This section describes the proposed detection technique of the target approach based only on
RSSI samples and their receiving times.

4.1. Linear Regression of RSSI Samples

We first approximate the RSSI sequence p as a linear function of time t with coefficient vector
β = {β1, β2}, which is represented by

φ(T) = β1 + β2T. (8)

To estimate coefficients β, we employ a least-squares method (LSM).
Let us define a population regression equation by

pn = β1 + β2Tn + εn, (9)

where εn is the error term at the time Tn for n = 1, . . . , N, or, Equation (9) can be written as

εn = pn − (β1 + β2Tn), (10)

for εn, the conditions that the mean E{εn} = 0 and E{εnεm} = 0 for n 6= m are satisfied if εn and εm

are uncorrelated with each other, respectively, and let us denote the variance of εn by V{εn} = σ2
n .

By employing an LSM for ∑N
n=1 ε2

n, we can obtain the regression coefficients such that

β̂2 =
∑N

n=1(Tn − T̄)(pn − p̄)

∑N
n=1(Tn − T̄)2

(11)

β̂1 = p̄− β̂2T̄, (12)

where T̄ and p̄ are the sample means of Tn and pn for n = 1, . . . , N, respectively.
One can notice that the events H0 and H1 defined in (6) are equivalent to the conditions where

β2 ≤ 0 and β2 > 0, respectively. Therefore, we analyze the statistical property of β̂2 in what follows.

4.2. Sample Distribution of β̂2

For given system parameters N and ∆T and any variables v, d1, κ and λ, let us now assume
that each error term εn in Equation (9) for n = 1, . . . , N is i.i.d. and conforms to the Gaussian
distribution, i.e.,

εn ∼ N (0, σ2) for n = 1, . . . , N, (13)

where the variance is assumed to be common as σ2 = σ2
n for all n.
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Substituting Equation (9) into Equation (11), we can obtain that

β̂2 = β2 +
∑N

n=1(Tn − T̄)εn

∑N
n=1(Tn − T̄)2

, (14)

which shows that β̂2 can be represented as the linear function of Gaussian variables εn, and thus β̂2 also
conforms to the Gaussian distribution. From E{εn} = 0 and E{εnεm} = 0 for n 6= m, it follows that

E{β̂2} = β2 (15)

V{β̂2} = E{(β̂2 − β2)
2} = σ2

∑N
n=1(Tn − T̄)2

(16)

and thereby

β̂2 ∼ N
(

β2,
σ2

∑N
n=1(Tn − T̄)2

)
. (17)

Please note that for the observed RSSI pn and its regression value p̂n = φ̂(Tn) = β̂1 + β̂2Tn, the
residual ε̂n , pn − p̂n satisfies the following conditions:

N

∑
n=1

ε̂n = 0,
N

∑
n=1

ε̂nTn = 0. (18)

Since σ2 in (17) is unknown in practice, we calculate the sample variance of εn from the observed
RSSI samples as follows:

s2 =
∑N

n=1 ε̂2
n

N − 2
, (19)

where the denominator N − 2 stems from the reduction of degrees of freedom due to the conditions
in (18).

By replacing σ2 in (17) with s2, we can obtain the sample variance of β̂2, and thus the sample
standard deviation can also be calculated as

ξ(β̂2) =

√
s2

∑N
n=1(Ti − T̄)2

. (20)

We now introduce the following variable:

ρβ2 =
β̂2 − β2

ξ(β̂2)
. (21)

Because the standardized value of β̂2 can be represented by (β̂2 − β2)/
√

σ2/ ∑N
n=1(Tn − T̄)2 that

conforms to the standard Gaussian distribution, the variable ρβ2 can be regarded as the value of β̂2

standardized by the sample standard deviation ξ(β̂2) and shall conform to the Student’s t-distribution
with N − 2 degrees of freedom.

4.3. Student’s t-Test

With the variable ρβ2 , we employ a Student’s t-test to decide y. Let us denote the cumulative
distribution function (CDF) of the Student’s t-distribution with ν degrees of freedom for ρ by
T (ρ|ν) = q, and its inverse function can be expressed as
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ρ = T −1(q|ν) = {ρ : T (ρ|ν) = q} (22)

Since our interest is to detect whether v > 0 or not, by substituting β2 = 0 to (21), we can obtain

ρ0 =
β̂2

ξ(β̂2)
. (23)

With a significance level α0 for v = 0, if the condition ρ0 ≥ T −1(α0|N − 2) is satisfied, we decide
as y = H1, otherwise y = H0.

Please note that in practice, T −1(α0|N − 2) can be computed by referring to the predefined
Student’s t-distribution table, and thus, its computational complexity is negligible. We also note that
the value of the significance level α0 directly affects the detection performance, and in the case where
α0 = 0.5, the above Student’s t-test is equivalent to the simple decision making that has been presented
in our previous work [3], where y = H1 if β̂2 > 0 and y = H0 if β̂2 ≤ 0 since T −1(0.5|ν) = 0 for any ν.

4.4. Summary of the Detection Flow

The detection of the approaching from the observed RSSI samples p is summarized as follows:

1. compute T −1(α0|N − 2) beforehand by the Student’s t-distribution table,
2. estimate β̂2 by (11),
3. compute s2 and ξ(β̂2) by (19) and (20),
4. compute ρ0 by (23), and
5. if ρ0 ≥ T −1(α0|N − 2), y = H1, otherwise y = H0.

5. ND-Based Vehicle-Approach Detection

We have mentioned that there is a trade-off between the detection performance and the detection
delay. The latter directly stems from the number of RSSI samples employed in the approach detection
for a specific ∆T. This section describes a new scheme that can double the number of RSSI samples by
applying the ND-based method to the approach detection scenario.

Figure 3 illustrates the proposed ND-based method. Unlike the passive method, the pedestrian’s
device first transmits specific beacons, called advertising beacons, repeatedly in every ∆T seconds.

Figure 3. The proposed ND-based method.

Once a vehicle receives an advertising beacon, it returns an alert beacon containing the RSSI value
of the advertising beacon inside the payload of the packet. The vehicle returns alert beacons to the
pedestrian side every time it receives advertising beacons.

We now denote that the total number of advertising beacons by M, which is equivalent to that
of alert beacons. Since we can employ the RSSI values of both the advertising beacons and the alert
beacons at the pedestrian side, the total number of RSSI samples can be doubled such that N = 2M.
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The initial time T1, in this case, is defined by the time when a vehicle receives an advertising beacon
for the first time. The response lag from the reception of an advertising beacon to the transmission of
an alert beacon is denoted by τ in seconds. The timestamp of the RSSI sample pn can be represented by

Tn =

{
T1 + (m− 1)∆T for n = 2m− 1

T1 + (m− 1)∆T + τ for n = 2m
(24)

for m = 1, 2, · · · , M. After receiving M alert beacons responding to M advertising beacons, the
detection finishes at the time TN = T2M. If the system detects an approaching vehicle, the system alerts
the pedestrian. A sequence diagram of the above process is shown in Figure 4.

Figure 4. A sequence diagram of the ND-based system.

The ND-based method also has the advantage of prolonging the battery life of the pedestrian’s
device compared to the passive method. According to [18], instantaneous current consumption per
beacon transmission is about 94.4×10−3 mAsec while the reception process continuously consumes
5.4 mA, which is more dominant than that of the transmission process if the reception process lasts
long. In the ND-based method, the device can open the receiver window only while it waits for
an alert beacon such that we can limit the duration time of the reception process. As a consequence,
the battery life of the ND-based method is seven times longer than that of the passive method. A more
detailed analysis of the power consumption can be seen in [18]. Although the ND-based method
has a secondary advantage that we can also alert the driver side about the approaching pedestrian,
this topic is beyond the scope of this paper.

6. Results

In practice, d1 and v are random variables. The final goal of this study is to suitably design system
parameters ∆T, τ, N and α0 to accommodate typical values of d1 and v. This section shows numerical
results on several scenarios of d1 and v.

Figure 5 shows the relationship between the detection error rate and the detection delay Tdelay for
both passive and ND-based methods with any combinations of system parameters ∆T = 0.2, 0.5 and
1 s and α0 = 0.5, 0.25 and 0.1. Each figure includes the results for the vehicle velocities v = 40, 20 and
−40 km/h with d1 = 100 m. These parameters stem from the legal speeds for vehicles in residential
areas and the communication range of beacons [18]. The parameters related to the propagation model
are set as κ = 1× 10−3 and λ = 2.35, and the response lag τ in the ND-based method is set as τ = 0.1 s.
The simulation values are obtained by a Monte Carlo method, in which RSSI samples are generated
randomly according to the PDF (5). We also derived the theoretical error rate, which is described in the
Appendix A. The difference between the simulation values and the theoretical curves stems from the
assumption in (13), i.e., the mismatch between the true distribution of εn and the Gaussian distribution.
Please note that the results for v = 40 km/h and 20 km/h show the probability of Type-I errors and
those for v = −40 km/h show the probability of Type-II errors.
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It can be first shown in Figure 5 that the detection error rate decreases as Tdelay increases in all
cases; the performance is improved as the value of N increases for any combination of ∆T and α0.
However, we should remember that the more Tdelay increases, the closer the vehicle approaches to
the pedestrian when x = H1. It is also shown that the ND-based method is effective for reducing the
detection error rate, and the detection delay can be shortened by almost one second to achieve the
error rate of 10−3 in all cases.

(a) ∆T = 0.2 [sec], α0 = 0.5 (b) ∆T = 0.2 [sec], α0 = 0.25 (c) ∆T = 0.2 [sec], α0 = 0.1

(d) ∆T = 0.5 [sec], α0 = 0.5 (e) ∆T = 0.5 [sec], α0 = 0.25 (f) ∆T = 0.5 [sec], α0 = 0.1

(g) ∆T = 1 [sec], α0 = 0.5 (h) ∆T = 1 [sec], α0 = 0.25 (i) ∆T = 1 [sec], α0 = 0.1

Figure 5. Detection delay vs. detection error rate. The detection error rates for v = 40 and 20 km/h
show the probability of Type-I errors and those for v = −40 km/h show the probability of Type-II errors.

When we compare the different values of α0 for a fixed ∆T, e.g., Figure 5a–c, a trade-off can be
seen between the probabilities of Type-I errors and Type-II errors; Type-I errors reduce as α0 decreases
while Type-II errors increase. For variable ∆T with a fixed α0, e.g., Figure 5a,d,g, as ∆T increases, the
detection performance is degraded for all v.

From the results in Figure 5, one can see that the ND-based method with ∆T = 0.2 s is the best
option among the others, but the pedestrian’s device highly consumes battery energy in such a system.
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On the other hand, the system with ∆T = 1 s increases the detection delay when compared to the
same detection error rate level. For example, in the case that v = 40 km/h, the ND-based method with
∆T = 0.2 and α0 = 0.5 achieves the detection error rate of 10−2 at Tdelay ' 4.5 s, in which the distance
between the vehicle and the pedestrian is dN ' 50 m. To achieve the equivalent level of the above
detection error rate, Tdelay of 5.6 and 6.1 s are required for ∆T = 0.5 s and 1 s.

Based on the above observations, we analyze the ND-based method with ∆T = 0.5 s more in
detail in what follows. Figure 6 illustrates the relationship between the detection error rate and the
vehicle velocity v for the ND-based method with ∆T = 0.5 s and various M, i.e., M = 7, 11, 17 and 21,
which correspond to Tdelay = 3.1, 5.1, 8.1 and 10.1 s, respectively. The significance level α0 is set as
0.5, 0.4, 0.3 and 0.2 for Figure 6a–d respectively. We again note that the results for v > 0 and v ≤ 0
respectively correspond to the probabilities of Type-I errors and Type-II errors. As designed, we can
see the detection error rate, or the probability of Type-II errors, for v = 0 km/h is equal to 1− α0.

(a) (b)

(c) (d)

Figure 6. Detection error rate vs. vehicle velocity v for the ND-based method with ∆T = 0.5 s and
various M. (a) α0 = 0.5; (b) α0 = 0.4; (c) α0 = 0.3 and (d) α0 = 0.2. The detection error rates for v > 0
and v ≤ 0 respectively correspond to the probabilities of Type-I errors and Type-II errors.

The asymmetry of curves around the boundary of v = 0 km/h is observed in all figures. It is
because the mean of RSSI varies in log10 order with respect to the distance d as shown in (A1) while d
changes linearly. Comparing Figure 6b to Figure 6a, i.e., α0 = 0.4 to 0.5, the detection performance
for x = H1 is improved. The effectiveness is much obvious around v = 10 km/h, while some
degradation of the performance for x = H0, i.e., the increase of the probability of Type-II errors, can
be seen. This degradation is more significant as α0 decreases as shown in Figure 6c,d. For example,
when v = −40 km/h, the detection error rate for M = 17 is less than 10−1 in Figure 6a–c, but it is
almost equal to 10−1 in Figure 6d.
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We now assume 10−2 is the allowable detection error rate for v = 40 km/h. If we consider M = 11,
the techniques with α0 = 0.4, 0.3 and 0.2 can achieve the detection error rate of 10−2. However, as we
decrease α0, the probability of Type-II errors increases, as mentioned above. In this case, the ND-based
method with α0 = 0.4 becomes an appropriate design.

It turns out that it is challenging to determine M to a unique value since the performance fluctuates
depending on the random variable v and d1. Nevertheless, the design of a stepwise detection and alert
system could be still possible with several predefined values of M, which would be the most feasible
and reliable application for our scenario.

7. Prototype Devices

Figure 7 shows the prototype devices that we have developed for the proposed system.
The wireless standard of IEEE 802.15.4g [20] is employed for the beacons. Both devices have
a micro-processing unit (MPU) such that we can implement and conduct the proposed technique
inside these devices. The vehicle’s device has a GPS, and thus we can add a function to reduce the
transmission of unnecessary beacons when the velocity is below a predefined threshold. Likewise,
the pedestrian’s device has an accelerometer such that the timing of beacon transmission can be
controlled by recognizing the pedestrian’s action.

Figure 7. The prototype devices for a vehicle (left) and a pedestrian (right). The size of both devices is
5 cm × 5 cm

Our preliminary experiments [18] revealed that over 100 m of the beacon transmission range
could be promising, and thus the proposed detection technique is feasible by the prototype devices.
Each device has a unique medium access control (MAC) address. Therefore, the proposed system can
distinguish the beacons of an identical device from those of other devices even in the case that there
are several devices in the same area.

Rechargeable batteries with a capacity of 400 mAh are installed on both devices. If we assume the
battery capacity is 220 mAh and the device is active for two hours per 24 h, about 280 days of battery
life is attained by the ND-based method [18]. Therefore, it turns out that over 500 days of battery life
is achievable by these prototype devices without recharging.

This paper focuses on the analysis of the proposed technique from the theoretical aspect to
validate its feasibility. Further analysis based on real-field experiments with the prototype devices is
beyond the scope of this paper.

8. Conclusions

This paper proposed an RSSI-based low-power vehicle-approach detection technique that alerts
neighboring pedestrians. There are two approaches. A passive method applies a simple linear
regression to estimate the slope of the RSSI samples and conducts a Student’s t-test from a limited
number of received packets.
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This paper also proposed the ND-based method that can significantly improve the detection
performance by increasing the number of RSSI samples employed for the detection and reduce the
power consumption of the pedestrian’s device.

The main findings of this paper are: (1) The ND-based method can shorten the detection delay by
one second compared to the passive method to achieve the error rate of 10−3 in all cases. (2) There is
a trade-off between the Type-I error rate and the Type-II error rate depending on the significance level
in the Student’s t-test. (3) The ND-based method with the significance level α0 = 0.4 and the beacon
interval ∆T = 0.5 s seems to be an appropriate design in the simulations, and the stepwise detection
could be the most reasonable implementation for our scenario.

The proposed technique does not require any prior knowledge, such as the speed of vehicles,
the distance between the pedestrian and the vehicle, and the channel information for beacons.
Therefore, the proposed technique can be adapted to situations where these parameters randomly
vary. The analysis for more realistic conditions and the evaluation of actual detection performance in
real-field experiments using the prototype devices are left as our future work.

Author Contributions: Conceptualization, Y.W. and Y.S.; methodology, Y.W. and Y.S.; software, Y.W.; validation,
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writing—review and editing, Y.S.; visualization, Y.W.; supervision, Y.S.; project administration, Y.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A. Derivation of Theoretical Error Rate

This appendix derives the theoretical detection error rate of the approach detection technique
based on the Student’s t-test.

The mean of the PDF (5) at the distance d is expressed by

E{p|d} = 10(log10 Ω(d)− γ log10 e), (A1)

where γ is the Euler’s constant. The variance can be represented by

V{p|d} = 50
3
(π log10 e)2, (A2)

which is constant regardless of the distance d.
We now conveniently denote the variance in (16) by ς2 , V{β̂2}. When x = H1, the Type-I

detection error rate can be represented by the probability where the system erroneously makes
a decision as y = H0, i.e., ρ0 < T −1(α0|N − 2). Considering that ρ0 is the estimated slope value scaled
by the sample standard deviation ξ(β̂2), its statistical distribution conforms to

ρ0 ∼ N
(

β2√
ς2

, 1

)
. (A3)

Consequently, the theoretical probability of Type-I errors can be computed by

Pr {y = H0|x = H1} = Pr
{

ρ0 < T −1(α0|N − 2)|β2 > 0
}

=
1
2

erfc

(
β2 −

√
ς2T −1(α0|N − 2)√

2ς2

)
, (A4)
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where erfc(·) is the complementary error function. Likewise, the theoretical probability of Type-II
errors can also be derived as

Pr {y = H1|x = H0} = Pr
{

ρ0 ≥ T −1(α0|N − 2)|β2 ≤ 0
}

= 1− 1
2

erfc

(
β2 −

√
ς2T −1(α0|N − 2)√

2ς2

)
. (A5)

With given system parameters N and ∆T, channel parameters κ and λ, and the vehicle-related
variables v and d1, we derive β2 and ς2 in what follows.

The true slope β2 can be estimated by calculating the regression coefficients of RSSI samples
without any multipath effect. Since Equation (A1) represents the average power under the Rayleigh
fading, the true slope β2 can be calculated by

β2 =
∑N

n=1(Tn − T̄)
(

E{pn|dn} − E{pn|dn}
)

∑N
n=1(Tn − T̄)2

, (A6)

where E{pn|dn} is the sample mean of E{pn|dn} for n = 1, . . . , N.
We assume that the variance of the error term σ2 is approximated to the variance (A2), i.e.,

σ2 = V{p|d}. Thereby, based on (16), we obtain

ς2 =
V{p|d}

∑N
n=1(Tn − T̄)2

. (A7)
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